1,5-TRIMETHYLSILYL MIGRATIONS IN 1-TRIMETHYLSILYLINDENE
 Arthur J. Ashe, III
 Department of Chemistry
 University of Michigan
 Ann Arbor, Michigan 48104

(Received in USA 26 February 1970; received in UK for publication 27 April 1970)
The temperature dependent nmr-spectrum of 5-trimethylsilylclopentadiene, \underline{I}, indicates that the magnetic environment of the five ring protons is being averaged at a rate of $10^{3} \mathrm{sec}^{-1}$ at $80^{\circ}, 1,2,3$ While it has been demonstrated that the ring protons are being interconverted by migrations of the trimethylsilyl group, ${ }^{4}$ it is not clear whether these migrations are by $1,5-s h i f t s(l a \neq 1 b \neq$ lc \ddagger etc.) orby $1,3-$ shifts ($1 a \nleftarrow$ lc \ddagger etc.).

The degeneracy of the migrations for 1 makes a choice difficult. The shifts are no longer degenerate in substituted cyclopentadienes, such as l-trimethylsilylindene, 2. A l,3-trimethylsilyl shift of 2 a would give 2 b , while a 1,5 -migration would have to give the high energy isoindene, 3 . Although 3 would be expected to decay to $2 a$ and $2 b$ giving a formal averaging of the 1 - and 3positions of 2 , this averaging is expected to be much slower than a $1,5-t r i-$ methylsilyl shift of 1 . On the other hand a $1,3-s h i f t$ of 2 a to 2 b might not be greatly different in rate than $1,3-s h i f t s$ of 1 . Published nmr-spectra of $\underline{2}$ show no 1,3 -averaging below $180^{\circ}, 5,6,7$ This observation seems inconsistent with direct 1,3 -shifts for both 1 and 2 .

Dienophiles can be used to trap 3. ${ }^{7}$ For example, when 2 is allowed to stand in ethyl acetate with tetracyanoethylene for one day at room temperature, a 1:1 adduct is formed (mp 209 (d)) (Calc for $\mathrm{C}_{1} 8^{\circ} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{Si}$: $\mathrm{C}, 68.32$; $\mathrm{H}, 5.10$; Found: $C, 68.40 ; H, 5.09)$. The nmr-spectrum in DMSO- d_{6} clearly indicates structure 4. There are a symmetrical four proton aromatic multiplet centered at 2.6τ, a two proton doublet $(J=1.0 H z)$ due to the bridgehead protons at 5.65τ, a one proton triplet ($\mathrm{J}=1 . \mathrm{OHz}$) at 8.1τ due to the bridge proton and a nine proton trimethylsilyl singlet at 10.25τ. Maleic anhydride forms an analogous adduct, albeit only at 80° for 24 hr .

The elegant work of Huisgen on the cyclooctatetraene valence tautomerism has shown how the rate of formation of a reactive valence tautomer can be evaluated by dienophile trapping. ${ }^{8}$ Thus, while the valence tautomerism, $\underline{2}^{+} \underline{3}$, was too slow to measure precisely by nmr methods, the TCNE-trapping experiment can be used to evaluate the rate of formation of 3 . The rate of formation of 4 should be:

$$
\begin{aligned}
& \frac{d(\underline{4})}{d t}=\frac{k_{1} k_{2}[2][T C N E]}{k-1+k_{2}[T C N E]}=\underline{\text { kobs [2] }} \\
& \text { kobs }=k_{1}-\frac{k-1}{k_{2}} \text { [TCNE] kobs }
\end{aligned}
$$

For a large excess of TCNE, the rate will be pseudo-first order in [2]. Furthermore kobs should be a linear function of kobs/[TCNE] and if k_{2} and $k-1$ are of comparable magnitude, $k_{o b s}$ will approach k_{1} as [TCNE] becomes large.

We have evaluated the rate of formation of 4 using 0.027 M ethyl acetate solutions of $\underline{2}$ and excess TCNE. First order rate constants are obtained by the dilatometric technique. A plot of kobs against kobs/[TCNE] is linear and approaches the following values of k_{1} as [TCNE] becomes large:

$$
\begin{array}{lccl}
\text { Temperature } & 40.0^{\circ} & 50.0^{\circ} & 60.0^{\circ} \\
\mathrm{k} \times 10^{4} \mathrm{sec}^{-1} & 2.6 & 7.9 & 21
\end{array}
$$

Thus the rate constant for $1,5-t r i m e t h y l s i l y l$ migration of 2 is 10^{12} exp [-22.5 keal./RT] sec ${ }^{-1}$.

