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1.0 INTRODUCTION

The authors of this report have had the opportunity, to varying degrees,
to observe the development of a general purpose multiprocessor computing sys-
tem [Ref. 9] and a special purpose, high performance multiprocessor system
[Ref. L]. On first observation there seems to be little in common between
these two types of computer systems and, in fact, they appear to have devel-
oped quite independently. However the general purpose multiprocessor with
its necessarily dynamic scheduling of tasks and assignment of storage is de-
monstrably successful and it is now natural to ask whether some of the same
techniques would be successful in the more specialized system.

If the development of a large software system falters one can look for
trouble in two broad areas. The syStem design (i.e., choice of operating
algorithms) may be poor or the implementation procedures inadequate—or, more
probably, a subtle combination of both. For the purposes of this report a
clear distinction between the two areas will be made.

Whenever system performance is a vital issue, as it is in general system
supervisory programs and demanding real time programs, the often asked ques-
tion of whether high level programming languages can be effectively used is
still an issue. 1In an earlier report [Ref. 2] some comparative programming
of system and application type modules was carried out with the general con-
clusion that the specialized code that can be obtained with assemblers still
produces a substantial size and speed advantage. It is the purpose of Sec-
tion 2 to examine in more detail the reasons for this somewhat discouraging
result. The general approach taken is to examine in detail the structure of
two System/560 programs, isolate the structural properties, and then deter-
mine how well such structures can be represented in higher level languages.
It is an attempt to refine the program level comparison, to determine, al-
though not completely in this report, where the mismatch occurs. The chosen
two programs are representative of the system code in the general multipro-
cessor gystem. They are known to be well coded and effective and perhaps
most important, their structure is known in detail.

The preceding paragraph describes a first step in determining the feasi-
bility of certain system implementation procedures. The other question of
the suitability of the operating system algorithms seems conceptually easy to
state but surprising difficult resolve. It is not hard to give a general di-
vision of supervisor function which encompasses all systems from general—
time—independent to specific—with—deadlines. The following is one such
division. '

1. Machine interface
2. Resource allocation to top priority tasks



%. Priority determination
4. Management of time independent sequence dependencies
5. Deadlines and alternatives

In the specialized cases where the nature of the tasks is known the alloca-
tion and priority assignment are subsumed under the general heading of sched-
uling. If the number of tasks is fixed and there are no sequence dependen-
cies the refinements to job shop scheduling [Ref. 5] give an algorithm for
determining an optimal schedule. Unfortunately, in real systems, neither
premise is valid. Since there are working systems with these general inputs
it is clear that working solutions to the 'scheduling problems have been
found. The purpose of Sections 4 and 5 are to describe the solutions for two
different systems.

The radar and missile control computer systems are an interesting inter-
mediate case. In typical process control systems the tasks are known and
fixed; in general systems the tasks are not known a priori and must be dynam-
ically scheduled. The intermediate case is where the tasks are known but the
number of instances of such tasks (or load) is highly variable. This compar-
ison suggests that such systems might be successfully implemented with the
dyhamic approach.

It would be presumptuous to attempt a comprehensive analysis of the sys-
- tems described in Sections 4 and 5 in so brief a study. The management of a
beam-switching radar is a well defined and demanding real time load; and
hence it was decided to investigate the overall structure of a successful
system of this type—the AN/FPS-85 [Ref. 3]. Although it is a dual processor
system it is not strictly a multiprocessor system and hence permits some sim-
plifications. The multiprocessor SAFEGUARD system is, of course, extremely
complex but an attempt was made to understand the overall structure. In both
cases the emphasis of the study was to determine to what extent a priori
scheduling was done and how much dynamic scheduling was included in the
actual real-time dispatching of tasks. With the best results, clearly
defined algorithms for these functions could be abstracted. However, in both
cases, the a priori scheduling included some human judgment and experience
which could not be expressed as an algorithm. If it were possible to study
enough instances of such designs to develop an algorithm for these parts then
perhaps some study of the approximation to optimality could be carried out.



2.1 Apalysis of System Programs

We begin our task of determining systemn progranm
requirements by analyzing several typical system programs.
More specifically, the programs are from the MTS operating
systen, which executes on the 1IBM System/360. This
particular system has been chosen for analysis because the
program listings are readily available to the author and it
is representative of large-scale time-sharing systems.

In the analysis of these programs, several topics will
be investigated for each program. These topics are (1) the
function of the program and the manner in which it performs
its function, (2) the environmental considerations involved
in the program, including the calliang sequence conventions
used by the system to call the program and by the program to
call other programs in the system, the method ({or methods)
used by the program to aquire and release dynamic storage,
the method (or methods) used by the program to perform
input/output operations, and the mechanisms available to the
program to alter the processor scheduling algorithms applied
to 1it, (3) the <compile-time facilities required by the
program, (4) the data structure reguiremeats of the progran,
(5) the computational requirements of the program, (6) the
program structure requirements of the program, (7) the
control requirements of the program, and (8) the efficiency
requirements of the progranm.

The particular programs which have been chosen for
analysis are the following:

(1) The MTS Paging Drum Processor. This program possesses
the most demanding set of requirements of all programs in
the MTS system other than the supervisor. The program has
fairly severe timing constraints in that it should be
capable of keeping up with the transfer rate of the paging
druns., The program nmust build channel programs for the
paging drums and discs, request that the supervisor start
the devices using the channel programs which the Paging Drum
Processor has built, and process device-end and PCI
interrupts from these devices in close to real tinme.

(2) The Computer and Communication Sciences 573 Supervisor.
This program is a simplification of the MTS supervisor which
has been developed as a pedagogical tool for teaching the
internal 'structure of supervisors in the course CCS 573.
The program requirements of this supervisor are essentially
identical to those of the MTS supervisor. The program runs
under a simulator for an 1imaginary machine which closely
resembles a System/360. The imaginary machine differs froa
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the System/360 only in that the memory size is smaller and
the input/output system is less complex. 1In fact, only the
privileged instructions of this imaginary machine are
simulated; all other instructions are directly executed by
the System/360. This means that program running times under
the simulator are very nearly identical to those of the sane
programs run on a System/360. The fact that this supervisor
runs under a simulator 1is to our advantage because the
simulator can gather timing information and there are none
of the problems attendant with scheduling the use of real
hardvare for testing purposes. Thus, this program is an
excellent choice for testing the efficacy of the systen
programming language which we will develop. '

Following the detailed analysis of these systen
programs, we will summarize their composite requirements.
From this summary we will characterize system programs and
determine the unecessary and desirable features which a
language designed for system programming should include.



2.1.1 The MTS_Paging_ Drum_Processor

o s e <oy o i e s -—

In MTS, the function of moving virtual memory pages
between main storage and auxiliary storage is divided
between the supervisor (UMMPS) and the Paging Drum Processor
(PDP) . The choice of which pages to read (transfer from
auxiliary storage to main storage) and which pages to write
(transfer from main storage to auxiliary storage) is made by
UMMPS while the PDP constructs the channel programs to read
and write pages on the auxiliary storage (currently drums
and discs) and notifies UMMPS when a page has been read or
written, This description of the PDP is a brief summary of
information from Alexander [1].

The PDP program is executed by a single, absolute task
within the UMMPS task environment. (Anr absolute task is one
whose address space is precisely the main storage of the
Model 67, as opposed to a relocatable task, whose address
space is a virtual memory which is paged. Many systenm
functions are run as absolute tasks, either (1) because by
their nature they must be able to reference all of real
storage, or (2) because the overhead inherent in relocating
their channel programs and paging their private storage
would 1lead to inefficiencies.) The PDP must be executed by
an absolute task because if it were executed by a
relocatable task and directed to write part of itself onto
auxiliary storage, it might not be able to read itself back
into main storage.

The most important unit of information communicated
between UMMPS and the PDP is the Page Control Block (PCB),
which describes the status of one virtual memory page. Each
PCB 1is a member of at most one linked list (called a queue)
of PCB's. These gueues of PCB's are passed back and forth
between UMMPS and the PDP. There are four such queues, (1)
the Page-In-Queue (PIQ) which consists of the PCB's for all
pages which have been requested to be read into main storage
but which the PDP has not started reading yet, (2) the Page-
In-Complete-Queue (PICQ) which consists of the PCB's. for all
pages which the PDP has completed reading but of which UMMPS
has not been notified, (3) the Page-Out-Queue (POQ) which
consists of the PCB's for all pages which are in main
storage and which <could be removed if necessary to make
space for more pages, and (4) the Release-Page-Queue (BPQ)
which consists of the PCB's for all pages which have been
released by their owning tasks but which the PDP has not
released yet.

The fact that the PDP program 1is executed by an
absolute task complicates the passing of information between
UMMPS and the PDP since a task can 'be interrupted between
any two instructions, with control being passed to UMMPS by
the linterrupt. Thus the PDP cannot safely alter any
information - which UMMPS nmight also alter. In particular,
the PDP cannot remove PCB's from the PIQ or the RPQ. To
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avoid this problem and to communicate other information
betwesen UMMPS and the PDP, five SVC subroutines have been
added to UMMPS for exclusive use by the PDP. These five
SVC's are (1) Get-Queues (GETQS) which is used to return the
PIQ and the RPQ to the PDP, (2) Get-Write-Pages (GETWP)
which is used to request one or more pages from the POQ
which will be removed from main storage, (3) Get-Real-Page
(GETRP) which is used to request a main storage page into
which to read a page that must be brought into main storage,
(4) Free-Real-Page (FREERP) which is used to notify UMMPS
that a main storage page that was allocated to a PCB is now
available for reallocation and to notify the PDP that the
page was reclaimed while being written by the PDP, and (5)
PDP-Wait (PDPWAIT) which is used to notify UMMPS that the
PDP temporarily has no work to do.

