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INTRODUCTION

The classic three-dimensional scalar scattering problem consists of de-
_ ]

termining a function @~ exterior to a smooth finite boundary B which is a so-
lution of a scalar Helmholtz equation, satisfies a Dirichlet or Neumann boundary

condition on B, and obeys a radiation condition at infinity, i.e.,
(V2+i2) g% - 0 (1)

. S a1
¢S :-¢1 or QQ = _QL on B, (2)

lim  r=g%-ug®)-0 (3)
r— o r

where ¢i is the incident field which is known everywhere including the bound -
ary B.

The study of the relation between this problem and potential problems
(boundary value problems for the Laplace's equation, ‘;¢=O) goes back to LordRay-
leigh(33). The general problem is one of generating solutions of the Helmholtz
equation (vector or scalar), which satisfy prescribed conditions on a given bound-
ary in terms of solutions of Laplace's equation. Physically, this amounts to an
attempt to infer the manner in which an obstacle perturbs the field due to a
source of wave motion from a knowledge of how the same object perturbs a sta-
tionary (non-oscillatory) field, e.g. , determining an electromagnetic field from
an electrostatic field. The advantage of such a procedure derives from the fact
that stationary fields are physically simpler than wave phenomena and associated
mathematical problems, though often still formidable, are always more easily

handled.
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Interest in this problem has zained new momentum in recent years

5 31 21
( ), Noble‘ ) (21) for an extensive bibliography).

(see Bouwkamp , Kleinman
The major drawback in most of the methods heretofore proposed is their in-
trinsic dependence on a particular geometry. That is, the techniques result
from the exploitation of the geometric properties of the surface on which the
boundary conditions are specified. For those shapes where the Helmholtz e-
quation is separable, of course, the low frequency expansion may always be ob-
tained from the series solution provided sufficient knowledge of the special func-
tions involved is available.

Most low frequency techniques, however, have as their starting point
the formulation of scattering problems as integral equations using the Helmholtz
representation of the solution in terms of its properties on the boundary and the

free space Green's function; i.e.,

1 3
¢s(p)=; { ¢s(pB f;u(p, pB) -u(p, pB)5;¢S(pB)} dB (4)
B
where ikR(p, pB)
e
"R, Py

the integration is carried out over the entire scattering surface B, the normal
here is taken out of B, p is the general field point, and Py a point on B whose
coordinates are the integration variables, and R is the distance between them.
This formulation is also vital to the proof of existence of solutions for a general
boundary by Weyl( 50) s M'tiller( 30) , and Leis(23) . CI‘he investigation of vthe so-
lutions for the scattering problems with the help of integral equations originavted
(35) (41), and Kupradse(zzb.. Wer

by the works of Rothe °, Sternberg

provides different existence proofs.for acoustical as well as electromagnetic

scattering problems. More will be said on the existence question in the Conclu-

3
sion. Noble( b shows how the integral formulation (4) may be used to obtain a

ne1(45 -49) also
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representation of the solution of a scattering problem for a general boundary as

a perturbation of the solution of the corresponding potential problem. Each term
in the low frequency expansion is the solution of an integral equation which differs
only in its inhomogeneous part from term to term. However, this formulation
does not yield an explicit representation for successive terms in general except
as the formal inverse.

Long sought has been the development of a systematic procedure which
will generate the solution of the Helmholtz equation, satisfying a particular bound-
ary condition, from the solution of Laplace's equation which satisfies the same
boundary condition. This goal has been achieved in a limited sense by Kleinman( 21)
for the Dirichlet problem on which the present work is hased.

In Chapter I an integral equation for the scattered field is derived, whose
kernel is the potential Neumann Green's function for the surface instead of the free
space Green's function for the Helmholtz equation. Despite the fact that the inte-
gral operates over all space and the surface and it is really an integro-differéntial
operator, it is still possible to solve the equation for the wave numbers k (assumed
complex) with sufficiently small modulus. This is done in Chapter II. Also, the
relation between the low frequency expansion and the Neumann-Liouville series for
the solution in indicated. In Chapter III the procedure is applied to an acoustically
hard sphere. Since the exact solution in this case is known , a check (for the first

three terms in the low frequency expansion) is provided.
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CHAPTER I

THE NEUMANN PROBLEM

1.1 A Representation Theorem

Let B denote the boundary of a smooth closed bounded surface in E3 and
V is the volume exterior to B. Erect a spherical polar coordinate system with
origin interior to B and denote by p a point (r, 6, #) in V and by Py a point
(rB, GB, ¢B) on B. The distance between any two points p, plev = V+B will be
denoted by R(p, pl) and is defined as

2, 2 1/2
R(p,p,) = [r +r -2rr (cos6 cos@ +sin6 sinf. cos(@ -¢ D
1 1 1 1 1 1 (1.1)

Furthermore, let c=max rB so that B is contained in a sphere of radius ¢ and
assume that the normal to B is directed inward (out of V).

Definition 1.1

A function f(p) of the coordinates of p is said to satisfy a Holder condi -
tion at (or is Hdlder continuous at) P, if there are three positive constants, A, B,

and o such that

l f(p) - f(po)l <A Ra(p, po)

for all points p for which R(p, po) <B .

If there is a region G in which f(p) satisfies a Holder condition at every
point, with the same A,B, anda, f(p) is said to be uniformly Holder continuous.

Definition 1.2

We shall define a surface B.to be smooth (or regular) if (a) it can be

described by an equation
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where g is a continuously differentiable function of & and §, and (b) ne rB

(where n is the unit normal, 'i‘B is the unit radius vector) is uniformly Holder

continuous on B.

Definition 1.3

1
A real valued function f: V— E~ is defined to be regular (in the sense

of Kellogg) at infinity if

r2 of | o(1) as r = (1.3)

rf=0(1), .ar =

uniformly in 6 and ¢ .
A complex valued function is regular if both real and imaginary parts
are regular.

Definition 1. 4

The Neumann potential Green's function for the surface B, the existence
(20)
and uniqueness of which is proven by Kellogz'gQ, 18 defined to be a function Go(p, p 1)

of two points and may be written in the form

1

Go(p’pl) - T 4#R(p, p,)

+uo(p,pl), p,p1€V (1. 4)
where uo(p, pl) has no singularities in V and
(a) v ( )=0 €V
uo p’ pl - t p: pl

(b) i Go(pB, pl) =0 [This notation is used repeatedly and has

the following meaning. Let Vbe the gradient operating on coordin-

ates of p and 1 the unit normal on B directed out of V. Then define

o) A
VGO(pB,pl) =VG (p.p,) and on G (pg.p;) = n- VG (pg, pl)]
p€EB

(c) u is regular at infinity. (1.5)
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In terms of‘ this Green's function we may state an integral representation
of functions regular at infinity. This is contained in

Theorem 1.1. KwV — E1 is a function which is twice differentiable
in V and regular at infinity , then

o) = | G e Vol - | 6 e )Tuk e, (L)
\4 B

where Go(p, pl) is the Neumann potential Green's function, dv1 is the volume ele-
ment and VZ is the Laplacian both expressed in coordinates (rl, 61, ¢ 1), ch is the
surface element and 9/0n the inward normal derivative. (out of V) both expressed
in coordinates (rB, OB, ¢B) .

Proof.

