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The purpose of this paper is to briefly discuss some important current questions 
and problem related to the use of scoring rules (SRs) both in connection with the actual 
asse%ment of probabilities and with the evaluation of probability forecasts and probabi- 
lity assessors. With regard to the assesstneftt process, we consider both the case in which 
the assessor’s utility function is linear and the case in which his utility function is 
nonlinear. Under linear utility, important problems of concern are the sensitivity 
of SRs to deviations from optimality (with a strictly proper SR, optimality consists 
of the assessor making his statements correspond to his judgments) and the effect of 
psychological considerations arising from the use of different SRs. Under nonlinear 
utility, SRs should be modified to allow for the nonlinearity in such a manner that 
for a specific utility function. the modified SRs are strictly proper. This introduces the 
difficult question of the assessment of the assessor’s utility function. With regard to 
the evaiunrion process (as opposed to the assessment process), we consider the process 
from an inferential viewpoint and from a decision-theoretic viewpoint. From an 
inferential viewpoint, attributessuch as validity may be of interest, and in certain 
circumstances these attributes may be related to SRs. The attributes of interest, of 
course, depend on the framework within which the evaluation process is undertaken. 
From a decision-thLwretic viewpoint, SRs may be related to a decision maker’s 
utilities or expected utilities (under uncertainty about the utilities) if the decision 
maker uses the assessed probabilities in an actual decision situation. 

In summary, there are many important qutistions and problems related to SRs, 
and the need for future research on these probletns seems clear. Such research should 
lead to ;I greatly improved understanding of the processes of probability assessment 
and evaluation. 

1. INTRODUCTION 

The personalistic theory of probability prescribes that the probabilities 

to be used in inferential and decision-making situations shodd corrwond 
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with the assessor’s judgments. Since the judgments exist solely in the 
assessor’s mind, there is no way to determine whether or not this require- 
ment is satisfied. However, by rewarding or penalizing the assessor 
according to certain scoring rules (SRs), one can encourage an assessor 
to make his stated probabilities correspond with his judgments. SRs, 
which involve the computation of a score based on the assessor’s stated 
probabilities and on the event which actually occurs, are useful in the 
evaluation of probability assessors as well as in the assessment process 
itself. 

General discussions involving SRs and reviews of the previous work 
in the area may be found in WINKLER (1967), WINKLER and MURPHY 

(1968), DE FINETTI and SAVAGE (1969), and STAISL VON HOUTEIN (1970). 

?‘he reader interested in the historical development and use of the concept 
of SRs should consult these sources and the references cited there. The 
purpose of this paper is to briefly discuss some important current ques- 
tions and problems related to the use of SRs, both in connection with 
the actual assessment of probabilities and with the evaluation of probabil- 
ity forecasts and probability assessors. In section 2, the concepts of 
assessment and evaluation are briefly described and compared, Some 
problems which are of particular concern with regard to the assessment 
process are discussed in section 3, and some problems which are of 
particular concern with regard to the evaluation process are discussed 
in section 4. 

2. ASSESMENT AND EVALUATION 

The role of SRs m probability assessment is to encourage the assessor 
to be ‘honest’, i.e., to make his statements correspond to his judgments. 
Thus, SRs which encourage honesty on the part of the assessor, i.e., 
‘proper’ SRs (refer to section 3), are of primary interest. Further, since 
assessment is an a priori task (a task which takes place in the absence 
of complete knowledge of the ‘true’ state), expected, rather than actual, 
scores are of primary interest. However, the actual scores are of some 
(secondary) interest, since the assessor’s actual scores may influence 
his behavior. 

The role of SRs in probability evaluation is to evaluate, i.e., to measure 
the (substantive) ‘goodness’ of, the probabilities. In this task the SRs 
need not necessarily be ‘proper’ SRs (however, see below). Sinceevaluation 
is an a posteriori task (a task which takes place in the presence of complete 
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knowledge of the true state), actual, rather than expected, scores are 

of primary interest. 
In the previous paragraphs the assessment and evaluation tasks have 

been considered separately. However, as WINKLER (1969) has indicated, 
game theoretic problems may arise if the assessor is rewarded (or penaliz- 
ed) and evaluated with different SRs. These problems can be eliminated 
if the same SR is utilized in both the assessment and the evaluation tasks. 
Since ‘proper’ SRs are of primary interest for the assessment task, we 
restrict our attention in this paper largely to such SRs. 