The Paging Drum Processor begins execution at its
initialization entry-point when the task which is executing
it is created. At this time the PDP acquires the drums and
discs which it will use as auxiliary storage devices and
initializes its data structures. The PDP then wenters a
cyclic behavior as described below.

At the beginning of each cycle, the PDP calls the GETQS
'SVC subroutine to acquire the current contents of the PIQ
and the RPQ. For each PCB in the RPQ the PDP releases the
corresponding page in auxiliary storage (if any) and frees
the main storage making up the PCB. The PDP then puts each
PCB in the PIQ onto a local PIQ corresponding to the
auxiliary storage device on which the page is stored and the
angle of <rotation of the ©page on that auxiliary storage
device. This is referred to as "slot sorting" or "sector
gueueing". The PDP then constructs one channel program per
auxiliary device, the channel program being sufficient to
perform a mnixture of read and write requests during one

rotation of the auxiliary device. .Channel  proyram
construction begins by calling the GETRP SVC for each PCB-
which is at the head of a local PIQ for the device. For

each successful GETRP call, the appropriate commands are
built at the corresponding slot index in the channel program
to read the page into the allocated main memory page. Then
the GETWP SVC is called to acquire one PCB for each stili-
vacant slot in the channel program and the remainder of the
channel program is filled with commands to write these
pages. UMMPS will refuse to allocate a page on a GETRP call
if main storage is nearly full. 1In this case the remainder
of the channel program will be filled with write requests.
Likewise, UMMPS will refuse to return PCB's on a GETWP " call
if main storage is fairly empty. In this case, the
remainder of the channel program will remain vacant.

Following the completion of the channel program, the
PDP determines if an operation is in progress on the
auxiliary device. If there is, the new channel program is
added to the end of the last channel program constructed for
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the device so that it will continue with the new channel
program when it has completed all previous channel prograas.
On the other hand, if the device is not running it is
started by issuing a SIO SVC. In either case the device
will cause a PCI interrupt at the end of each revolution and
a device-end interrupt when it stops running.

After channel programs have been built for one
revolution of each auxiliary device, the PDP performs the
cycle again. When either there are no more read or vwrite
requests pending or channel programs have been built for the
next three revolutions of each auxiliary device the PDP
calls the PDPWAIT SVC which causes UMMPS to defer scheduling
the PDP task on the CPU until more read or write requests
arrive or an interrupt must be processed by the PDP.

Whenever any of the auxiliary storage devices completes
a revolution or reaches the end of the channel programs
presented to it, the PDP is entered at one of two eantry-
points, The PDP then processes each entry in the channel
program which the device has fiaished. For those pages
which have been read into main storage, the PDP places the
PCB on a local PICQ, which will eventually be placed on the
supervisor PICQ. For those pages that have been written
onto auxiliary storage, the PDP calls the FREERP SVC to
indicate to UMMPS that the main storage page is available
for reallocation. If the page has been reclaimed or
creleased while being written, UMMPS returns an indication of
this and the PDP frees the auxiliary storage just written.
After processing each completed entry in the channel progran
the PDP returns control to the point of the interrupt, if
the PDP was in the cycle at the time of the interrupt, or to
the beginning of the <cycle, if the PDP had called the
PDPWAIT SVC.

There are two further considerations which complicate
the interrupt processors. First, if the operation on the
auxiliary device terminated in an error, the PDP must call
the standard direct-access device error recovery routine to
retry the operation. second, there are certain sensitive
sections of the PDP cycle which cannot be interrupted. If
an interrupt occurs in these sections the fact that the
interrupt occurred 1is noted and control is returmned to the
point of the interrupt. At the end of the sensitive section
a test is made for interrupts noted while in the sensitive
section. Any interrupts which were noted are processed at
that time.

ENVIRONMENTAL CONSIDERATIONS

The Paging Drum Processor runs in the absolute task
environment as defined by UMMPS. As such, the PDP can



execute all non-privileged instructions of the System/360
and reference or change all of main storage. Regions of
main storage can be acquired by the PDP for its exclusive
use through a variety of SVC subroutines. Input/Output
operations and the enabling of input/output interrupts also
are requested by the PDP through SVC subroutines.

Calling_ Seguences

The Paging Drum Processor is called at its
initialization entry-point with a non-standard <calling
sequence. General-Register 15 contains the. address of the
entry-point, General-Register 2 <contains the address of a
vector of fixed-length character items of length 4, and all
other register contents are arbitrary. The PDP must return
via an SVC, rather than by transferring control back to the
routine which called it. This is typical of programs which
are entered by the creation of a task.

The Paging Drum Processor nmust call the standard
direct-access device error recovery routine to retry
operations which abnormally terminate on auxiliary devices.
This error recovery routine also follows " noan-standard
calling sequence conventions. General-Register 15 contains
the address of the entry-point of the error recovery
routine, General-Register 13 contains the address of a
control block, General-Register O contains the 1logical
device number of the device on which the error was detected,
General-Register 1 contains the address of the channel
program, and General-Register 2 <contains the address of
another <control block. The direct-access device error
recovery routine wilil never return control to the
instruction following the call upon it. Control will Dbe
transferred to one of several entry-points whose addresses
are specified in the control blocks. If the error condition
is fatal, control is transferred to an instruction contained
in one of the control blocks. In all cases, all registers
are restored to their contents at the time of the call.

The Paging Drum Processor must use the SVC subroutines
provided by UMMPS to obtain supervisor services. These
subroutines are <called by 1issuing an SVC instruction.
Arquments are generally passed in general-registers 0, 1, 2,
and 3. Results are returned in the same registers and in
the condition code. Although most SVC subroutines return to
the point of call, others (for example, PDPWAIT) return
control to some entry-point specified as an argument. Still
others enable interrupts in such a manner that the occurence
of some asynchronous event will cause the PDP to Dbe
interrupted with control beiny passed to the entry-point of
the appropriate interrupt routine at that time. Specific
supervisor services obtained by the PDP will be discussed in
the remainder of this section.
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The Paging Drum Processor is called at one or the other
of 1its two interrupt routine entry-points whenever a PCI or
device-end interrupt is received from one of its auxiliary
devices. General-Register 0 contains the right-hand half of
the PSW of the PDP at the point of the interrupt or zero if
it had executed the PDPWAIT SVC. General-Register 1
- contains the address of the interrupt control blocke.
General-Registers 3 through 15 and the <floating-point
registers contain their contents at the time of the
interrupt and must be restored when the interrupt routine
returns. The interrupt control block contains the device
status byte from the Channel Status Word stored at the time
of the interrupt plus the contents of General-Registers 0,
1, and 2 at the time of the interrupt. The interrupt
routine may return to the point of the interrupt by
executing one of two SVC's, one simply returns, the other
also enables the interrupt again. (The interrupt is
automatically disabled at the time of the first interrupt.)
It also is possible to return from the interrupt to some
point other than the point of the interrupt by using a third
SVC. Finally, if the interrupt routine does not intend to
return at all, a fourth SVC causes the CPU status saved by
UMMPS as a part of the interrupt to be released.

Dynamic_Storage Allocation

The Paging Druﬁ Processor allocates and frees three
different types of dynamic storage.

First, dynamic storage is allocated to the PDP by the
GTBUF SVC and freed by the FREEBF SVC. This storage is
automatically released when the task which 1is running the
PDP is terminated, either abnormally or normally. The PDP
uses this mechanism to acquire storage into which to read
information from each auxiliary disc during initialization.
This storage is released at the end of initialization, and
is the normal type of dynamic storage which is allocated to
tasks.

Second, dynamic storage is allocated to the PDP by the
GETSC SVC and freed by the PREESC SVC. This storage is
allocated from the areas used by the supervisor for its own
dynamic storage needs and is never implicitly released. The
PDP uses this mechanism to acquire storage for its device
data structures, one data structure item for each auxiliary
device. Since this storage is not released when the task
running the PDP is terminated, this information is not lost
if the PDP should terminate. Thus, a new task <c¢an be
created and. the PDP will continue. The PCB's also are
allocated by UMMPS in supervisor storage. Thus, the PDP
uses the FREESC SVC to release PCB's after processing from
the RPQ.



Finally, dynamic storage is allocated to PCB's and
freed from PCB's through the GETRP and FREERP SVC's. This
memory is used to contain the user's virtual storage page
when it 1is 1located in main storage. The PDP allocates a
page to the PCB prior to reading the page into main storage
and frees the page from the PCB after writing the page onto
auxiliary storage.

Input/Output

The Paging Drum Processor uses two distinct supervisor
services for input/output.

First, the PDP types information to the operator on the
operator's console through the WTO SVC. This supervisor
service requires only the address and length of the message.

Second, the PDP performs input/output operations on the
auxiliary devices through the SIO SVC. This supervisor
service requires the address of the channel program, the
logical device number of the device, and the address of a
control block used during error recovery. The PDP generally
enables device-end and PCI interrupts through other SVC's,
as described above under calling sequences. At other tinmes
the PDP 1issues the WAIT SVC, which causes execution of the
PDP to be suspended wuntil the device-end interrupt is
received from the device. :

The fact that the exact channel program presented to
the auxiliary.device is specified when using the SIO SVC is
used to great advantage by the PDP. By taking advantagye of
this the PDP is able to link new channel programs to the end
of o0ld channel programs while an auxiliary device is running
and process PCI and device-end interrupts in a meaningful
vay.