Let [=B+B_+B

1 72
regular in the sense of the Definition1.2, B

, Where B is the surface of the body assumed to be
1 is the surface of a small sphere,

with radius € > 0, with the center at the point p, B2 is the surface of a large

sphere containing B and B Further we erect a rectangular Cartesian co-

1
ordinate system with origin inside B, and let V" denote the volume bounded by
B, B, and B, (see figure below) AZ
A
n
B
2 V"
B
>y
(0]
A
n
B
x
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The functions w , Go and the surface /" are sufficiently regular so that we can

apply the Green's second identity; thus,

a9G
2 ow
(GOVZw—wV Gldv= \ (6 -w=2)do . (1.7)

v r
Here we note in passing that the usual formulation of an integral equation
for a wave function involves the application of the above identity to the free space
Green's function ei ikR/R (the sign ambiguity is removed with a particular
choice of harmonic time factor) ahd the other field w scattered by B. The in-

tegral over B, is then shown to vanish by virtue of the radiation condition and

2

the integral over B. evaluates the scattered field. The volume integral van-

1 .
ishes since both functions are chosen to be solutions of the homogeneous Helm-

holtz equation yielding the well-known result

w(x, y z)=i [é—— -—w— <-lkR):] (1.8)
0¥ 4x R On on '

B

Here, however, we wish to employ, not the Green's function for the
Helmholtz equation but the Green's function for the potential (Laplace) equation
Go » given by (Definition 1. 4)

Go(p,pl) = - + uo(p, pl) .

1
4xR(p, pl)

Substituting this into the Eq. (1.7) we obtain

1 d k) 1
(- +u )V wdv= [(_—MR+uo)3§_w5;(-—4wR+uo)] do . (1.9)
" =
Vv \ B+B1+B2
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Integration over the surface B 1 : Su

* * dw__0
Let v(p’) denote the mean value for some p eBl, of. U 5n “5n

on Bl' Then
auo * 2
(uos;l‘ wgn—)do = 4(p): 4xe ., ) (1.10)
B

Thus, as the radius € — 0 this integral vanishes.
Also, on B1 5@- -B?t‘ and for the spherical coordinates (R, 6, ¢) with the
the center at (x,y, z) , we have
2r

lim. |\ do\d¢ R%sin0 4: —— W(x+R cosf sinf, y+Rsin@ sind, z+R cosf)
R— 0 R R

0 O
T 2n

1
OoR 4xR R—-bO 4%

-w(x+Rsin6 cosf, y+Rsinesin¢ z+Rcos6)—(—1")

. [R% +w(x+Rsinfcos@, y+Rsindsing, z+RcosOﬂ =wx,y,2z) . (1.11)

Combining (1. 10) and (1.11),
dGo
-w—) = 1.12
(Godn o )do = w(x,y, z) ( )

B,

Let V'=1lim. V'. Incorporating (1.12) into (1.9) and observing that

€—0
BGO
- =0, (1.9) reduces to
on B
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wxy,z): | G VVedv- | ¢ 2o - | (c @-ua—c—"m (1.13)
+ Yo 0 0 dn o on on. " '
1
v B B2
Integration over B2:
On B, -d— = 9
2 on B arB
2 2
. . 9 _ 9
tim || [ e, . p)zwleg )-wlog 122G (b ,0)] [do
r— 2 2 2 2
By |8
2
x T
2 0 [°]
-lim || daf | a6 o sino[G (o P z—wlp, )-wlp )=2—G (p_ .p)]
ré—»oo B2 0 B2 8rB2 B2 B2 arB2 o B2
2 0 0
2 T
. 2 0 2 0
< lim dp \ doy | r. Glp, .p) = w(p_ )+|rZwp_ ) G(p, ,p)
\ s 3
rB__’OO B2 o B2 drBz B2 B B2 BrBz o B2
2 0 0 )
27
. oG
1 2 o) 1 2 o}
=lim dp \ doy—|r_ G ||r Wwp, Mt ——|r_ wlp_ N[r_ - =0,
r— 0 rB B2 o B2 arB B2 rB B2 B2 B2 drB
B 2 2 2 2
2 0 0
- (1.14)

since G0 and w are both regular in the sense of Kellogg(zo)(Deﬁnition 1. 3).
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Since V=1lim V' , with(1.14), (1.13) becomes
:B——voo
2

owlp,,)

2
wx,y,2)= \ G (p,p )V wlp,)dv, - \ G (p,pp)—= do

\Y% B

proving the theorem.

1.2 A Representation of Wave Functions

A function u; V— E1 is a scalar wave function for the volume V if
(a) u(p) is twice continuously differentiable in V  (with the
understanding that if peB the limit is taken from the exterior, V),

2 2 _
(b (v +k = 0, )
) Ju(p) pEV (1.15)

(¢e) r (g—:-iku) = o(1), as r — oo, uniformly in 6 and § .

Other statements of the radiation condition are possible [Wilcox€53)]
but this form, as given originally by Sommerfeld(39) is quite adequate for
our purposes; it may be stronger than necessary but it does what we want it to
do, namely, characterize radiating solutions of the Helmholtz equation.

We wish to employ Theorem 1.1 to represent scalar wave functions,
but they are not regular at infinity in the sense of Kellog(;gq) In order to modify
them we employ a well-known expansion theorem given with varying restriction

(2) (40) (4)

by Atkinson , Sommerfeld , Barrar and Kay and most generally

51
by Wilcox( ) .

Theorem 1.2. If u is a scalar wave function for the volume V, then

. nm 1
] R fn(e, )]
u =7 0 ’ (1.16)
n= r

10
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where the series converges absolutely and uniformly for r3» c+€, €2 0 and

C=max Iy. Furthermore, the series may be differentiated term by term with
respect to r, & and § any number of times and the resulting series all converge
absolutely and uniformly.

It follows from this expansion theorem that if u is a scalar wave func-

tion, then

2(p) = e " Fu(p) (1.17)

is regular and satisfies the hypothesis of Theorem 1.1 .
Lemma 1.1 . The function U(p) defined by (1.17) satisfies
2 2i

v _ 2k O .

Proof.
Since (V +k )Ju=0, it follows that (V2+k2)e1kr?1' 0.

In spherical coordinates

2 2
2 0 2 0 1 1 d
Vie——t=—+ —(sme—)+—— R (1.19)
or? T 25ing 90 96" 25in%g 8¢2
Since
8 , ikrm,  ikr al
P (e u-=e {1ku+ P } s (1.20)
and
2 24
i ikr 2~ d
N { K 0+ 21i k—“+a “} , (1.21)
. or 2
or or
clearly
9>  ikr.. 2 8 , ikr ikr | .2, 2ik 8 0%¢ 2 o
9 ~ 4 O ~y ~ YA R T
arz (e u)+r P (e )=e { k u+—  Br —(r)+ 3,.2 = oy (1.22)

11
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ikr ~

2 2
Hence, with (V +k )e” u=0 and(1.18),

(V2+Kk%) KT g = o IKT {Z;L 58;(rﬁ) + vzﬁ'} =0 , (1.23)

from which the lemma follows..

Next we note that

- 1krB ou (pB)
on ?

ikr

i” _l\. _N -
o u(pB) =neV neVe
B

ul =- iknorBﬁ'(pB)+e (1.24)

where 1 and ?‘B are unit vectors in the normal (inward) and radial directions
respectively at pB . (If B is a sphere, n-= —?B.) Incorporating these results

in the representation theorem.(Theorem 1.1) establishes the following.