Inspection of the rate expression for kobs indicates that the rate should be independent of the dienophile for very reactive dienophiles. We have also examined reaction of 2 with dicycanomaleimide (DCMI). 9 This dienophile forms
two isomeric adducts, probably exo and endo isomers, which have nmr-spectra very similar to that of 4 . At 60.0° a 0.027 M solution of 2 with excess DCMI gave values of kobs, which when plotted against kobs/[DCMI], approached 16×10^{-4} $\sec ^{-1}$. While agreement with the TCNE value is quite modest we feel these rate constants are a reasonable measure of $k_{1} .10$

The relative rates of 1,5 -trimethylsilyl migration of 2 and 1 are $1.2: 10^{5}$ at $80^{\circ} ; \Delta\left(\Delta F^{*}\right)=8 \mathrm{kcal} . / \mathrm{mole}$. One must associate this energy difference with the reluctance of $\underline{2}$ to form the high energy isoindene intermediate. Fluxional properties have been noted for a number of other cyclopentadienyl and indenyl organometallic pairs: Among them $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{GeMe}_{3}{ }^{3}$ and $\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{GeMe}_{3},{ }^{6,7} \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{SnMe}_{3}{ }^{3}$ and $\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{SnMe}_{3}, 5,6$ and $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Hg}^{\mathrm{ll}}$ and $\left(\mathrm{C}_{9} \mathrm{H}_{7}\right)_{2} \mathrm{Hg}$. 12 While accurate rates of all these processes are unavallable, examination of the nmr-coalescence temperatures suggests that the $\Delta\left(\Delta F^{*}\right)^{\prime} s$ are of similar magnitude to $\Delta\left(\Delta F^{*}\right)$ between $\underline{1}$ and $\underline{2}$. Perhaps all the above compounds undergo l,5-metal shifts.

These trapping experiments of course provide no information about possible $1,3-s h i f t s$ of the trimethylsilyl group in 2 . One can only say that at 180° such shifts formal through 3 or actual are slow on the nmr time scale. The possible occurrence of slower 1,3 -trimethylsilyl shifts must remain an open question.

Acknowledgements: We would like to thank Drs. A. Davison and R. B. Larabee for informing us of their results prior to publication. Partial support of this work by Petroleum Research Fund of the A.C.S. (Grant \#829-G1) is gratefully acknowledged.

References

(1) W. Strohmeier and R. M. Lemmon, Z. Naturforsch., 14a, 109 (1959).
(2) H. P. Fritz and C. G. Kreiter, J. Organometal. Chem. (Amsterdam), 4, 313 (1965).
(3) A. Davison and P. E. Rakita, Inorg. Chem., 9, 289 (1970).
(4) A. J. Ashe, III, J. Amer. Chem. Soc., in press (1970).
(5) W. Kitching and B. P. Hegarty, J. Organometal. Chem. (Amsterdam), 16, P39 (1969).
(6) A. Davison and P. E. Rakita, Inorg. Chem., 8, 1164 (1969). Dr. Davison has observed temperature dependent coalescence of the trimethylsilyl resonance of $1,2-d i(t r i m e t h y l s i l y l)$ indene. This observation is consistent with l,5-trimethylsilyl shifts. Private communication.
(7) R. B. Larabee and B. F. Dowden have shown that the minimum rate for 1,3averaging of 2 to be $10^{-2} \mathrm{sec}^{-1}$ at 140° using an nmr-technique of double resonance during chemical exchange. Abs. of 158 th National Meeting of the A.C.S., N. Y., N. Y., Sept. 1969, Abs. No. 048 and private communications.
(8) R. Huisgen, F. Mietzsch, G. Boche and H. Seidl, Organic Reaction Mechanisms, Chemical Society, Lond., Special Publication 19, pp 3-20 (1965).
(9) E. G. Howard, Jr., U. S. Patent 3,162,649 (1964); Chem. Abs., 62, 11783F (1965).
(10) This difference which is outside experimental error may be due to the change in the solvent as dienophile concentration becomes large. An alternative explanation involves the intermediacy of charge transfer complexes. See: N. S. Iscaas, Can. J. Chem., 44, 415 (1966).
(11) P. West, W. C. Woodville and M. D. Rausch, J. Amer. Chem. Soc., 91, 5649 (1969).
(12) F. A. Cotton and T. J. Marks, ibid., 91, 3178 (1969).