Other SVC's are used to acquire and release devices,
obtain sense data from a device when errors occur, discover
the address in the «channel program of the last command
executed by the device, and manipulate the UMMPS data
structure for the device as a part of error recovery
attempts.

CPU_Scheduling

The Paging Drum Processor uses two SVC's to affect the
UMMPS CPU scheduling policies.

First, the PDP issues the DORMANT SVC to relinquish the
remainder of its time-slice during initialization when it is
attempting to acquire an auxiliary device which some other
task owns for the moment. A contention problem develops
because several programs, including the PDP, acquire and
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release each disc in succession until they find the discs
whose labels match those which they are to use.

Second, the PDP 1issues the PDPWAIT SVC when it
temporarily has no work to do. This causes UMMPS to defer
scheduling the PDP task on a CPU until more read or write
requests arrive or an enabled interrupt occurs on one of the
auxiliary devices.

COMPILE~TIME FACILITY REQUIREMENTS

——— —— ——— — " —— > —— — —

The PDP copies the definition of the PCB data structure
from a file. This file allows both UMMPS and the PDP to
reference a common definition of that data structure.

Compile-Time_Variables

The PDP requires several compile-time variables whose
values affect: the generation of code. For example, two
compile-time variables have as their values the @maxinum
number of discs and drums, respectively. Other compile-time
variables have as their values the numbers associated with
the SVC subroutines and the operation codes for channel
programs. The value of a compile-time variable should be
accessible in other compile-time statements and in place of
constants in normal statements. For example, the PDP uses
compile~time variables to designate the number of entries in
some data structures.

Compile-Time Expressions

The PDP requires that simple arithmetic and Boolean
expressions 1involving constants and compile-time variables
be evaluated at compile-time. For example, the sum of the
two compile-time variables which represent the maximum
number of discs and drums is frequently used to represent
the maximum number of auxiliary devices. The compile-tinme
variable which represents the maximum number of discs 1is
frequently compared to zero.

Compile-Time_ Transfers

The PDP requires compile-time transfer instructions
capable of skipping over sections of the source progranm,
2ither conditionally or unconditionally. This capability is
used to 1ignore those portions of the PDP which are only
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required for discs if the maximum number of discs 1is zero.
This results in a shorter program if no discs are to be
used. ’

Time Procedures_(Macros)

The PDP requires compile-time procedures (sometimes
called macros) of sufficient power to generate one or more
statements. It must be possible to pass arguments to the
procedure which will be substituted for the corresponding
parameters in the procedure definition. It nust also be
possible to perform tests for the value of a parameter
(including the existence of its corresponding argument) and
to use the results of such tests to influence the flow of
control through the procedure. Local variables and the
ability to generate unique identifiers also must be
available within the compile-time procedures.

Attributes_of Data-Items

Some attributes of data-items must be accéssible as
compile-time values. For example, the 1lengths of data
structures and character-strings are frequently required.

DATA STRUCTURE REQUIREMENTS

The Paging Drum Processor requires structures of
homogeneous elements (vectors and arrays) where the elements
of the structure <can either be simple elements or
structures. The elements of the structure are referenced by
subscription. Example structures of homogeneous elements
used in the PDP are vectors ot fixed-length character-
strings, vectors of pointers, and vectors of channel
programs (which themselves are vectors of non-homogeneous
structures).

Non-Homogeneous_Structures

Structures of non-homogeneous elements wvhere the
elements of the structure can either be simple elements or
structures are needed by the PDP. The elements of a non-
homogeneous structure are referenced by name. Example
structures of non-homogeneous elements used in the PDP are
the PCB and the chamnnel command.

12



Alternatives

Structures of non-homoygeneous elements where all the
elements ot the structure are assigned to the same storage
(often called alternatives or overlays) are required by the
PDP. Again, the alternatives can be simple elements or
structures and are referenced by name. The storage
allocation schemes used for the alternatives should be
straightforward so that the programmer can. easily overlay
two non-homogeneous elements in a useful way and understand
the allocation of the bits in comron. For example, the PDP
requires that some fields eight bits in width sometimes be
considered as one eight bit wide field and at other times be
considered as eight fields, each one bit wide. The
auxiliary address field of the PCB 1is treated as three
fields of 1lengths 3, 5, and 8 bits, repectively for drums,
and as two fields of lengths 3 and 13 bits, respectively,
for discs.

Data-items and structure elements are defined to be the
same structure so frequently that some provision should be
made to allow a structure to be treated as an entity, much
like a data-itenm.

Storage Allocation

It must be possible to cause data-items to be allocated
either 1in main storage or in hardware registers. In the
case of hardware registers, it must be possible to either
specify the register to be used or allow the compiler to
choose one of a class of registers. In the PDP certain
data-items must reside 1in specific general-registers, for
example, arquments to the SVC's. One approach to this
problem is to allow the user to specify that certain
variables are to be allocated to specific registers. An
assignment of a value to the variable causes the coanteants of
the register to be set. A reference to the value of the
variable causes the register to be referenced. Specifying a
variable which is allocated to a register as a parameter
might be used to indicate that the register contains the
value of the parameter at the time of the call. This might
be used to describe the wunusual parameter passing
arrangement used at the initialization entry-point of the
PDP.

Storage Class

The Paging Drum- Processor requires data-items having
the storage class attributes static, based, and parameter.
By static, we mean that the data-item 1is allocated to a
fixed main storage address throughout the program. The main
storage address is specified at the time the program is
loaded. By based, we mean that the data-item is dynamically
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allocated to main storage while the program is running and
is referenced indirectly through a pointer to the allocated
storage. Parameters are data-items which are associated
with arguments at the time a procedure is called. Based
data-items are used for PCB's and all data structures
pertaining to the auxiliary devices in the PDP. Parameters
are used in several miscellaneous internal procedures.
Static allocation is used for all other variables.

Scope_and_Ownership

The Paging Drum Processor requires data-items having
internal and external scope. By internal scope we mean that
the data-item is not known to other programs unless passed
as an argument. On the other hand,a data-item of external
scope is known to all other programs in which it is declared
to be external. The PDP furthermore requires that the owner
of static external data-items be specified as either the PDP
or some other program. For example, most data-items used in
the PDP are internal; they are known only in the PDP and
their storage, provided that they are of static storage
class, is allocated within the PDP program. Some data-
items, such as the entry-point of the direct-access device
error recovery routine and the PICQ head, are external and
owned by programs other than the PDP. Still other data-
items, such as the entry-point of the PDP, are external and
owned by the PDP.

Length, Alignment, and Representation

The length, alignment, and representation of data-items
need to be specified precisely in the PDP. .The length
should be specifiable in bits, aligament in the offset fronm
some modulus. The representation is usually chosen from one
of the possible representations accepted by the hardware,
but this is not always the case., For example, a fixed-point
fullword integer can be accurately described as a data-itenm
32 bits in length, with aligament 0 modulo 32, and a two's-
complement representation. The PDP has several unusual
data~items, such as the "slot number"™ field in the PCB,
which is 5 bits in length, with alignment 3 modulo 16, and
an unsigned binary magnitude representation.

i o o At et b

The Paging Drum Processor requires data-items which are
pointers; addresses of some other data-item. The PDP has
pointers which are 12, 24, and 32 bits in  length, with
alignments of 4 modulo 16, 8 modulo 32, and 0 modulo 32,
‘respectively. All pointer values are represented as
unsigned binary magnitudes, where the value is interpreted
as the main storage address of the item which the pointer
addresses (in bytes). Some pointers are scaled by 212
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(4096), that is, the value of the pointer must be multiplied
by 212 to obtain the main storage address in bytes of the
addressed item. This is used to store addresses which are
page-aligned (alignment of 0 modulo 212) within the PCB's.

The PDP requires data-items which are bit-strings. The
PDP uses bit-strings which are 1, 4, 8, 100, and 6500 bits
in length with alignments of 0 modulo 1 and 0 modulo 8. Aall
PDP bit-strings are fixed in length.

Integers

The PDP uses data-items which are integers. The PDP
has integers which are 3, 5, 8, 13, 16, and 32 bits in
length with several different alignments. The
cepresentations which are wused for integers are unsigned
binary magnitude, two's-complement, and packed decimal.

Machine_Instructions

The PDP requires that a wmachine instruction be
generated as the value of a data-item. This is required as
a part of the control blocks passed to the direct-access
device error recovery routine. The register contents at the
time the instruction is executed are as they were at the
time the error recovery routine was called. This fact eases
the addressability problems associated with the instruction.

Character-Strings

The PDP requires character-string data-items. In all
cases the character-strings are a multiple of eight bits in
length aligned on a 0 modulo 8 boundary. Each eight bit
group of bits (called a byte) represents-one character using
the EBCDIC representation. All character-strings used in
the PDP are 1less than 256 bytes in length and each has a
fixed length.

i < o Y — S — — ——

The Paging Drum Processor must be able to initialize
all the data-items which it owns, no matter what their
storage class. Static items should be initialized at the
time the PDP program 1is 1loaded. Based items should be
initialized at the time the item is allocated.