Theorem 1.3. If

(a) u is a scalar wave function for V, the exterior of a smooth,
closed, bounded surface B and

(b) Go(p, pl) is the Neumann potential Green's function for this

9 ) ) ~,_ —ikr
surface <8n Go(pB,pl)-O , then U(=e u) may be represented as

G (p,p,)
~ . o) 1" 0 . «~ . AN
u(p)= -2ik 3 arl rlu(pl)] dvl +ik Go(p, pB) nOrBu(pB) dUB
A" B
N )e- 1krB au(pB) o
o p: pB « an B (1.25)
B

12



THE UNIVERSITY OF MICHIGAN
7359-1-T

Included in this theorem are representations of the solutions of the two

most common exterior Neumann problems for the Helmholtz equation and the

surface B.
If .
ou(p.,) lkR(pB’ po) .
__ B _ 8 l:s__.___:' (1.26)
on on 4tR(pB, po)

then u represents the regular part of the Neumann Green's function for the Helm-

holtz equation. If
) on B , (1.27)

then u represents the field scattered when a plane acoustic wave is incident in
the direction & on a rigid surface B. Note that the representation (1.25) is in

terms of U but u is easily found by multiplying with the phase factor elkr

13
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CHAPTER II

THE SOLUTION OF THE INTEGRO-DIFFERENTIAL EQUATION
FOR THE NEUMANN PROBLEM

We write the Eq. (1.25) of Chapter I in the operator form

= Lo + u(o) (2.1)

=2

with
(}(p,p )
0
w— Lew=-2ik arl [rlw(pl)]

v
+1kS‘dc G(p,p )nor w(pB) (2.2)
B
and -ik% Bu(pB)
(o)_
u = - ch Go(p, pB)e >n . (2.3)

B

An explicit solution for (2. 1) may be given in the form of a Neumann-

Liouville series. That is, we rewrite (2. 1) in the form

~ -1
u=(I-L) e u(o) (2.4)
and formally expand the inverse, obtaining
(e8] (o)
d-= E L o (2.5)
n=0
(N} :
If we denote by u * the partial sums
N
oM. E LR o | (2. 6)

14
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it follows immediately that for N> 1, u" ° also satisfies the recursive relation

u(N)= Le u(N_1)+ u(o) (2.7)

Our main task is to define a proper normed linear space and show that U (the so-

(o) (N)

lution we seek), u ~ (the known term), and all the iterates u” ', N3 1, are ele-

ments of this space and that in the sense of the norm of this space

=2 . (2.8)

2.1 Preliminaries

First we mention some well-known properties of spherical harmonics
and expansions of the potential Green's function [e. g. Kellogézo) (p. 143),
Sommerfeld,( 40) (p. 123)] which will subsequently be used.

We denote by Yn(e, ¢) an nth order spherical harmonic

n
‘ m . imf
Yn(O, §) = E A P, (cosO)e (2.9)
m=-n
and by Yn(e, é; 01, ¢1) a symmetric nth order spherical harmonic

n
Y (6, ¢;<el, ¢1)= ZAmnP;n(cos 6) p:‘(cos,al)cos m(p- ¢ N , (2. 10)

m=0

where P;n are the associated Legendre functions.

15
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These functions have the orthogonality property

aQ Y (6.9 )Y (6.4;0,.9 )=0, m #n

Q (2.11)

=Yn(6,¢), m=n ,

where  is the unit sphere and dQ2=sin6dd@ is the element of solid angle on it.

The static Green's function for our surface B may be written

m .
1 Y (6,9)
Go(p’pl): -m)—+ E rn+1 s r>6 , r1<6 , (2.12)
n=0
Y (6,, ¢) , .
4:R(p.p1) Z n+1 0 428, r<é, (2.13)
n=0
1 Zoo Y (6.4;6,.9))
=-m+ (rr)n+l , T, r1>/6 s (2.14)
n=0 1

where the series are uniformly and absolutely convergent and may be differenti-
ated or integrated any number of times with respect tor, 6, or @§; 6 =ct+e, €>0;
and c the radius of the smallest sphere enclosing B.

The source term may also be expanded in spherical harmonics

@ n
R(p pl) Z o1 By Lcosfcos 6, +sin6sin, cos @-¢ z] (2.15)
n=0 >

where

r>=max(r, rl) 3 r<=m1n(r,rl) .

This expansion has the same convergence properties as the series in (2. 12),

(2.13), (2.14), provided I'frl

16
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2.2 Construction of the Space

-ik
We recall from the last chapter that the function U=e Ty , Where u

is a scalar wave function, is an analytic function in the complex 1 / r-plane having

the expansion

(0 0]

o fn(9,¢)
¥ - E Jrl> s=cte (2. 16)

n+l
r

n=0

where c is the radius of the smallest sphere containing the surface B, €> 0.

Putting z=%, we have

N

1
= : 2.17
5 (2.17)

(00)
q- an(e,;a) 22
n=0

Clearly we may assume § = 1.
Next we define the following function space.

Definition 2. 1.

Let W be the set of functions defined on V such that

(a) ueCZ(V), wecl(V) ,

(b) w is analytic on the closed unit disc having the expansion

a
. n+1l 1
w=zfn(9,¢)z ’ |Z|\< ;=1 ’
n=0

Q

(c) fn(O, #) = E Ym(O, @), where Y isan mth order spherical

m=n
(2.18)

17
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harmonic, i.e.

m
Ym(e, @) = Z AlmP:l(cos O)eu¢ .

£=-m

It follows immediately from this definition and the Cauchy's integral

formula

»

I S 7.9
fn(0,¢) oy d¢

n+2
$

C
where C is the unit circle around the origin, that

|£,0.9)| < max Jo©)] .
eC

We define the following norm on W.

Definition 2.2

Joll = max |u)] + max |w(e,g.2)]. (2.19)
peV |z)g 1
oo
N2 4

With this norm it is clear that

|t (6. )| < loll (2.20)

We now procéed to solve our operator equation in the space { w, ” “ } .

18
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2.3 The Solution
Lemma 2.1

If a_u is uniformly Holder continuous on B CEq. (2. 3)) then

on
u(o)ew .

Proof.