3. THE ASS~MENT PROCESS 

The primary role of SRs with respect to the assessment process (the 
actual process of quantifying one’s judgments and expressing them in 
terms of probabilities) is to encourage the assessor to be honest in re- 
porting his true judgments and to take the task of assessment seriously 
and devote considerable time and care to the assessment process. In 
our discussion of the assessment process, it will be convenient to consider 
two cases: (I) the situation in which the assessor’s utility function for 
the score is linear, and (2) the situation in which his utility function is 
nonlinear. 

3. I. Linear utility 

A scoring rule provides the assessor with a ‘payoff’ which depends on his 

stated probability assessments and on the event which actually occurs. 
In decision theory, the axioms of rational choice imply that a person’s 
judgments about uncertain situations can be represented by subj’ective, 
or personal, probabilities; that a person’s preferences for various conse- 
quences can be represented by a utility function; and that in choosing 
among alternative actions, a person should choose the action which 
maximizes his expected utility (e.g., see SAVAGE, 1954; or FISHBURN, 

1964). But if the ‘consequence’ to an assessor is a linear function of 
some SR, and the assessor’s utility function for the score is linear, then 
maximization of the expected score is equivalent to maximization of 
expected utility. 1 

~. ._-___ 

1 We have implicitly assumed that the SR of concern is defined in such a ‘nlaMCT 

that a larger score is ‘better’. Such a rvle may be said to have a positive orientation. 
However, if a specific SR is defined in such a manner that a smaller score is ‘better’ 
(i.e., if the rule has a negative orientation), then the assessor should attempt to 
minimize iris expected score. 
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Suppose that an assessor must make a probability forecast in a 
situation in which there are n mutually exclusive and collectively ex- 
haustive outcomes, El, Ez, . . ., En. Let rt denote the assessor’s probability 
forecast for the outcome EC, and let pi den.ote the assessor’s true judgment 
regarding the probability that Ei will occur. Of course, pi > 0 and 
rf > 0 for i = 1 9 2, . . ., n, and 2 pi = z rt = 1 a To simplify the notation, 
let t = (II, r2, . . ., rB) and let p = (PI, pz, . . ., p,). Then the expected 
score for a given SR is 

SR (w-a = i phSRs b), 
h-l 

where the subscript h refers to the event which actually occurs and SRn(r) 
is thle score corresponding to a stated r when Eh occurs. SR is said to be 
strictly proper if SR (p, p) > SR (r, p) for all Y f p. If the inequality is 
not strict, then SR is said to be proper. A strictly proper SR obliges the 
assessor to set r equal top in order to maximize his expected score: with 
a proper (but not strictly proper) SR, setting r = p will maximize the 
expected score, but other choices of r may also enable the assessor to 
attain the maximum expected score. 

With regard to the assessment process, it seems desirable tc limit the 
choice of SRs to strictly proper SRs if possible, or at least to proper SRs. 
There are many such rules, so this should present no problem. The 
difficulty arises when one attempts to compare the various strictly 
proper (or proper) SRs. If they all satisfy the criteria of keeping the 
assessor honest and encouraging careful assessment, which one should 
be used in any actual probability forecasting situation? 

One question which has not been investigated in detail is the question 
of the sensitivity of the expected scores to deviations from one’s true 
judgments. This, of course, depends on p and on the particular rule used. 
It would seem that a ‘sharper’ (i.e., more sensitive) SR would be more 
likely to encourage careful assessment than a ‘flatter’ rule, because 
deviations from optimality are more costly with a sensitive rule than 
with a relatively insensitive one. When N = 2 (the two-state situation), 
a comparison was made among three strictly proper SRs, the logarithmic, 
quadratic, and spherical SRs, which are defined for any n as follows: 
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(a) p, = 0.5 
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(c) p, = 0.9 

‘I 
Fig. 1. The expected scores for L, Q and S as a function of r~ when pl equals 