A variety of external representations should be allowed
as initialization values, In particular, numeric

15



representations should be allowed in any meaningful base,
such as 2, 10, and 16 for the PDP. Compile-time expressions
must be accepted both as initialization values and as
multiplicity factors.

Pointers must be able to be initialized to the address
of any data-item known to the program, including the address
of an instruction and the address of some other data-item in
the same based structure. Structures must be able to be
initialized on an element-by-element basis.

Neighborhoods_of Data-Items

It might be useful, for the sake of optimization, to
specify the neighborhood of a data-item. For example, the
PDP stores page-aligned pointers as the low-order 12 bits of
a halfword. Thus, the pointer has a length of 12 bits and
an alignment of 4 modulo 16, and is represented as a binary
magnitude with a scale factor of 212, Such an item can be
converted to a 24 bit address on the System/360 with the
code sequence:

LH R,ADR
SLL R, 20
SRL R,8

or the sequence:

LH R, ADR
SLL R, 12
N  R,=X'00FFF000' .

In fact, the top four bits of the halfword <containing the
pointer are always 2zero. Taking advantage of this fact
allows the pointer to be converted to a 24 bit address using
t he sequence:

LH R, ADR

SLL R,12 .
One solution might be to define the prinitive (non-
structure) modes themselves as data structures for which
certain-named components indicate the location and

representation of the value.

COMPUTATIONAL REQUIREMENTS
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The Paging Drum Processor requires assignment of values
to data-items of the same mode as the value. Specifically,
the PDP requires assignment of integers to integers, bit-
strings to bit-strings, character-strings to character-
strings, and pointers to pointers.

The Paging Drum Processor also requires the assignment
of structures to identical structures and a scalar value to
all the elements of a homogeneous structure. The former is
used to assign a transfer command to the end of the channel
program when appending one channel program to another. The
latter 1is used to set all the elements of a vector to zero.

Arithmetic_Operations

The PDP requires addition of pointers and integers, 1in
all four possible combinations. Shifting, division, and
modulo are required with integer operands.

Relational Operations

The Paging Drum Processor requires the four relational
operations "equal", "not equal", "“greater thaan", and "less
than". Required mode combinations are integer to integer,
character-string to character-string, and pointer to
pointer.

Boolean Operations

The PDP requires the Boolean operation "disjunction”.
The Boolean operations must be defined for operands of bit-
string mode. It is assumed that the result of a relational
operation can be considered a bit-string.

String Operations

The Paging Drum Processor requires that a sub-string of
any bit-string or character-string be allowed as an operand
of any operation which accepts string operands, including as
the left-hand side of an assignment. An operation which
scans for the first zero (or non-zero) bit in a bit-string
and returns its position in the string is required.

Miscellaneous _Operations

The PDP requires an operation which has as its value
the address of its operand. ‘
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PROGRAM STRUCTURE REQUIREMENTS

The Paging Drum Processor is a program which has three
entry-points, its initialization entry-point, an entry-point
which is called for each PCI interrupt from the auxiliary
devices, and an entry-point which is called for each device-
end interrupt from the auxiliary devices. The two interrupt
entry~-points are <called asynchronously and it is quite
possible that the program is interrupted while executing the
main body of code or the other interrupt routine. All three
routines can optionally return. The 1initialization entry-
point returns by calling an SVC to stop the task which is
running the PDP. The other two entry-points return by
calling an SVC which restores the task status to what it was
at the time of the interrupt.

The Paging Drum Processor has a few internal procedures
which perform miscellaneous computations. Most of these
procedures return results and are referenced within
expressions. All are passed arguments.

As has been noted earlier, the Paging Drum Processor
dynamically allocates and frees based storage. There are
three different types of dynamic storage which are used by
the PDP. In all cases storage is acquired and released by
calling SVC subroutines.

CONTROL REQUIREMENTS

Unconditional Transfer

The Paging Drum Processor uses unconditional transfer
statements extensively. The destination of the transfer is
always a labelled statement within the PDP progran.

Conditional Statement

The Paging Drum Processor requires a conditional
statement similar to the IF statement of PL/I or the Logical
IF statement of FORTRAN.

Iteration_Statement

The Paging Drum Processor contains several loops which
could be effectively described with appropriate iteration
statements. Most 1loops consist of the type which are
adequately expressed in PL/I ("DO I=1 TO N") or FORTRAN ("DO
I=1,N"). The PDP also contains some loops which iterate
down a 1linked-list of data structures (in this case PCB's)
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or around a circular-list of data structures (in this case
the data structures associated with the auxiliary devices),
where the instructions contained in the loop are executed
once for each element in the list.

As has been indicated before, the PDP must call several
different routines. These routines are <called with
radically different <calling conventions. The supervisor
(UMMPS) 1is «called through the SVC instruction, the direct-
access device error recovery routine is called with a non-
standard calling sequence, and several internal routines are
called with normal calling conventious.

Linked-List Maintenance

The Paging Drum Processor maintains several one-way and
circular linked-lists. Items nust be added and deleted fronm
these 1linked-lists. Either these operations should be
provided as primitives, or the necessary operations on
pointers should be available so that these 1list operations
can be coded in terms of those operations.

s oo o v

The Paging Drum Processor voluntarily ceases to use the
CPU when it temporarily has no useful work to perforn.
These pauses are effected by calling one of two SVC
subroutines, DORMANT or PDPWAIT.

EFFICIENCY CONSIDERATIONS

Since there are no deadlines in the MTS system and an
ample amount of main storage, there are no concrete upper
bounds on the efficiency required of the Paging Drunm
Processor. This does not mean, however, that there is no
need for efficiency. It simply means there 1is no good
measure of it. The performance of critical programs such as
the Paging Drum Processor does have a significant effect on
the performance of the total systen.

D e i o s . o e S s e S e . S S g

An upper bound can be computed for the amount of
processor time which the Paging Drum Processor should use.
Pages are formatted on the auxiliary drums in such a manner
that one through nine pages can be read or writtemn each two
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rotations of a drum. Since the rotation time of a drum is
17.5 milliseconds, the total transfer time 1is 35
milliseconds per channel progran. Thus, the Paging Drunm
Processor must use less than 35/n milliseconds of processor
time per channel program (where n is the number of drums) in
order to keep up with the drums. Discs need not enter into
the computation since their transfer rate is significantly
lower than that of the drums. 1In reality, the Paging Drunm
Processor must use significantly less processor time than
this upper bound indicates, so that some processor time
remains for other programs in a one-CPU system. Even in a
multi-processor system, the PDP must use much less processor
time than this upper bound suggests if it is to be called
efficient,

Measurements have been taken of the performance of the
current PDP program. A multi-linear regression analysis of
these measurements is being attempted to fit the processor
time required by the Paging Drum Processor to the equation

P = A+BT#CU+DV+EW+FX+GY+H2Z

where A,B,...,H are the regression coefficients, P is the
processor time required by the PDP, T is the number of read
operations performed, U is the number of write operations
performed, V is the number of channel programs built, W is
the number. of times the program cycle has been - executed, X
is the number of pages which have been processed from the
RPQ, Y is the number of pages processed from the PIQ which
did not require read operations (this was their first
reference), and Z is the number of pages processed from the
POQ which did not require write operations (they had not
been changed since they were last written). In a similar
fashion, the processor time required by the supervisor to
service the Paging Drum Processor is being fitted to the
eguation

S = AV4+B'T+C'U+D'V+E'W+F ' X+G*Y+H'Z,

T
These regression analyses have not been completed at this
time.

From these regression eguations we will be able to
determine tha amount of processor time which the PDP
requires to construct one channel program, in the worst
case. Likewise, we will be able to determine the combined
processor requirements of the PDP and the supervisor to
construct one channel program, in the worst case. We then
will be able to compare these figures with the transfer time
of the drunms.

Storage Considerations
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The storage considerations of the PDP efficiency are
not as «critical as the timing considerations. The current
PDP program requires approximately 7130 bytes of main
storage for the program, plus approximately 1930 bytes of
main storage for the data structure associated wvwith each
auxiliary device.

The Current PDP_as_a_ Standard

Perhaps the best standard against which to measure the
efficiency of a reformulation of the Paging Drum Processor
in a higher-level language is the current PDP. The current
program was written and designed by two highly-competent
system programmers, each with several years of experience
coding for the System/360. The code itself 1is very
efficient and uses the full repertoire of machine
instructions, as needed. Any compiler-produced code (or
man-produced, for that matter) can be expected to perform no
better than the current PDP program. Thus, the efficiency
of the code produced by a higher-level language compiler can
be measured by comparing the performance of the code
produced for the Paging Drum Processor as expressed in that
lanquage with that of the current PDP program. Although the
timing and storage considerations of the compiler-generated
code should ideally be as close to those of the current PDP
program as possible, in reality some degradation can be
expected and tolerated.
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2.1.2 The Computer and Communication Sciences 573 _Supervisor

The Computer and Communication Sciences 573 Supervisor
is a simplification of the MTS supervisor (UMMPS) which has
been developed as a pedagogical tool for teaching the
internal structure of supervisors. The students taking this
course are required to write a supervisor program which
meets the specifications of the Computer and Communication
Sciences 573 Supervisor. The program which we have analyzed
is the solution to this problem coded by one of the
instructors for the course. The function of this program is
to provide a time-sharing environment for up to fifteen
tasks on an imaginary machine which <closely resembles a
System/360. Each task owns one input/output device, ovns
one region of main storage, and executes a shareable
program, The input/output device and program to be used by
the task are specified by the operator at the time he
requests that the task be created. The main storage region
is also allocated to the task at the time it is created. To
perform this function the 573 supervisor processes all of
the imaginary machine®s hardware interrupts |(which are
identical to those of the System/360), maintains tables
indicating the status of each input/output device and each
task, schedules the use of the system resources
(input/output system, processor, and main storage), provides
supervisor services to tasks through SVC subroutines, acts
upon commands from the operator, and maintains a log on the
operator's console showing the creation and termination of
each task. The term "supervisor" in this subsection alwvays
refers to the <Computer and Communication Sciences 573
supervisor.