The definition of u(o), (2.3), shows that u(o) consists of the potential

-ikr
of a single layer distribution of density e B n plus another term (corre-

sponding to the regular part of the Green's function) which is at least as well

behaved. Therefore th'ek differentiability of u(o) is essentially that of the poten-
-ikr
tial. If the density e B ﬁ is piecewise continuous then according to
20
Kellogg( )(p. 122) the potential is infinitely differentiable in V, thus, in partic-
(0)

ular, the potential (hence u © ) is twice continuously differentiable in V. Fur-

thermore, if the density is uniformly H6lder continuous then, again, according

(20) (o)

to Kellogg'~ '(p. 165) the potential (hence u

) is continuously differentiable -in

the closure V. Since r. isa continuously differentiable function of 6 and ¢

. B
-1kx:B
it follows e is uniformly Holder continuous, hence so is the product
_ikrB ou (o)
e on Therefore u satisfies (2.18a).
Go(p, pB) may be expanded in an absolutely and uniformly convergent

20
series of spherical harmonics of the form [e. g. Kellogg( )

(p- 143)]

© n
1 _m im@
= . 2.21
Go(p) pB) E E Amn(pB) rn+1 Pn (cosb)e , T2 6 ( )
n=0 =-n

0
Thus for r > 6 we may rewrite u( ) as
@ n .
-ikr
(o) E : 1 E : m imf BN ¢ (2.22
u = - vy Prl (cosB)e Amn(pB)e n ©B (2.22)
r .
n=0 =-n B

19
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which is of the form

Y 9
n=0
and satisfies (2.18b) and (2.18c), thus, proving the lemma.
We next split the operator L defined by (2, 2) as follows.
Definition 2. 3
Let

L= kL1=kO+k01 (2.24)

where k is the wave number. Thus L., O, and O, are all independent of k;

1 1
they are given by
G (p,p,)
W =) Oews= -2 [0) 1 o)
Oew=-2i | dv, o [rpote)] (2.25)
v
and
w=> 0f w=1 | do G(p, )n T w(pB) . (2.26)
B

Lemma 2,2
The operator O, defined by Eq. (2.25), maps the space W into itself.
Proof,

We have Eq. (2.25)

G (p)p ) ¢
) o) 1° o
O*w=-2i dv1 ——rl _Brl [rlu\)(pl)]

A

We separate the volume over which the integration is performed into an infinite

volume, V where r_> 6 =1 and the Theorem 1.2 of the last chapter holds,

ext’ 1
and a finite volume, Vint’ between the sphere and the surface B, where the

expansion theorem does not hold. We define two functions
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G(p.p,)
<O°w(p) =-2i dvlL—1 2 rw(pl)]

ext r 1 or 1

ext

| G (p,p,)
6)0 w(p))int= -2i dv, _O;I—L 821 r w(pl)] ) 2.27)

Vint

If we can demonstrate that the functions defined in (2.27) are in W, then, since
the space is linear, it follows that Oew-= (O°w)ext+(0° w)int is also in W.

Consider (O’w), first. It is the potential of a volume distribution

with the density ri —_ [ w(p )] which is certainly continuous; therefore,
1%
20
[Kellogg( )(p. 122)J:| the potential is infinitely differentiable, and hence

X 9 -
(Oow), +€C (V). Also, [Kellogg(zo)(p. 151, 152)] (Obw)intECI(V).
When r> 6 1 since r <6=1, from the formuias (2. 12) and (2.15)

1\
Y (6,9)
G (p, pl)-'- - I +1 , Lcosfcos, +sin6sing, cos(f-§ )] E —1
n=0 * T (2.28)
or, since Pn is an nth order spherical harmonic,
G (p, pl) n+1 A (pl) P (cosO)e (2.29)

n-O

The series converges uniformly, (2.12), as does the derived series.
We substitute (2.29) into (2.27); and since the integration is carried out over

the finite limits, we may change the order of integration, thus

® n A (p.)
- 1 m im@ on_mn 1" 0 r _
(Oom)mt E —rn+1 E Pn (cos@)e dvl( 21) r, arlLrlw(pl)]' rx6=1,
m=-

n=0
Vint (2. 30)

21



THE UNIVERSITY OF MICHIGAN
7359-1-T

which is of the form
@

Y (6, ¢)

- n - s
(O‘w)int- E T * T»6- 1, (2.31)
n=0 r

and satisfies (2. 18b) and (2.18c). Therefore,
(Oe w)int €EW . - (2.32)

Now we consider (Oe w)ext' If Vext is replaced by a large but finite

volume then again it follows [Kellog&zo)(p. 122, 152)] that, in the volume con-
sidered, w is twice continuously differentiable, and it is once continuously dif-
ferentiable in its closure.

Next we study the exterior integral as volume extends to infinity. Explicitly,

u 2r
G (p,p,)
~ - 2 . o 1° o
(Oe w)e <t -2i lim | dr, d¢1 do, r, sin6 —/—— = [rlw(pl)] , (2.33)
u—> 1 1
1 0 O
and it is sufficient to show that the integrand is of 0(—15-) for large r. Since
w(pl) €W, it follows that B

L t(o,d)
w(p)=2 a1 L r.>6=1
1 n+l1 ’ 1“
n=0 1

and, therefore, that

nf(e ¢)

2 [ w(pl)] Z : (2.34)

Thus for large r, 2 rlw(pl)] = O(—lz) . Furthermore, the expansions of

1’ or
1 1
Go(p, pl) given in (2. 13) and (2. 15) show that for large r, ;- O(‘;) .
1 r1
Thus, as r, —> ® the integrand is of O(-lz—) and (Oom)ext exists.
r
1
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Now we pursue this calculation carefully to show that (Oe w)ext satis-
fies the expansion properties required of elements of W. Thus, we rewrite

(2.33) for r, rl>, 5=1 <see expansion (2. 14) for Go)

® 2 o o
Y (6.4;6.9.) £ (6, 9)
o =
(o w)ext dr1 d¢l dé)lrlsme 4tR(p, pl) Z (rr )m+1 . n+l
1 0 0 1 n=0 1

(2. 35)

where we have absorbed the factor 2ikn in the functions fn(Ol, ¢ -1). Now con-
sider separately the integrals involving the regular and singular parts of the
static Green's function; treating the regular part, (O® w):’f, first. In this case
both series are uniformly convergent, and the integral has been shown to exist;
thus we may interchange the order of integration and summation and perform the
integration using the orthogonality properties of spherical harmonics (2. 11) and

the definition of fn(e, @) (2.18c} to obtain

®
Y (e¢9 ¢)f(e ¢)
(O’w):§f= dr d¢1 delsine Z Z =

m+l m+n+l

@ (0] Ym(9;¢)
=ZZ—m+l ' (2. 36)
m=n r
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Absorbing the constant factors in the spherical harmonics and shifting index,

we have

0.9)

r eg m+n+]
(Oe w) E E m+n+2 , (2.37)

Using the identity

e9) (oo} © n
Z ZQ(m, n)= Z ZQ(m, n-m)

n=0 m=0 n=0 m=0
and since the series involved are absolutely convergent, we obtain

+10: M

(Osw) ¥ = Z Z n+2 : (2. 38)

n=0 m-=0

The coefficients in Yn+1(9, @) may depend on m, but the summation over m is

still a spherical harmonic of order n+1, hence (2. 38) is of the form

4140 )]

(008 - Z n+2 , (2.39)

and satisfies (2. 18b) and (2. 18c).
We now pursue the analysis involving the singular part of the Green's

function. The expansion of 1/R, (2. 15), is not convergent at r=r, .