(a) 0.5, (b) 0.7, and (c) 0.9. 
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The results for pl equal to 0.5, 0.7, and 0.9 are presented in fig. 1. 2 
Note that in each case, L seems to he the least sensitive of the three 
rules to deviations froxu the optimal forecast r = p (the expected score 
is ‘flatter’ for I, than it is for Q or S’). Also, Q tends to he slightly ‘flatter’ 
than S. It #appears that for small deviations of r from p in the two-state 
cast, all three of the rules considered are fairly insensitive. If pl = 0.5, 
for example, values of rl as small as 0.4 or as large as 0.6 result in reduc- 
tions m the expected scores of approximately lx, 4%, and 7 % for L, 
Q and S, respectively. Furthermore, as pl approaches zero or one, the 
rules become even less sensitive. If p1 = 0.9, a forecast of rl = 0.6 only 
reduces tbz expected scores by approximately 6 %, I lx, and 13 % for 
L, Q and S, respectively. 

It is difsicult to generalize the above sensitivity results beyond the 
two-state case. In the general n-state case, the logarithmic rule should 
still be quite insensitive, since it only depends on rh, the stated forecas$t 
corresponding to the event which actually occurs. The quadratic arm 
spherical rules, however, depend not only on r~, but also on the distri- 
bution of the remaining probability 1 - th among the remaining n - 1 
possible outcomes. 

Fern= 3, the quadratic scoring rule was compared with the ranked 
probability score (RPS). 3 As in the two-state case, the SRs were normaliz- 
ed for a given p to make the maximum and minimum expected scores 

* In order to put the three SRs on a comparable basis, they were normalized 
for a given PI as follows. ‘The maximum value of the expected score, which occurs 
at r~=pt, was set equal to1 one; the minimum value of the expected score, which 
occurs at rr=O if p1>0.5 and at n= 1 if PI< 0.5, was set equal to zero. Since L is 
unbounded below, the minimum value of L was assumed to occur at rl-0.01 if 
PI> 0.5 and at r1=0.99 if1716 0.5. For each SR, this normalizing procedure amounts 
to a positive linear transformation of the SR. The transformed SRs are strictly proper, 
since any linear transformation of a strictly proper SR is itself strictly proper. 

a RPS, unlike the other three rules, is a strictly proper rule which takes into 
account the ordering of the possible outcomes (provided, of course, that at least 
ordinal mgriisurement has been attained) (see EPSTEIN, 1969). That is, RF% depends 
not only on r~ and on the numerical values of the remaining rc’s, but also on the 
‘closeness’ of each potential outcome Et to the actual outcome EI. For example, 
in a footbaligame, if& =win, ES = tie, and Es-lose, then the forecast r’==(O. 1,0.4,0.5) 
receives a better scare (using RPS) !!z , ” -(C.4, 9.1, 0.5) if Ea tows. since a tic 
is ‘closer’ to a loss than is. a win. Under Q, the forecasts r’ and r” would r.tilve 
the same score. When n=2$, Rps is equivalent to Q, since order becomes irrelevant 
in the two-state case. 
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equal to one and zero, respectively (see footnote 2). We have examined 
the relative sensitivity of Q and RPS for a few specific choices of p. 
The results indicate th:bt the relative sensitivity is quite variable; in some 
situations, RPS is more sensitive than Q, while in other situations the 
opposite is true. The relative sensitivity clearly depends upon p. Further- 
more, even for a given p, RPS is more sensitive than Q for some values 
of r and less sensitive for other values of r. In particular, if re is fixed, 
RPS is least sensitive relative to Q when ri = rs = (1 .- r2)/2 and most 
sensitive relative to Q when ri = 0 or rs = 0. These results are of a 
preliminary nature, and we intend to examine the relative sensitivity 
of RPS and Q in more detail. It is evident, however, that neither SR is 
clearly more sensitive than the other, and that in general the relative 
sensitivity will depend upon the particular situation. 