The supsrvisor begins execution at its initialization
entry-point. The supervisor then initializes all of its
data structures, including the new PSW's which are used by
the hardwvare to effect interrupts. At the end of
initialization, the supervisor enters the hardware wait
state until an interrupt occurs.

At each interrupt, the supervisor stores the processor
status into its data structure associated with the task
which was executing on the processor (if any) and then
continues to process the interrupt. After the interrupt is
processed, the supervisor enters a scheduling algorithn.
This algorithm chooses one of the tasks which are ready to
use the processor, restores the processor status from the
data structure  associated with that task, and thus
relinquishes control of the processor to that task until the
time of the next interrupt. If no task is ready to use the
processor, the supervisor enters the hardware wait state
until an interrupt occurs. From the time of the interrupt
until the supervisor either enters vait state or
relinquishes control of the processor to a task, the
processor is run with interrupts disabled. Any external or
input/output interrupt which occurs in this period of time
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is deferred until the interrupts are again enabled at the
end of this period. The processing performed for each type
of interrupt is explained in more detail in the next several
paragraphs.

An external interrupt occurs whenever the hardware
interval timer is decremented from a non-negative value to a
negative value. The supervisor places the maximum amount of
time a task will be allowed to use the processor {(called its
time-slice) into the interval timer prior to relinquishing
control of the processor to the task. At every interrupt.
the supervisor stores the contents of the interval timer,
which 1is the amount of time remaining in the task's time-
slice, as a part of the processor status of the task. Thus,
a negative time-slice value signals that the task used up
its full time-slice. This signals the scheduling algorithm
to give this task a new (non-negative) time-slice value and
to defer running this task again until all other tasks which
are ready to use the processor have been run. If the
external interrupt occurs while the supervisor is processing
another interrupt, the external interrupt is deferred until
the supervisor enables the interrupts. In this case, the
external interrupt may in fact not correspond to the task
which has just been dispatched. Relying on the contents of
the 1interval timer rather than on the fact that an external
interrupt has occurred to markx the end of a time-slice will
prevent this spurious external interrupt from prematurely
ending the time-slice of the task just dispatched.

An SVC (supervisor call) interrupt occurs whenever a
task executes an SVC instruction. The operand of the SVC
instruction is stored as the interrupt code in the old SVC
PSW and indicates which SVC subroutine was called. There
are nine SVC subroutines (0) END which causes the task to be
terminated and all resources which it owns to be released,
{1) DORMANT which relinquishes the remainder of the task's
time-slice, . (2) SIO which causes an input/output operation
to be started on the device owned by the task with the
channel program specified by the task, (3) WAIT which causes
the task to be ineligible for use of the processor until the
last input/output operation started on its device has
stopped and returns the device status as of the end of the
operation, (4) PROTOFF which causes the task to be rum on
the processor with the storage protection mechanism
disabled, (5) PROTON which causes the task to be run on the
processor vwith the storage protection feature enabled, (6)
WEVENT which causes the task to be ineligible for use of the
processor until another task causes: an event, (7) CEVENT
which causes an event which some other task is waiting for
or will later test through the WEVENT SVC, and (8) REVENT
which resets an event and terminates any task which is
waiting for the event. The supervisor enters the
appropriate SVC subroutine and performs whatever processing
need be accomplished. In most cases the processing amounts
to making slight changes to the supervisor data structures.
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In the case of the SIO SVC, the supervisor must issue an SIO
instruction to start the input/output operation on the
device owned by the task.

A program interrupt occurs whenever an error is
detected during the execution of an instruction by the
processor. A program interrupt which occurs while the
supervisor is executing indicates that an error has been
detected in the supervisor. In this case the supervisor
enters vait state with all interrupts disabled. The
operator can then perform whatever steps are required to
obtain a diagnostic dump of the supervisor. On the other
hand, a program interrupt which occurs while some task is in
control of the processor indicates that an error has been
detected in the program which that task is executing. The
task is stopped and diagnostic information is printed on the
operator's console.

A machine-check interrupt occurs whenever a hardware
malfunction 1is detected. The supervisor enters wait state
with all interrupts disabled. The operator can then perfornm
whatever steps are required to obtain diagnostic information

concerning the hardware malfunction.

An input/output interrupt occurs whenever the
input/output systen desires to communicate status
information to the supervisor. This happens whenever an
input/output device stops running ({either normally or
abnormally) or an asynchronous attention condition is
signalled by an input/output device. The address of the
input/output device for which the status is being presented
is stored as the interrupt code in the old input/output PSW
and the status information 1is deposited in the Channel
Status Word (CSW). At every input/output interrupt the
supervisor makes changes to its data structures pertaining
to the device addressed by the interrupt. These changes
include copying pertinent information from the CSW. If the
input/output device 1is owned by a task then these changes
will cause the task to become ready to use the processor if
it 1s waiting for its device to stop running and the CSW
indicates that the device has stopped. If the input/output
device addressed is the operator's console the supervisor
(1) starts an input/output operation to read a command from
the operator's console if the CSW indicates an attention
condition was signalled by the operator, (2) acts upon the
command received if the reading of an operator command has
terminated, and (3) starts an input/output operation to type
the next 1line ot the log if the operator's console is now
idle and the operator has not signalled that he wishes to
enter a command.

Commands from the operator are interpreted as requests
to create tasks. Each command line consists of a command
name followed by the name of an input/output device. The
supervisor processes a command by creating a task. The
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entry-point of the program to be executed by the task is
found in a table using the command name as a key. The
input/output device referenced in the command becomes the
device owned by the new task. A region of main storage is
allocated to the task for its use from a pool of available
regions. The newly created task is then marked as ready to
use the processor.

ENVIRONMENTAL CONSIDERATIONS

The supervisor runs in the supervisor state environment
of a simulated machine which is very similar to a
System/360. The supervisor can execute all privileged and
non-privilegyed instructions of this machine, which are
identical to the non-privileged instructions of the
System/360 'plus the four privileged imnstructions Load PSW
(LPSW), Start Input/Output (SIO), Set Storage Key (SSK), and
Insert Storage Key (ISK).

Calling_Segquences

The supervisor is called at its 1initialization entry-
point by the bootstrap loader when the 1loading of the
supervisor and the task programs has been completed. This
call is nothing more than a direct transfer; the contents of
all registers are arbitrary, the processor is in supervisor
state, and all interrupts are disabled. The supervisor
never returns, but rather keeps overall control of the
hardware system from this point of time on.

The supervisor is "called" at one of its five other
entry-points whenever a hardware interrupt occurs, each of
the five types of hardware interrupts corresponds to one of
the five entry-points. The calling sequence conforms to the
action taken by the hardware at the time of the interrupt;
the PSW is stored at the appropriate main storage location,
the new PSW is taken from the appropriate main storage
location, and a single argument (the interrupt code) is
stored, in the appropriate main storage location. The
contents of all registers are arbitrary. The new PSW
contents indicate that the processor is to rum in supervisor
sState with the storage protection feature disabled and with
further interrupts disabled. The supervisor then saves the
entire status of the processor at the time of the interrupt
into a data structure pertaining to the task which was 1in
control of the processor at that time (if any) to complete
the calling sequence. The supervisor must take advantage of
the fact that the first 4096 bytes of main storage (called
the PSA) can be referenced without a base register in order
to save the processor status, since all register contents
are arbitrary at the point of the interrupt. Eventually,
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the supervisor will ‘"return”™ to the task which was
interrupted by restoring the <complete processor status.
Again, the fact that the PSA can be addressed without a base
register is required to restore all of the processor status.
The hardware ' is always put into the problem state with all
interrupts enabled, with the storage protection feature
enabled (unless a PROTOFF SVC has been issued by the task),
and with a small, positive quantity (the time-slice) in the
interval timer when the supervisor returns to a task.

A newly created task 1is inserted into this general
scenario by initializing a data structure pertaining to it
in such a manner that when the supervisor “returns" to it
the processor status is restored so that execution continues
at the entry-point of the program which the task is to run,
General-Register .1 contains the address of the main storage
region allocated to the task, and the other register
contents are arbitrary. Since it 1is possible that the
supervisor "returns" to a task which has never "called" it
we actually have a co-routine structure rather than a strict
subroutine structure. The fact that the -~ supervisor
sometimes "returns" to a task other than the one which was
most recently interrupted also requires a co-routine type
structure to express.

Dynamic Storage Allocation

The supervisor itself does not require dynamically
allocated storage, since the maximum number tasks and
devices is known and rather small, which means the necessary
data structures can be assigned statically. Likewise, the
tasks also have no dynamic storage allocation requirements;
e@ach 1s given a uniformly sized region of main storage when
it 1is created. These regions also can be statically
assigned to the sixteen potential tasks.