1
From (2.35) we see that
2 10%)
, sin 6 f(6.,¢.)
sing 1 1 n 1""1
(Oeulyy =73 | 911 | % | ' (2.40),

1 R(p,p,) n
1 r
n=1 1
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Since the series in (2. 40) is uniformly convergent and the infinite integral has
been shown to exist, we may interchange the order of summation and integration,

and absorb the factor (-741;) into fn’ obtaining

m

i f

. | o sinf, n(91,(111)
1 1 R(p,pl) .

n=1 1 0 0 1

. - (2. 41)

We now employ the expansion for 1/R, (2.15),to obtain

© 2 T
(0 Smg-z dr, | d e L E Y ( ) +
.w)ext B r1 ¢1 91’¢ ) m+1 m 6, ¢ 9 ¢
) 0 0
2
s1n61
+ | dr d¢1d1r f(e¢)E m+ly(e¢e¢) .
4 0 0 1 m=0 1

(2.42)

Although the inner summation is singuiar at r=r.,, 6=0,, ¢=¢1, it is a straight-
forward matter to exclude a small neighborhood of p=(r,6,@#) from the integral
in which case the interchange of summation and integration is legitimate and then
show that the integral over the excluded neighborhood may be made arbitrarily
small by taking the neighborhood sufficiently small Ee. g. Kellogg(ZO)(p. 148)] .

Thus we find, again using the orthogonality properties

m-n+1

sing Y (6, $ ™ -1) Ym(9.¢)
ot 5 ST ey,

- +
n=l men m-n+1) (n+m)r
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We note that in obtaining (2. 43) the condition (2. 18 ¢) is necessary, -
since without this property, terms involving logr would oceur. Again absorb-

ing the constants in the spherical harmonics from (2. 43) we obtain
o)

(o-w)::;g Z Z Y (6,0) + Z Z Ym:fl) . (2. 44)
n=1 m=n

Using the identity following Eq. (2.37) on the second series of (2. 44),

and using the similar argument, we have

(6, 9)

Smg Z ZY(”’*Z—IT’ ) 2. 45)

n=0 r

Now we combine the Egs. (2.39) and(2.45) to obtain, for r> 6 = 1,

(6, )]
(Oow) -(Oow) g+(0° )smg E E Y_(6,6)+ E ot ,
n+2
r n=0
(2. 46)
or, by shifting index,
2, Y(6.9)
(Oow) _S_ n+l E Y (6, g) + _;_ 1 . (2.47)
r m=n+1 n=1 r
This is of the form
2 16,9
(O-w)ext= E rn+1 ) r>6=1 , (2. 48)
n=0

satisfying (2. 18b) and (2. 18c),
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with :
(o)
f = Z Y (6, ¢) | | . (2. 49)
m=1
m N
fn= E Ym(9,¢) , n>1. | (2.50)
m=n
Hence,

Finally, the Lemma 2.2 follows when we combine (2. 51) with (2. 32).

Lemma 2.3 The operator O, , defined by Eq. (2.26), maps the

lJ
space W into itself. '
Proof.

We have

A A
Oeow=1i\do_G
) i oy O(p, pB) nery w(pB)

B

. _ 1 AA _

4& ch [ preTr— pB) +u0(p, pBﬂ n rBw(pB) , (2.26)
B

where u is a regular potential function at all points peV. The Eq.(2.26)

shows that 010 w is the potential of a single surface layer distribution of den-

sity iﬁ-?Bw(pB) plus another term (corresponding to the regular part uo) which

is at least as well behaved. If the density ifte T w(pB) is piecewise continuous

B
20

then [Kellog(g )(p. 122)] the potential is infinitely differentiable in V, thus, in par-
ticular, the potential 010 w is twice continuously differentiable in V .
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Furthermore, if density is uniformly Holder continuous then [Kellogg(zo)(p. 165)]
the potential is continuously differentiable in the closure V(O N wECI(V)> . But
weW ensures that weCl(\-/). With the fact that the surface is closed and finite, it
follows that w(pB) is uniformly Holder continuous. Thus the density iﬁ.?‘Bw(pB)
will be uniformly Holder continuous if he ?‘B is. This however, is one of the
smoothness requirements on B. (See the definition of smoothness for the surface
B given in Chapter I. Indeed, the above need promoted us to give this particular
smoothness definition. )

For r > 6 = 1, using the previous similar argument, we have

(0 0) n .
_ 1 m im@ _
Go(p, pB)— E E Amn(;>B)rn+1 P ‘(coséb)e , r2é6=1. (2.52)

n=0 m=-n
Substituting into (2.26), we obtain

@ n
1 m im¢ AN A
= i 2.53
01° w E e E Pn (cos@)e Amn(pB) [1 nf rBw(pB)] do B ( )
n=0 m=-n

r
B

which is of the form

2.Y (6.9)
01°w= E = r>é6=1, (2.54)
r
n=0

and satisfies (2. 18b) and (2. 18 ¢c). With this, we conclude that

Ol°w€W

proving the lemma.

From the Lemmas 2.2 and 2.3 and from the Definition 2. 3 (2. 4) it

immediately follows that

and L=kL_ =kO+KkO, map the

Corollary 2.1 The operators Ll 1 |

space W into itself.
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Our next task is to show that operator L (2.24) is bounded. HoWever, to
do this we shall need the following estimate. '
Lemma 2.4

For every weW the estimate

lo -2 < % lol,  pe¥.  Jalg<s.
is valid. M is a constant independent of w; fo, the so-called ""radiation pat-
tern", is the first coefficient in the expansion of w.
Proof
Recall we may assume 6 =c+e€=1,

For rg1, since |f |\ ol G’:)q (2. 20))

f
‘*"?o|$|w| + 'r|\l H “w" l__" “w" "CJI (2.55)

I‘ I'

O ¢

For r> 6 =1, since o1 18 analytic its maximum is achieved on

n=1
the circle |z I—I-'-l therefore,v
© 0
f f
2oL =1
I“’ r 772 n-1[S72 fn (2.56)
n=1 r r n=1
On the other hand
EOO: - o ol o |
=, L 4+ =2 =1 . 2.57
rn+l Iw rl Lol r » T26=1 ( )

n=1
Since | fo|$||w|| and 1/r g1, it follows that
®

l f

Z n
n+1
r

n=1

< 2wl

29



In particular, atr =6 = 1
(o)

>

n
n=1

Substituting this in (2. 56) yields

<2 loll - | (2.58)

f
0
w-—=
r

g-% loll .  r>6=1. : (2.59)
r

From (2.59) and (2.55) the lemma follows

Lemma 2.5 Operator L1 (2.24) is bounded.
Proof.
We want to show that there exists a constant M < oo such that if wWeW

then “Llo wll< M |l . since

= + .
L1 O O1 (2.60)

and

;e wll= floew+ 00 wll < lloswll + floe vl (2. 61)
it is sufficient to show that

lloewll < M, ol . M, <® (2. 62)
and

llojewll < M, o . M, <o . (2.63)

Consider (2. 62) first. We integrate (2.25) by pérts with respect to r

once to obtain

G (p.p) . G (p,p) |
Y o] 1° o . _ 9 (o] 1 i _
Oew= -2i | dv, ———rl —arl [rlw(pl)] = -2i |dv) -————rl br, [rlw(pl) £(6,, ¢1):]

\Y

f
. 0 . 1l 9 _9
= 2i ch Go(p, pB) Ez(pB) rB:] + 2i dv1 ) brl rlGo(p, plﬂ [w(pl) rl] ,

B \Y%
(2.64)
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where f0(9,¢) is the "radiation pattern" for w.