The sensitivity problem may not be too serious, since the situation 
may be modified by means of a linear transformation of the SR of 
concern. AS indicated in footnote 2, a positive linear transformation of 
a strictly proper SR is itself strictly proper. Multiplying the logarithmic 
rule by a constant greater than one, for instance, will not reduce the 
insensitivity in proportional terms; the proportional reduction in expected 
score due to deviations will not be changed. However, it All reduce the 
insensitivity in uhohte terms, which should encourage more careful 
assessment. Thus, it is possible to vary the sensitivity of SRs by using 
appropriate linear transformations. It should be noted, however, that 
this may increase the potential scores to the point at which the assessor’s 
utility function becomes nonlinear. 

There may be psychological considerrr-tions in the choice of a particular 
SR. Even though all of the strictly proper rules should encourage honesty, 
some may be more likely to encourage honesty in actual practice than 
others. From a psychological point of view, SRs which can beexpressed 
in relatively simple forms may be preferable to more complicated rules, 
since the complisatal rules are more difficult for the assessor to under- 
stand. With a simple rule, it is easier for the assessor to see the relationship 
between his forecast and his score. Also, the sensitivity question may be 
related to psychological factors. Certain features of particular SRs, such 
as the fact that the logarithmic rule is not bounded below, may cause 
psychological difficulties. At any rate, the choice of a particular SR is 
not a simple matter, even in the situation in which the assessor’s utility 

function is linear. 
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3.2. Nonlinear udility 

If the assessor’s utility function is nonlinear, it may not be optimal for 
him to maximize the expected score. A nonlinear utility function implies 
that ‘risk’ considerations may be relevant in the choice of r. 

The effects of certain nonlinear utility functions on the quadratic SR, 
Q, have been considered in some detail by the authors (WINKIER and 

MURPHY, 1970). If the utility function for positive scores is quadratic, 
with U(X) = ~2 for x > 0, then the assessor is a ‘risk-taker.’ The expected 
utility to the assessor is 

Wr) = MQII” -I- v(Q), 

tihere E(Q) and V(Q) are the expectation and variance of the quadratic 
score. Thus, the expected utility depends not only on the expected Q, 
but also on the variance of Q. In a two-state situation, the relation of 
the optimal rl to pl is illustrated in fig. 2a. Because of the convex utility 
function, the assessor’s stated probability should be closer to the nearest 
end point, zero or one, than is the actual probability, pi. 

i 
: (a) 
i 

? ‘.“r-7--l 

I I 

0.0 0.2 0.4 0.6 0.8 I.0 

Eg. 2. The opthal rl as a function of pJ in the t.wo-state situation for (a) the 

(b) 

O.B- 

0.6- 

‘risk-taker’ and (b) the “risk-avoider’. 

If the utility function for positive scores is exponential, with U(X) = 
1 -e-* for x 2 0, then the assessor is a ‘risk-avoider’. .The expected 
utility is 

EU(r) = 1 - A!Y(e--Q). 

In the two-state situation, the relation of the optimal rl to pr. is illustrated 
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in fig. 2b. Because of the concave utility function, the assessor’s stated 
probability should be closer to 0.5 than is the actuai probability, pr. 

What are the implications of nonlinear utility functions for the process 
of probability assessment (with regard to the utilization of SRs)? If the 
assessor is able to specify his utility function, then this function can, 
and should, be incorporated into the assessment process. This is accom- 
plished by defining a new SR, a composite function of the original SR 
and the (nonlinear) utility function. This composite SR is strictly proper 
under the given utility function (WINKLER, 1969). Thus, the assessor 
should not utilize the original SR and ‘hedge’, but instead should deter- 
mine the new (composite) SR and maximize the expected score for this rule. 

On the othe: hand, if the assessor’s utility function is not known, then 
the function cannot, of course, be incorporated into the assessment 
process. Therefore, the assessor’s statements may differ from his judg- 
ments. For some utility functions the differences might be quite iarge, 
while for others they would probably be fairly small (e.g. for approximate- 
ly linear utility functions the differences should be small). The basic 
problem, then, is the determiljation of the assessor’s utility function. 
One approach is to determine the assessor’s utility function through 
the process of interrogation, i.e., by asking the assessor about his prefer- 
ences. Another approach is to attempt to determine the assessor’s utility 
function through an analysis of his past behavior in similar situat:ons. 