Input/Output

The supervisor performs input/output operations for the
operator's console and for the devices owned by the tasks.
All input/output activity is started via the Start
Input/Output (SIO) instruction of the System/360. The
termination of an input/output operation is signalled via an

input/output interrupt. Likewise, the occurrence of an
asynchronous attention condition is signalled via an
input/output interrupt. Since input/output operations are

performed using the System/360 input/output system directly,
the supervisor must be able to describe and manipulate data
structures corresponding in format to the Channel Address
Word (CAW), Channel Command Word (CCW), and Channel Status
Word (CSW) as defined by the hardware.
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CPU_Scheduling

The supervisor uses the hardware wait state as a @means
of suspending the execution of instructions by the processor
when there is no useful work to be done. If interrupts are
left enabled, the supervisor will be given an interrupt by
the hardware when some <change of state (such as an
input/output interrupt) occurs. If interrupts are disabled,
the hardware will remain in wait state until the operator
intervenes. This is normally used after a fatal condition
such as a supervisor error or hardware malfunction to
suspend all activity and alert the operator to the
malfuction.

In a sense, the supervisor performs CPU scheduling when
it chooses one of the tasks to be given control of the
processor. These tasks can be thought of as co-routines.
When the supervisor has finished its interrupt processing it
chooses one of these co-routines from among the set of those
which are ready to use the processor and "returns" to it.

COMPILE-TIME FACILITY REQUIREMENTS

Compile-Time_ Procedures_(Macros)

The supervisor requires compile-time procedures of
sufficient power to generate one or more statements. It
must be possible to pass arguments to the procedure which
will be substituted for the corresponding parameters in the
procedure definition. It must also be possible to perform
tests for the value of a parameter (including the existence
of its corresponding argument) and to use the results of
such tests to influence the £flow of control through the
procedure. Local variables and the ability to generate
unique identifiers also must be available within the
compile-time procedures.

Attributes of Data-Itenms
Some attributes of data-items must be accessible as

compile-time values. For example, the 1lengths of data
structures and character-strings are frequently required.

DATA STRUCTURE REQUIREMENTS

The supervisor requires structures of homogeneous
elements (vectors and arrays) where the elements of the
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structure can be either simple elements or structures. The
elements of the structure are referenced by subscription.
Example structures of homogeneous  elements used 1in the
supervisor are vectors of pointers, vectors ot task control
blocks (which themselves are non-homogeneous structures),
and vectors of channel commands (which themselves are non-
homogeneous structures).

Non-Homogeneous_Structures

Structures of non-homogeneous elements where the
elements of the structure can be either simple elements or
structures are needed by the supervisor. The elements of a
non-homogeneous structure are referenced by name. Example
structures of non-homogeneous elements used in the
supervisor are the task <control block and the channel
command.

Data-items and structure elements are defined to be the
same structure so frequently that some provision should be
made to allow a structure to be treated as an eantity, much
like a data-item.

Storage_ Allocation

It must be possible to cause data-items to be allocated
either 1in main storage or in hardware registers. 1In either
case, it must be possible to either specify the specific
allocation or allow the compiler to choose a free resource
of the proper type. 1In the supervisor much has been gained
by globally assigning certain c¢ritical values (such as
pointers to the task control block and device control block
currently being operated upon) into the general registers.
The compiler either should do this type of optimization
routinely or allow the programmer to specify that he desires
a global assignment of a value to a register.

Storage Class

The supervisor requires data-items having static,
based, and parameter storage class. Based data-items are
used for task control blocks and device control blocks.
Parameters are used for the interrupt code at the entry-
points which are <called by hardware interrupts. Static
allocation is used for all other variables.

Scope_and_Ownership

All data-items referenced by the supervisor are of
internal scope and thus are owned by the supervisor.
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Length, Alignment, and Representation

The length, in bits, aliynment, in the offset from some
modulus, and representation of data-items must be specified
precisely in the supervisor. The representation is usually
chosea from one of the representations accepted by the
hardware, but this is not always the case.

Pointers

The supervisor requires data-items which are pointers;
addresses of some other data-iteams. The supervisor has
pointers which are 24 and 32 bits in leagth, with alignments
of 8 modulo 32 and 0 modulo 32, respectively. All pointer
values are represented as unsigned binary magnitudes, where
the value is interpreted as the main storage address of the
item which the pointer addresses {in bytes).

Bit-Strings

The supervisor requires data-items which are bit-
strings. ‘The supervisor uses bit-strings which are 1, 4,
and 8 bits in length with alignments of 0 modulo 1 and O
modulo 8. All supervisor bit-strings are fixed in length.

integers

The supervisor uses data-items which are integers
having lengths of 4, 8, 16, 32, 40, and 64 bits with several
different alignments. The representations which are used
for integers are unsigned binary magnitude, two's
complement, and packed decimal.

s e o o

The supervisor references data-items  which are real
numbers in assignments although it actually does no
computation with such items. The lengths of these items are
64 bits with an alignment of 0 modulo 64. These numbers are
represented in floating-point as defined by the System/360
hardware.

Character-Strings

The supervisor requires character-string data-iteas.
In all cases the character-strings are a multiple of eight
bits in length aligned on a 0 modulo 8 boundary. Each eight
bit group {(called a byte) represents one character using the
EBCDIC representation. All character-strings used in the
supervisor are 1less than 256 bytes in length. All have a

29



fixed-length, with the exception of the input message area
for operator commands, which can be considered to have a
variable 1length with a maximum length less than 256 bytes.

Initialization of Data-Itenms

The supervisor must be able to initialize all the data-
items which it owns. A variety of external representations
should be allowed as initialization values. Numeric
representations should be allovwed in the bases 2, 10, and
16. Compile-time expressions must be accepted both as
initialization values and as multiplicity factors. Pointers
must be able to be initialized to the address of any data-
items known to the program. Structures must be able to be
initialized on an element-by-element basis.

COMPUTATIONAL BREQUIREMENTS

Assignnment

The supervisor requires assignment of values to data-
items of the same mode as the value. Specifically, the

supervisor requires assignment of integers to integers, bit-
strings to bit-strings, character-strings to character-
strings, pointers to pointers, and reals to reals.

The supervisor also requires the assignment of
structures to identical structures and the assignment of the
"null" structure (all zero bits) to a structure. This 1is
used to clear many structures during initialization.

. The supervisor reguires the assignment of character-
strings to integers and integers to character-strings, with
the implied conversions between intermnal and external
representations taking place. Both decimal and hexadecimal
external representations are required. The replacement of
non-significant leading zeroes by blanks . and the
specification of decimal-points as literal characters in the
conversion to external form are requ1red.

0

Arithmetic_Operation

The supervisor requires addition, subtraction,
multiplication, division, shifting, and modulo with integer
operands. In some cases arithmetic with operands whose
length is greater than 32 bits is required.

Relational Operations
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The supervisor requires the six relational operations
"equal", "not equal", "less than", "greater than or equal",
"greater than", and "less than or equal"™. Required mode
combinations are integer to integer, character-string to
character-string, and pointer to pointer.

Boolean_Operations

The supervisor requires the Boolean operations
"conjuction” and "disjunction". The Boolean operations must
be defined for operands of bit-string mode. It is assumed
that the result of a relational operation can be considered
a bit-string.

String_Operations

The supervisor requires that a sub-string of any
character-string be allowed as an operand of any operation
which accepts string operands, including as the left-hand
side of an assignment. Operations which scan a string for
the first character in a set (or the first character not in
a set) and returns its position in the string are required.

Miscellaneous_Operations

— e s o e oo —

The supervisor requires an operation which has as its
value the address of its operand.

PROGRAM STRUCTURE REQUIREMENTS

The supervisor is a program which has six entry-points,
its initialization entry-point and five other entry-points,
each corresponding to one of the five types of hardvare
interrupts. The initialization entry-point never returns;
the supervisor simply enters the hardware wait state at the
end of the initialization. The five interrupt entry-points
are called asynchronously. They can return, either to the
task- which was in control of the processor at the time of
the interrupt (if any) or one of the other tasks which is
ready to use the processor. The calling sequence and returna
code of these interrupt entry-points must save and restore
all of the processor status, which requires the use of the
PSA and the LPSW instruction, among others.

CONTROL REQUIREMENTS
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nconditional Transfer

The supervisor requires unconditional transfer
statements extensively. The destination of the transfer is
always a labelled statement within the supervisor. At

times, a transfer is made to one of a set of labels, where
the proper label is indicated by a computed value, such as
an index value.

Conditional Statement

The supervisor requires a conditional statement similar
to the IF statement of PL/I or the Logical IF statement of
FORTRAN.

- —— S w— S —— —— S ——— S —— —" —— —

The supervisor contains several loops which could be
effectively described with appropriate iteration statements.
All loops consist of the type which are adequately expressed
in PL/I ("DO I=1 TO N") or FORTRAN (“DO I=1,N").

The supervisor maintains several one-way and circular
linked-1lists. Itens must be added and deleted from these
linked-lists. Either these operations should be provided as
primitives, or the necessary operations on pointers should
be available so that these list operations can be coded in
terms of those operatioans.

Pause

The supervisor enters the hardware wait state with
interrupts enabled when there is no useful work to be done
by the processor.
Stop

The supervisor enters the hardware wait state with
interrupts disabled when a fatal error in the supervisor or
a hardware malfunction is discovered. This causes all

processing to be discontinued until the operator intervenes
to reload the systen.