The integrated term vanishes at the upper limit, rl——) o , since

(see Eqgs. (2.13), (2.15) and (2.16))

1,6, e,p) [ruk)-£00,9)] = 0() as 1 —a

1 1
and gives rise to the surface integral at the lower limit.
Making use of the estimate
fo M 1
S A ol . pe¥ . el <t

of Lemma 2.4 in Eq. (2.64) we see that for peV

Oowl<2M I: IGo(p’pB)Ir doB+ 5 | 52 (rlGo) dvl:l map
B r, 1
\"

B (2.65)

The surface integral may be rewritten, separating out the singular part

of the »Green's function, as

1
4
v g rBR(p,

<

: 1
|Go(p’ Pg) |rB do o

1
do_+ Iu(p,p)""cb
pB) B o B'lry B
B B B

The first term on the right is the potential of a single layer distribution of densi-
ty 1/411:B . Since rBf 0 (the origin was taken within B) and the surface is
smooth, closed and finite, this density is uniformly Holder continuous which

2
( 0)(p. 165)] that the potential is continuously differentiable for

means [Kellogg
all points peV . The second term on the right hand side of (2. 66) is the integral
of a bounded function over a finite surface and hence is also bounded. Thus for

some N< oo,
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N

1 |
—_ < ‘ .
IGo(p, pB)l cdog <N peV (2. 66)

B

The volume integral in (2. 65) is also bounded since the integrand is sufficiently

well behaved. At the singularity of Go s

- . 2
rz‘arl(rlGO)l =0(1/R%) as R —O0,
1

and is therefore integrable over any finite volume containing the singularity

2
[Kellogg( O)(p.l48)] . Furthermore,
Ll_d_ | 4
r2 o, (rlGo) -O(r/rl) as 1, Do ,
1

thus for some N, < o

1
_Ll_a_ 5 2.67
2lor [rlGo(p’pl)] dv) <Ny- T pev . (2. 67)
v 1
With (2. 65), (2.66) and (2. 67) we have for some constant N3
o-w|< Ny loll . pev . (2.68)

In particular this is true for the maximum value of lOow I therefore, renaming

the constants,

max |Q'w| < M ol . (2. 69)
beT
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Also, since G (p, pl) has its singularity only for real values of r at P=p,
(integration is carriedout over the real range 1 < rlg ®), it follows from (2. 65)

and the expansion of Go that for a positive constant M_ independent of w, we have

2

max |0°w|\< M2 ||w|| . (2.70)
|41 :

Hence with (2. 70) and (2. 69) ,
lloeulls M ffull (2.71)
for an appropriate constant M.

Next we establish (2.63), thus proving the lemma. With the definition
of 01 (2.26) we see that

log wl< \la el [fedy]|utog) aop - (2.72)
B
By definition,
loep) <ol . (2.73)
Also ?1 and ;B are unit vectors,
|3.?B| <1. | | (2.74)
Thus,
lo,® wl< llwl |G0(P» pB_)| o . (2.75)

B

By arguments similar to those above, we have
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max [0 0| < N ol (2. 76)
peV , : ,
and
max o0 wls Ny floll .
|zl <1

for some constants Nl’ N2 .

Hence for an appropriate constant N> O .

lofwlls Nllofl . (2.77)

With this the lemma is proven.
Since L= kL.1 , and Ll has been proven to be bounded, we immediately
have the following

Corollary 2.2

”L" <1 for sufficiently small |k| .

-ikr
Lemma 2.6 If u is a scalar wave function (see (1. 15)) then J=e u

is an element of W.

Proof
u is a scalar wave function, and as such (see Chapter I, Section 1.2)

ueC2 (V) . Since e_ikr is analytic in r and r is continuously differentiable
on B (see Chapter I, Definition 1.2), U = e_ikru satisfies the requirements
that ¥eci(V) and Yecl(®).

Furthermore, scalar wave functions may be expanded in spherical har-

(

monics [e. g. Sommerfeld 40)(p. 143)] in the following well-known manner

(00)
u(p)=Z hn(kr) Yn(9, @ , r»6-=1 (2.78)

n=0

where hn(kr) are spherical Hankel functions of the first kind ,
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h (kr) = il Sl (n+m)! ) |
n s r ( (n m)! m! 21kr (2.79)

Equations (2.78) and (2. 79) yield

¥ (6, ¢) B rm)!

Y e kT Z Z ' - . (2. 80)

— = " aem)me (2ik)

Using the following identity

® n o ®
Z ZD(m,n)=Z Z D(m, n+m) ,

n=0 m=0 n=0 m=0

and absorbing the constants into spherical harmonics, (2.80) reduces to

@ .
Y, (6,9)
n=0 m=0 r
or .
(0]
f (6,9)
‘t‘lzz “n+1 ) ‘ (2.82)
n=0 r
where
@ fos)
fn(e’ P - Z Yn-HZ(e’ ) EZ Ym(e’ ho
£=0 m=n

proving the lemma.

We are finally in a position ta state and prove our main result.

35



THE UNIVERSITY OF MICHIGAN
7359-1-T

Theorem 2. 1.

Let B be a closed, finite surface imbedded in E3 and let it be de-

scribed by the equation ry* g(6, §) where g is continuously differentiable

for0g 0 <7, 0<KPK2x . Let ﬁ-?B be uniformly Holder continuous. If
u(p) is a scalar wave function for V, the exterior of B, then there exists a disc
around the origin in the complex wave number plane |k| <| kol such that for

k inside this disc u(p) is given explicitly by the convergent expansion

©
u(p) =eikr E L% u(o) , (2.83)
n=0
where
Lou'®-o2i | @ M—?—[ ut°) +ii< &G (p,p)hed p), (289
eu =-21 vl rl arl rl p1 B o PPy B DB,
A% B
- ikr
o B 0
- - G (p, < 2.85
u (p) (p.pp)e o Ulpg) dog (2.85)
B

Go(p, pB) is the static Neumann Green's function (an Go(p, pB) = O) , and the

normal is taken out of V.

Proof.
C . -ikr .
Multiplying both sides of (2.83) by e we obtain
®
q- E L o9 (2. 86)
n=0

We proceed to prove (2. 86), since this would be equivalent to proving (2. 83).

1, u(o), and the partial sums u(N) are all in W (Lemmas 2.1, 2.6, Corollary
2.1). Thus "ﬁ' - u(N)ll is meaningful for any N> 0. We shall prove the

theorem by showing that for any € > 0, there exists a positive integer No( €)

such that
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”ﬁ' -u ” <€ provided N > N0 . (2.87)
From our operator equation U=Lell + u(o) and from the definition
of partial Néeumann-Liouville sums
¥ on (0 (N)_ . (N-1)_ (o)
(N) E :L ou (which implies u °= Leu +u )
u =
n=0
we have, by induction,
+1 w~
g-a™ o My 2.88)
and hence
N N+1
“ g - )” < ol \al - (2. 89)
since |k| < [k | , we have |IL]| < 1 (Corollary 2.2), and since
||ﬁ'|| is bounded, for a given €> 0
N+1
|l Tl < € (2. 90)
prbvided €
N+1> ————log“ﬁ“
log LI (2.91)

This proves the theorem. Representations of wave functions in two important

special cases follow immediately.