4. THEEVALUATION PROCESS 

The role of SRs in probability evaluation is to evaluate, i.e., to measure 
the substantive ‘goodness’ of, the probabilities. In this section we examine 
the evaluation problem from the inferential and the decision-theoretic 
viewpoints and briefly indicate the relevance of certain SRs within the 
context of particular frameworks. 

4.1. lnferen tial viewpoitt t 

From the inferential viewpoint perhaps the most important attribute 
of the probabilities is their ‘validity’, i.e., the association between the 
probability statements and the actual outcomes. Validity has two aspects, 
which we denote as primary validity and secondary validity. Primary 
validity refers to the correspondence between the statement and the 
relevant observation on an individual basis, while secondary validity 
refers to the correspondence between collections of identical (or similar) 
statements and the relevant observed relative frequencies on a coliective 
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basis. Thus, primary validity relates to the ‘accuracy’ of the assessor’s 
individual statements; in the two-state case, for example, if rl’ = 0.6 and 
rln = 0.5, then B’ is more accurate than r” if El occurs and less accurate if 
& occurs. Secondary validity, on the other hand, relates to the ‘bias’ of 
collections of the assessor’s statements (as indicated by the observed 
relative frequencies; if the assessor uses rl = 0.4 on a number of occasions, 
then the bias can be thought of as the difference between 0.4 and the 
relative frequency of occurrence of El on these occasions). Other attributes 
of the probabilities have been identified; however, these attributes do 
not appear to be as important as validity. For a more detailed discussion 
of such attributes (including validity), we refer to MURPHY and EPSTEIN 
(1967) and MURPHY (1969a). 

The regular simplex, an equilateral triangle in the three-state situation 
described by BE FINETTI (1962,1965) and MURPHY (1969i) and illustrated 
in fig. 3a, provides a natural framework within which to represent the 
probability statements and the observations and to measure both 
primary and secondary validity. In this framework, primary validity is 
related to the (euclidean) distance between the point which represents 
the statement and the vertex which represents the relevant observation, 
while secondary validity is related to the distance between the point 
which represents a collection of identical (or similar) statements and the 
point which represents the observed relative frequencies. The quadratic 
SR, which is equivalent to the square of the distance between the point 
representing r and the vertex, is, then, a ‘complete’ measure of primary 
validity in this framework. On the other hand, other strictly proper SRs 
such as the logarithmic SR and spherical SR are only ‘partial’ measures 
of primary validity. SRs which measure secondary validity are no-t 
necessarily strictly proper, since secondary validity is defined with refer- 
ence to collections of statements. 

The use of a regular simplex and/or the quadratic SR implies that the 
distances Detween the states of the variable of concern, i.e., between the 
vertices of the simplex, are equal. However, if the variable is ordered, 
this assumption may not be satisfactory. In such a situation we should 
perhaps use either an irregular, rather than regular, simplex or a SR 
which takes order into account. As ilgdicated in footnote 3, the ranked 
probability score (RPS) is a strictly proper SR which takes order into 
a.c~~unt. Pr,PS and Q have recently been compared in some detail by 
MURPHY (1970), who has suggested that RPS appears to be a suitable 
SR for evaluating probability statemnts for ordered variables. 
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Other frameworks for evaluation from the inferential viewpoint have 
been proposed. For example, ROBERTS (1965, 1968) has formulated a 
Bayesiaa model in which likelihood ratios (or, equivalently, logarithms 
of likelihood ratios) are used to compare probability statements and 
thus to evaluate the probabilities themselves. The log likelihood is simply 
the logarithmic SR and, as a result, within Roberts” framework the 
logarithmic rule, L, is perhaps to be preferred to other strictly proper 
SRs (WINKLER, 1969). Clearly, the choice of a particular SR depends 
upon the framework within which the evaluation is undertaken. 

b) 
3 

Fig. 3. (a) The regular simplex in the three-state situation. The point r=(rl, ra, r3) 
represents a particular probability statement. (b) The representation of a particular 

decision situation within the framework of the regular simplex. 
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4.2. Decision-theoretic viewpoint 

In this subs&on we describe the general framework within which we 
consider evaluation from the decision-theoretic viewpoint, and then we 
indicate briefly the nature of certain results and problems. We assume 
that the assessor is an expert in a substantive area, e.g., in meteoroiogy, 
who formulates probability statements (forecasts) and provides such 
statemet.ts to decision makers (DMs) who use the statements in their 
decision-making problems. 