EFFICIENCY CONSIDERATIONS
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Since there are no deadlines imposed by the hardware or
tasks of the Computer and Communication Sciences 573
Supervisor and there is an ample amount of main storage,
there are no concrete upper bounds on the efficiency
required of the supervisor. However, the performance of the
supervisor has a most significant effect on the performance
of the total systesn.

Time_Considerations

The time required by the supervisor to process an
interrupt has a direct effect on the efficiency of the total
system. For instance, if the mean nuamber of interrupts
required to service a task is 100 per second of processor
time required by the task and the time required by the
supervisor to process an interrupt is .5 milliseconds, then
the supervisor overhead is 50 milliseconds per second of
task processor time, or 5% of the total processor time spent
by tasks. Under a fully loaded situation, the supervisor
would require 4.76% of the total processor time, with the
tasks using the remaining 95.24% of the processor time.

Code is currently being added to the simulator for the
machine on which the supervisor runs to gather statistics oa
the performance of the supervisor. This code has not been
completed in time for this report.

Storage_Considerations

The supervisor has available 16384 bytes of nmain
storage for the program and its static storage. The current
supervisor requires 7504 bytes of main storage, about 45% of
that available to it. Thus, any reformulation of the
supervisor in a higher-~level language can require no more
than twice the amount of storage used by the current
supervisor, vwhich is written in assembler language.

v A o~ ————

As is the case with the Paging Drum Processor, the
current supervisor vas written in assembler language by a
competent system programmer. Any compiler-produced code can
be expected to perform no better than the <current
supervisor. Thus, the efficiency of the code produced by a
higher-level 1language compiler can be measured by comparing
the performance of the code produced for the supervisor as
expressed in that 1language with that of the current
supervisor.
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2.1.3 Conclusioas

The two programs which we have analyzed in detail are
probably the most difficult programs in a system such as MTS
to express in higher-level languages. In the next several
paragraphs we will summarize the requirements of these
programs and indicate the degree to which these requirenments
are satisfied by contemporary higher-level languages.

ENVIRONMENTAL CONSIDERATIONS

Both the programs which we have analyzed operate in
unusual enviroanments. The Paging Drum Proccessor runs in
the absolute task environment as defined by UMMPS and the
Computer aad Communication Sciences 573 Supervisor rums in
the supervisor state environment of a simulated machine
which is very similar to a System/360. These environments
have a great impact upon the calling sequence conventions
used by these two programs and upon the manner .in which they
request dynamic storage allocation, input/output operations,
and affect the processor scheduling policies applied to
them. Furthermore, even within the same environment there
may be alternate ways to accomplish the same end. For
exanple, the Paging Drum Processor uses two distinct
services for performing input/output operations and three
distinct types of dynamic storage.

These environmental considerations require that a
higher 1level 1language designed for system programming must
allow the programmer to specify the general environment in
which the program will run plus more detailed environmental
information when requestiang services such as input/output
requests or storage allocation.

Contemporary higher level languages are particularly
weak in this area of environmental considerations. In fact,
the situation is the reverse of the one we ‘have outlined
above; the higher-level language processor assumes a very
specific and specialized environment suitable for the needs
of its generated code. The system is augmented through a
large set of library subroutines to provide precisely this
environment. For example, higher-level languages generally
generate calling sequences which conform to a particular set
of conventions appropriate to their individual needs. Thus,
the System/360 PFORTRAN 1V conmpilers always g¢generate a
specific type of calling sequence suitable for their needs
and the System/360 PL/I compilers always generate another
incompatible type of calling sequence suitable for theirs.
For this reason, among others, it is not possible to call
any program from a FORTRAN program which does not conform to
the FORTRAN calling sequences, including programs written in
PL/I. The code generated by the compiler and the library
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subroutines would have to be extensively modified to allow
programs written in a specific higher-level language to be
used in an environment other than its normal one.

This rigidity in contemporary higher 1level languages
and their processors with regard to their demands upon the
environment has prevented the wide use of higher-level
lanquages for system programming. In the few exceptioas,
such as MULTICS, where the bulk of the system programming
has been done in a higher-level language, the system has
been designed to meet the requirements of the paticular
higher-level language used to write the systen. For
example, in MULTICS, which 1is written in PL/I, the
environment in which almost all system programs operate is
that expected by PL/I. All subroutines use PL/I <calling
conventions, even when more specialized, faster conventions
would be adequate. A stack is always available to a program
for use in subroutine calls. Hardware interrupts, which can
be thouhgt of as asynchronous subroutine calls using highly
stylized calling conventions, are quickly modified through
interface routines into PL/I compatible <calling sequences.
Other services which are not generally available in PL/I,
such as the issuing of privileged operations or allocating
different types of dynamic storage, are performed through
interface subroutines written in assembler language.

Although no contemporary programming language allows
the programmer to specify environmental information to the
compiler, there is no technical reason why this could not be
done. For example, an option on the ALLOCATE statement of
PL/I (which allocates dynamic storage) could specify the
type of dynamic storage to be allocated. The code generated
for this type of statement would vary depending upon the
setting of this environment option.

COMPILE-TIME FACILITY REQUIREMENTS

The compile-time facility requirements which we have
encountered 1in our analysis of two system programs are
largely met by the compile-time facility of PL/I. The PL/I
compile-time facility is weak in the area of availability of
data-item attributes {(such as the length of a data-structure
or string) during compile-time. Again, this extension is
easily made. ’

DATA STRUCTURE REQUIREMENTS

The requirements for homogeneous and non-homogemneous
structures are satisfied by higher-level languages such as
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PL/I and JOVIAL. The need for alternatives is not
recognized in many higher-level languages as this ability to
treat the same data-item in more than one vay in considered
undesirable by many language designers as it allovs
implementation dependent programs to be written and can
complicate optimization techniques.

No higher-level language today gives the programmer the
control over storage allocation which our two systenm
programs require. Many languages such as Bliss and PL360
allow the wuser to allocate variables to machine registers.
No language that we are avare of gives the user the ability
to specify the allocation of variables to specific main
storage addresses. Again, there is no technical difficulty
associated with the implementation of this feature in a
higher-level language.

The requirements for the specification of storage
class, scope, and ownership of data-items also are largely
met by PL/I and MAD/I.

One area in which contemporary higher-level languages
are lacking is in the specification of the length,
alignment, and representation of data-itenms. For example,
PL/I on the System/360 always implements integer quantities
as halfword, fullword, or packed decimal quantities. It is
not possible to specify that a particular integer is to be
represented in two's complement with a length of 7 bits, or
in one's complement, or as an usigned binary magnitude, and
so forth. Again, there is no reason why the programmer
cannot be allowed to specify this information from a rather
large set of acceptable alternatives. 1In fact, JOVIAL does
allow a small amount of this information to be specified.
0Of course, those representations which are not natural for
the particular computer upon which the program will be run
will not generate as efficient code as more natural
representations.

The primitive modes (pointers, bit-strings, integers,
character-strings, and reals) are generally available in
higher-level languages such as PL/I. We require the ability
to specify the representation to be used for particular
data-items separate from its mode, as discussed 1n the
previous paragraph.

All higher level 1languages allow data-items to be
preset. The programs which we have analyzed require only
mnodest extensions to these facilities, such as the ability
to specify repitition factors and preset quantities as
compile-time expressions.

COMPUTATIONAL REQUIREMENTS
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The computational requirements of these programs are
well within the capabilities of higher-level languages such
as PL/I. It is interesting to note that a large variety of
the operations which are available in PL/I, but not older
lanquages such as FORTRAN are heavily used, especially in
the area of bit-string operations.

PROGRAM STRUCTURE REQUIREMENTS

The program structure capabilities of contemporary
higher-level languages are not sufficient for the progranms
we have analyzed. It is necessary that these capabilities
be extended to take into account environmental
considerations. That is, the programmer must be able to
specify the calling sequence conventions to be used for each
entry-point and return in his program, and for each
subroutine which his program calls. As stated earlier under
environmental considerations, there are no technical reasons
why this cannot be done.

CONTROL REQUIREMENTS

Again, the control capabilities of contemporary higher-
level 1languages are in general adequate for the writing of
system programs. The pause and stop facilities, wvwhich exist
in most higher-level languages, must be extended to use
environmental information. Both of the programs we have
analyzed have made some use of linked list structures. It
would be profitable, although not essential, to add
facilities to a higher-level language for the maintenance of
linked lists.

SUMMARY

From our analysis of tvo representative systen
programs, it is evident that these programs could be written
in an appropriate higher-level language. Most of the data
processing requirements of these programs are provided for
in higher level languages such as PL/I. The major program
requirement which is not adequately expressed in curreat
higher-level languages is the description of the environment
in which the program operates. However, the problems in
these areas do not seem to be insurmountable.

Thus, our tentative conclusion is that although no
higher-level language currently satisfies all the
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regﬁirements of system programs it certainly would be
feasible to design a higher-level language which would
satisfy these requirements.



3.0 GENERAL APPROACHES TO CPU SCHEDULING IN RTOS

A small real-time system, such as might be found in an industrial
process control application, can often be designed as a single entity,
with any internal subdivisions being made largely for the programmer’'s
convenience. But the design problem for large-scale systems, such as
BMD systems, seems to require that a multilevel scheduling and control
hierarchy be established early in the design process. The nature of this
hierarchical structure will affect the entire design and performance of
the system. This discussion will present several general approaches to
the design of two levels of this hierarchy; namely, (1) the subdivision
of the system into basic functions, and (2) the subdivision of basic
functions into tasks.