Corollary 2.3 The Green's function of the second kind for the Helmholtz

d
equation and surface B (—a;' =0 on B) is
ikR(p, p )
e
s =TT + >
G(p.p) TeR(. ) ulp,p) | - (2.92)

where u(p, po) is given explicitly by (2. 86) with
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(o) 1 k| e iR g )
= - = | ——— d . .
u (p’ po) 4 x GO(P, pB) e on R (pB’ po) GB (2 E 93)

B

This, of course, follows immediately by taking the normal derivatives of

d
both sides of (2.92) and observing that ‘Gk_|= 0> then by substituting the result
on

B
, 5 eka(pB, P,
—-— == | —m—m—m— 2.94
anu(pB’po) on 47R(p_.,p) ( )
B o
into the Eq. (2.85) .
Corollary 2. 4 The velocity potential ut when a plane acoustic wave

is incident in a direction @ on a rigid surface B (aaLn' =0 on B) is

e A
ut=e1kr.a+u(p) s (2.95)

where u(p) is defined explicitly in (2. 83) with

- ikr ik?_e &
u(o)(p) = GO(P, pB)e B 5‘?—1 e B > doB . (2. 96)

B
Similarly this follows from the fact that normal derivative of the velocity

potential vanishes on the surface.

Theorem 2.2 (Uniqueness)

If u, and u. are scalar wave functions for V and

1 2
on on on
then ulguz, peV
Proof.

Suppose u l# ug . Then subtracting the equations
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(o)

=L°u +
ulLu1 u

: (2.97
u2= Le u2 + u(o) , )

-

(o) . . . . . o
(where u is the same in both equations since the normal derivatives are equal)
we obtain '

u,-u,= Le (ul-u

1 2 2

and
“ul_uzll < ”L“ ”ul-uzll . (2.98)

Since ||u1—u2|| # 0, we may divide obtaining ||L|| > 1. This violates
Corollary 2.2, the boundedness of the operator, and theorem is proved.

2.4 Remarks on the Low Frequency Expansion

We have shown that the solution to the equation

- kthﬁ = u(o)

is given by

(0 0] . .
¥l kT, L E kan. L0 (2.99)
n=0

is independent of k. If the boundary data is analytic in

! (o)

k, as is the case in Corollaries 2.3 and 2.4, then u has the expansion

where the operator L

(00}

o Xp) - Z a_(p) K. | (2. 100)

n=0

Substituting (2. 100) into (2.99) and observing that both series are absolutely

convergent, we obtain
Ios) m '
~ m n
u = E k E L, ca__(p), (2.101)
- m=0 n=0 '
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or
[00)
%= E a kO (2. 102)
m
m=0
where
m
u =E L"a (p) . : . (2.103)
m 1 m-n

n=0

From (2.103) it follows that

(2.104)

Equations (2. 102) and (2. 103) represent a low frequency expansion of q. If we
had assumed the expansion (2. 102), substituted it, together with the expansion
(2. 100) for u(o) into the equation ﬁ=kLlo ‘1"1+u(°) and equated the coefficients
of k, then we would have obtained the u_ exactly as given by (2. 103).

For the scalar wave function u(p) we have the corresponding expansion

-3 S S ey

(2. 105)
[0 0} n m
n (ir)" ™ v
DI~ i) W
n=0 m=0 v=0

For these expansions the radius of convergence in the k-plane is
|k0| > 0 (Theorem 2.1).
Next we note the relation between the low frequency expansion and the
Neumann-Liouville expansion. Specifically, partial sums u(N) in the

Neumann-Liouville series are (with (2. 100))
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N N (04)

(N) n_ (o) n. n m

u = E Leu = E k L1 0 E amk . (2. 106)
n=0 n=0 m=0

Adding and substracting the same quantity, we have

® [0}
(N) z :2 : n+m n _z : E :kn+an0a . (2. 107)
m 1 m
n=0 m=0 n=N+1 m=0

Using Cauchy's form of the product of two series to rewrite the first sum and

shifting the index in the second enable us to write

Q m @ (0 0]
SN Z kaL n,. _Z an+m+N+1 MmN+,
1 m-n m

m=0 n=0 n=0 m=0

Splitting the first sum and again adjusting the index of the second yields three

blocks of terms
N m
u(N)= E E kanoa + E _;- kanoa
1 m-n 1 m-n
m=0 n=0 m=N+1 n=0

(0 0] m

_ Z km+N+l L n+N+1. a
Z 1 m-n

m=0 n=0

The firstblock is seen to be, with (2.102) and (2. 103), the sum of the first N
terms of the low frequency expansion while the remaining blocks may be com-

bined by further reordering to yield
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(0] m-N-1

N [0 0] m
+
u(N): knu + kmL noa _ kan+N l"a
E : m z : z : 1 m-n ; : z : 1 m-N-1-n
m=0

m=N+1 n=0 m=N+1 n=0

m m
g k u + E kanoa - E kanoa s
E : 1 m-n 1 m-n

m=N+1 | n=0 n=N+1

and finally ,

(N)Z K +Zk ZL . (2.108)

m=N+1 n=0

With (2. 103) we see that the first sum on the right represents the first
N terms of the series (2.102). Thus the Nth term of the Neumann-Liouville
series is seen to contain terms of all order in k, the first N of which corre -

spond exactly to the first N terms of the low frequency expansion.
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CHAPTER II

AN APPLICATION: SCATTERING OF A PLANE WAVE
OF SOUND BY AN ACOUSTICALLY RIGID SPHERE

Both as a check and an illustration we apply the techniques described in
the previous chapters to a specific problem--one which is indicated by the title
of this chapter. In this case, the exact result is known and we are able to show,
not only that the iteration produces the correct result, but how the Nth iterate
approximates the exact result.

The surface B is now a sphere of radius a whose center is taken as

the origin of the coordinate system. The static Green's function of the second

29)

kind for this sphere is (e.g. Morse and Feshbach( )
| — ( r) L2+l
GO‘P’%F‘GZ AT )n+l> Fylcos™) (3.1)
n=0 "> 1

where r_= min (r, rl) s 1 = max (r, rl)

and cos vy = 7T - ?‘1 = cosecos91+sin6sinelcos(¢—¢1) .
The incident field is a plane wave which, without loss of generality, is

chosen as propagating down the z-axis, i.e.,

.k.s N
-ikr - i . .
z -ikz _ e-lkr cos 6

u1=e = e (3.2)

The boundary values of interest are (with the well-known plane wave expansion)

. (0 0]
i N
du___20 -ikrcosfl E :(-i)n(2n+1)j' (ka) P (cos 6) (3.3)
on ar n n
r=a n=0
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where jn is the spherical Bessel function and the prime denotes differentiation

with respect to ka, i.e.,

1/2
j;l(ka) = d(k ) [<2ka /(ka):l (3.4)

The scattered field, u (where ou/on = —aul/an on B), is given by the methods

described previously as

u= lim eikru(N) (3.5)
N—
where
N
u(N)= E L% u(o) , (3.6)
n=0
@
2n+1
o) Z a 18 (o)
() n+1 n+l( )n+1 Pn(cos'y)rl 8r1 [rlu (plz-] dv1
n=0 | > Ty
@
, ik Z 2ntl a" (0)
* —y n+1 P(cos'y)u (pB)ch (3.7)
B n=0

(cos v always involves coordinates of p and the integration variables) and

-ika n
u(o)(p)=l'{%_ zn’:l i+1 P(cos'y)Z( -i)™(2m+1)j! ' (ka)P_(cosf)do

5 n=0 m=0 (3.8)
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(o)