In a decision situation, the consequence, or payoff, to the DM depends 
on the action which he takes and on the event & which actually occurs. 
In turn, the action which he takes depends on the assessor’s stated proba- 
bilities. Therefore, the consequence, and hence the utility of the conse- 
quence, depends (indirectly) on r. Thus, in this framework, if the DM 
selects action i and & occurs, then the DMs utility is U&) = ~th. 
which is a natural SR for the assessor’s statements. It is of interest to 
note that if we assume that the assessor’s utility function is linearly related 
to the DM’s utirlity function, an assumption which may be reasonable 
in many situations, then Lj&) is a proper (but not necessarily strictly 
proper) SR @IWRPHY, 1969a; RAIFFA, 9969). Using !/h(r) as a SR is 
consistent with a suggestion of SAVAGE (personal communication, 1970) 
that a DM should reward the assessor with a share of the decision- 
making problem. 

A DM’s knowledge of his utilities may be incomplete, in which case 
he may express his knowledge in terms of probabilities. Such probabiiitics 
can be interpreted in several different ways: (I) in a ‘one-to-one’ situation, 
in which the assessor’s probability statement is used by a single DM, the 
probabilities express the DM’s uncertainty concerning his utilities; 
(2) in a ‘one-to-many’ situation, in which the assessor’s probability 
statement is used by several different DMs, the probabilities describe 
the distribution oft, he DMs’ utilities for money over the different decision 
problems. When knowledge of the utilities is expressed in probabilistic 
terms, the expected utility, rather than tile utility, can b; used as a SR 
,(where the expectation is wish regard to the distribution of utilities), 

The DM’s problem can also be represented within the framework of 
the regular simplex (a particular decision situation is depicted within this 
framework in fig. 3b). The simplex is divided into regions which correspond 
to the DM’s actions; i.e., if the assessor’s statement fails in a particular 
region the DM selects the action which corresponds to that region. 

We briefly describe certain results within this general framework in 
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the two-state and n-state situations. In the two-state situation the simplex 
reduces to the unit line segment. The score assigned by any strictly 
proper SR is a strictly decreasing function of the dis,tancc from the 
end-point of the unit interval which corresponds to the actual event; 
the utility is a decreasing function of this distance, For example, if 
ri = 0.8, rl” = 0.6, and 1% occurs, then any strictly proper SR assigns 
a higher score to r’. The utility resulting from Y’ is grtrater than or equal 

to the utility resulting from r”. As a result, if t-h’ > rn”, then u,&‘) > 

U&*) (MURPHY, 1969a). 
In the cost-loss ratio decision situation (MURPHY, 1966, 1969a, b), a 

two-action, two-state situation in which the DM’s utility matrix contains 
only one unknown parameter, the cost-loss ratio (in terms of utility), 
the following statement holds: if the cost-loss ratio is assumed to possess 
a uniform distribution, then the expected utility SR is a linear function 
of the quadratic SR. If beta distributions with integes parameter values 
are coirsidered. the resulting expected utility SRs are polynomials. 
Since Vh(r) is a proper SR, these expected utility SRs zre strictly proper 
SRs (MURPHY, 1969c). 

Recall that, within the geometric framework, (primary) validity is a 
strictly decreasing function of distance. Utility, on the other hand, is a 
decreasing function of clirectvddistance. That is, the utility of the assessor’s 
statements cannot increase (with distance) along a directed line segment 
through a vertex with reference to the state COFFeSpOndilig to that vertex. 

The RPS was formulated in the context of a specific n-action, n-state 
decision situation in which the single parameter (‘utility*) of concern. was 
assumed to possess a uniform (probability) distribution. Although such 
expected utility SRs are of necessity associated with specific decision 
situations, they may, like the RPS, be of some general kIterest. Unfortu- 
nateiy, decision situations, in general, lead to very complicated expected 
utility SRs. The complexity of the /t-state situation is such that general 

results are difficult to obtain. 
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