The orthogonality of the Legendre functions enables us to evaluate u

and the first three iterates. Omitting the details, these are found to be

ot
(o)( p) =kae ﬂ{az %I:_—:l;) = j! (ka)P (cos 6) (3.9)
n=0
o Hip) = ka o1k % ji (ka) (1 + ika)
~-ika - 2n+1l n,a n+l
+kae S 0'E) 3 (ka)P (cosd) [1+ika-ikr] (3. 10)
n=1

@
~-ika 2n+1 n,a.n+l

u(z) (p)=ka e—ika %j;(ka) [1+ika—(ka)2] +kae ( i) ( )

n=1

2 2, 2
A ) 2 (kr)"(n-1) (ka)"(n"+n-1)
X ]n(ka)Pn(cos 0) | 1+ik(a-rH+k ra - ono1 (nt1) (2n-1) ., (3.11)
. . (29)
The exact expression for u is Ge. g. Morse and Feshbach )
h (kr)
u(p) = -Z(-l) (2n+1)j! (ka)P (cos 6) h'(ka) , (3.12)

n=0

where the prime again denotes differentiation with respect to ka (see (3. 4))

and hn is a spherical Hankel function of the first kind. Expliticly

R n
iz .
h (z) = e—z— 1'“'12 ( (n+m): 1 ) (3.13)

n-m)! m! . Jmn
0 (-2iz)
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With this definition we find that

n
ZM( 21kr)

(n-m)!
h (kr) . n+l
n - p. . ik(r-a) a m=
hil(ka) = -kae (r) - (3.14)
Z (—n(zT“),@—( -2ika) " (n+1-m-ika)

The ratio of the two polynomials, of degree n in kr in the numerator and
n+1 in ka in the denominator, may be re-expanded, for ka sufficiently small,

in ascending powers of k. Thus

hn(kr) 1k(r a) ntl o
Mok -ka —— (&) E alk n3 0 (3.15)

where the coefficients «_  are functions of r, a, and n. The first three

£
are found to be
a =1
o
arl=ia, n=0
ifa-r),n>0
___2 _O
=2, 0= . (3.16)
-1 2 +n - 2
=ar—n r n+n-l a s n>0

on-1" (n+1)(2n-1)

In terms of these expansions the exact result for u, Eq.(3.12) may be

rewritten as
@® n+1 ©
_ ik(r-a) . 2ntl a 1 (ka) P (cos § i )
ulp)=kae E (-if == @) jplka) P (cos )E ak . (3.17)
n=0 {=
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If we denote by uN(p) the expression resulting from taking only the first N

terms in the expansions in k in (3.17), that is,

© n+l N
_ ik(r—a)z n2ntl a N 2 )
U= kae (-1)n oL (r) Jn(ka) Pn(cos 6) alk ,, (3.18)
n=0 £=0

then we see that, for the values of N computed,

Uy = eikru(N) (3.19)

(N)

where the first three iterates, u~ ‘, are given in (3. 9) through (3. 11).

47



THE UNIVERSITY OF MICHIGAN
7359-1-T

CHAPTER IV

CONCLUSION

The main result of this work consists of (a) the derivation of an integro-
differential equation for the exterior Neumann problem whose kernel is the po-
tential Green's function of the second kind, and (b) an effective approximation
method for it.

We shall now indicate some of the areas which are the natural extensions
of this (and the Dirichlet) problem, and which are not included in the present work.

4.1 Functional Analytic Aspects

It is immediately evident from its definition that the space in which the
perturbation is performed is not complete. For this reason, it was necessary
to show that the solution to the problem was an element of this space
and that in the sense of our norm iterates converge to this function. However, let

the norm be given as follows:

1
Il ull = maxlu(p)l+max|D1u(p)|+max lue, g, ;)l » 0gogr, oOgfger,
peV peV |z|<1

1
where D denotes the first derivatives with respect to any one of the

variables 6, ¢, or r, and |z]= |%-| < 1 is the unit disc in the

complex z plane defined in Chapter II. Then it should be possible to show (the
work on this is being completed) that this new space is a Banach space, and that the

operator L=KkL_, defined in Chapter II, is compact. With these facts, we may

1
appeal to the Banach fixed point theorem to conclude the existence (and unique-

(o)

ness) of the solution to the equation {T+Le{i=u
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Another norm with which the present problem may, with somewhat

more tediousness, be solved is

® ®
lull = max{max |u(p)|, E E n+1 )
n=0

peV O<6<t m=n
0<¢<21
r>b

n
where b some constant greater then 1, and Ym are the spherical harmonics

for u, specifically,

@ £ (6,9)
Z n+1 »or2l
n=0

(00)

n
0.9 => v "6.9)

m=n
m
£ if
Y(n) E A" p (cos@)e1¢
m /fm m
£=-m

Again, we note, with this norm the space W is not complete.

4.2 Non-Separable Surfaces. Bodies with Edges.

It is now possible to*solve’ the Neumann (and Dirichlet) problem for the
scalar Helmholtz equation in the regions exterior to a non-separable body, pro-
vided k, the complex wave number, is sufficiently small in modulus, and the so-
lution of the Laplace's equation can be obtained for the body in question. This is
done for one such body, an ogive (see Ar(l)) It should be noted in this
connection that the explicit representation of the solution of the Neumann
(and Dirichlet) problem has been broven only for smooth bodies (see Chap-
ter I for the definition of smoothness) . However, preliminary calculations for

the circular disc support the hypothesis that the representation remains valid
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for bodies with edges (e.g. an ogive). To prove this, however, will require a
different definition of norm, since it is known (e.g. Bouwkamp(s), Meixner(28))
that wave functions associated with bodies with edges have singular derivatives.
Thus, convergence of the iterates in these cases will have to be established in

some other norm.

Another non-separable body is the torus. The solution for this problem
is also presently under consideration. Since, in this case, the smoothness re-
quirements are satisfied, the present norm is sufficient to justify the iteration.

4.3 The Radius of Convergence of the Low Frequency Expansion

While we have proven that the series convergences for |kl sufficiently
small, that is, there exists some number Ikol > 0 such that the series converges
for |k|< |k0| , no indication was given as to how large lkol may be. If the
boundary data are analytic in k, this problem of estimation is equivalent to finding
the radius of convergence of the low frequency expansion. Such estimates are
available only for special surfaces (e.g. Darling and Senior(38)) and the general
problem remains unsolved. If the exact radius of convergence is found, the ana-
lytic continuation into the complex k-plane is then possible. Restriction of this
continuation to the real line would in effect '"solve'" the persistent problem of the
'""resonance region'.

4.4 Extension to Vector (Electromagnetic) Problems

Here the goal is an explicit iterative solution, as opposed to Stevenson's
42
technique( ) in which each successive term in the series solution can be found
only by solving a new problem.

4.5 Two-Dimensional Low Frequency Scattering Problems.

The success in three-dimensional problems is due in part to the existence

of the expansion (see Chapter I) for the wave functions. While the comparable

(18)y

its very existence offers some hope that an iterative method analogous to that

expansion for two-dimensional wave functions is more complicated (Karp
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for three-dimensional problems could be found. In one respect, success in this
area would be more far reaching than in the three-dimensional case since, in
contrast to that case, two-dimensional potential problems are all essentially
solvable using conformal mapping; thus, all two-dimensional scéttering problems

would also be solvable.
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