3.1 THE DIVISION OF SYSTEMS INTO BASIC FUNCTIONS

We assume, as a first principle, that some sort of functional
modularity is essential, in order to approach the design process at all.
The BMD problem is typically divided into basic functions, such as
search, verification, discrimination tracking, interceptor allocaticn,
interceptor guidance, and intercept assessment. FEach of these functions
may have several inputs to process simultaneously. The tracking function,
for example, may have to track several objects at the same time. Thus,
in an effort to visualize the several possible approaches to this level
of hierarchy, we may consider the two-dimensional space of functions and
inputs illustrated in Figure 3. 1.

Inputs or Objects
1 2 3 4 5
A
w B s Row Approach
S
G
c
2 C
D
"~ Column — Gheckerboard
Approach Approach
Figure 3.1
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The three approaches suggested by this picture might be called:

(1) The row approach, in which the basic entity is a function, which
processes as many of its inputs as possible, each time it is
invoked.

(2) The column approach, in which the basic entity is a task,
responsible for processing a single input, or object, through
all of the basic functions.

(3) The checkerboard approach, in which the basic entity is the
invocation of a single function to process a single input set.

We will consider the various motivations for each of these approaches,
in order.

3.1.1 The Row Approach

This approach, which is essentially that used in AN/FPS-85, to be
described, has the advantage that those portions of the function which
are not input-specific are performed only once per invocation of the func-
tion. In addition, some advanced hardware designs allow vector and array
processing, which could be used advaentageously by this approach. There
are two potential disadvantages to this approach. The first of these
concerns overload situations. It will be necessary for each function to
evaluate its performance, and relate it to the overall system load, in
order to make decisions as to degrading its performance in one of two
ways: (1) lower its accuracy in processing each input, or (2) choose to
ignore certain inputs. If these decisions are not made correctly, it is
possible that some functions may use so much time that others cannot be
completed on time. Certainly these decisions must be made somewhere
in the system; it is a question of where. More will be said on this
matter later. The other potential disadvantage is that it may not utilize
multiprocessor hardware configurations very well, since it may be advan-
tageous to use several processors to accomplish the same function
simultaneously. But as we will see, there is another level of hierarchy
which deals with this problem more directly.

3.1.2 The Column Approach

This is the approach used, typically by computer utilities, where the
"objects," or "inputs" processed are the users of the utility. There are
no instances of this approach in BMD or related areas, and it is rather
confusing to try to apply it there, since the inputs processed by the
various functions are not the same. Tracking, for example, deals with
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reentry vehicles, but interceptor guidance deals with interceptors. One
might envision grouping functions which do process the same inputs, under
this approach. The only advantage which this might claim, however, is
some degree of logical simplification, and even this is unclear.

3.1.5 The Checkerboard Approach

This approach is the one taken by NEXOS and SENTOS. It would appear
that this organization will allow the greatest flexibility, in that the
system can allocate its resources to smaller units, thus allowing both -
more efficient usage of resources and simpler decisions for handling
overload situations. But this comes at the cost of additional overhead,
and in any case it does not appear that NEXOS or SENTOS really make much
use of this flexibility, in view of the rather nondynamic nature of their
scheduling algorithm. Also, there is the additional necessity for several
entities, called basic function controllers, which oversee the operation
of the collection of functions which each operate on single inputs. This
may not be a disadvantage however, since we now have a natural place to
make degradation decisions, based on system load, etc. Unfortunately,
this organization may not allow much flexibility in these decisions,
because of additional constraints such as timing, and data set locking,
which will be discussed later.

3.2 THE SUBDIVISION OF FUNCTIONS INTO TASKS

The second level of hierarchy is the subdivision of the basic
entities described above into tasks. There are several motivations for
making this subdivision. It is perhaps worth noting, first, that func-
tional modularity is not one of them, although functional considerations
will affect the design of the specific subdivision. What we are dis--
cussing here is the creation of even smaller schedulable entities than
those discussed above.

The most important motivation for this subdivision is the efficient
utilization of multiprocessor hardware. It is argued that the greater
the "granularity" of asynchronous parallel processes, the greater will
be the utilization of the processors. Thus it would appear that granu-
larity and multiprocessor utilization are more properly included as
motivations for the second level of hierarchy rather than, as it is
usually purported, for the first level (Section 3.1).

A second motivation deals with handling interrupts and priorities.
There are two possible approaches hére; one approach allows tasks to be
interrupted for the execution of higher priority tasks, and the other
does not. The first of these requires additional overhead, to save task
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state, etc. The second requires some method for returning to the
scheduler fairly often, to check for higher priority tasks.. The usual
method for accomplishing this is to restrict the execution time of all
tasks to some small interval (~1 msec in NEXOS). This necessitates the
subdivision under discussion. Note that both of these methods require
some overhead, with the "polling" or short-task method likely to require
more,

A third motivation for the subdivision of functions into tasks is
simply that some functions may have inessential, low priority, portions,
such as trace recording, etc., which can be separated and automatically
eliminated in system overload situations.

This subdivision usually takes the form of a task set, organized into
a network, with precedence and enablement conditions, for ‘synchronized
execution of the various parallel tasks. An example is shown in Figure
3.2, Here, tasks 2, 3, and 4 must wait for the completion of task 1,
task 5 waits for 2 and 3, etc.

/\5 ¢ 1
\

——

Figure 3.2
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3.3 OTHER PROBLEMS

Finally, we consider several approaches to timing constraints and
data set locking problems. The BMD and related systems designed to
date have all based their operation on some fixed timing cycle, on the
order of 50 msec, and the NEXOS and SENTOS systems have subdivided this
major cycle into eight minor cycles. The motivation for this design
decision is not clear, since none of the peripherals (phased-array radar,
interceptor guidance) physically require these cyclic timing constraints.
One possible motivation might simply be tradition; that is, radars have
been cyclic in the past, and it may have become customary, for this or
other reasons, to design real-time systems around such a baslc cycle.

There are, however, two more compelling possibilities. The first
is the problem of nonreal-time resource allocation. - If all tasks are
required to operate cyclically, then resources may be allocated to them in
fixed time slots which are part of a basic cycle, and this may be done as
part of the system design, rather than during execution. Tt is not clear
how much efficiency is gained by this prescheduling; certainly computer
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utilities, such as MIS, do not utilize such timing cycles, and successfully
allocate resources on & completely dynamic basis.

A second motivation for use of this timing cycle might be that it
eliminates the need for locking of shared data sets, simply by assuring
that different tasks reference shared data sets during different time
slots in the c¢ycle. Data set locking will influence CPU scheduling
in any operating system, but there are many approaches in addition to
the above, which appears to be that used in NEXOS, and to some extent
in SENTOS. Other methods require some sort of dynamic "blocking" of
tasks trying to simulteneously reference shared data sets. In AN/FPS-85,
this blocking is done by controlling entry to so-called shared processors,
while in many nonreal-time systems this is accomplished by certain "event
control" primitives which allow tasks to wait for arbitrary events, such
as a task finishing its use of a shared data set.

Finally a note about deadlines. For various reasons real-time tasks
may have deadline times, before which their execution must be completed.
None of the systems described here have any method of dynamically assuring
the meeting of deadlines, although they do have methods for checking
deadlines and taking some corrective action if necessary, and the AN/FPS-85
system has methods for changing priorities in an effort to meet deadlines
if possible. For the most part, however, these timing requirements are
met by some undescribed nonreal-time scheduling, and by a lot of hope.
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4.0 A DESCRIPTION OF CPU SCHEDULING IN THE AN/FPS-85 MONITOR

The approach taken here will be to describe first the basic schedulable
entity, followed by a presentation of the properties of the schedulable
entity which affects the scheduling algorithm, and finally, to describe the
algorithm itself. The primary reference for this description is the AN/FPS—
85 specifications [Ref. 3].

4.1 SCHEDULABLE ENTITY

The schedulable entity is called a sequencer. The system supports on
the order of 70 sequencers. There is one entry for each sequencer in the
monitor's "DO-list," which is the primary table used by the scheduling algo-
rithm. A sequencer is, logically, a sequence of instructions to be executed
synchronously. It is organized into a hierarchy of program modules, which we
describe here because it can affect scheduling decisions.

The highest level program module in a sequencer is called the sequencer
main program (in the AN/FPS—85 literature, this is also called a sequencer
but we modify it here to distinguish the two concepts).

The sequencer main program may call several submodules, called proces-
sors, and processors may in turn call other processors. A processor may be
réentrant, in which case it can be shared among several sequencers. In addi-
tion, certain nonreentrant processors may be shared, and these are called
shared processors. The monitor must intercept calls on shared processors and
assure that they are executed by only one sequencer at a time.. This fact can
affect scheduling decision. One might ask why these processors cannot be
made reentrant; the reason appears to be that separate uses of shared proces-
sors update a common data base, and the system does not provide a locking
mechanism, or rather, no means is provided for waiting on any events except
I/0 completions.

An example of this hierarchy is shown in Figure 4.1. The program
modules are also grouped, as shown by the dotted lines, into association
groups, but it is not clear that this is any more than a descriptive device.

4.2 SEQUENCER TIMING PROPERTIES
We next consider the timing requirements of sequencers. The specific
properties of interest here are (1) triggering time, tg; (2) dispatch times,

thy, tDpseees (3) completion time, tgo; (4) deadline, tg; (5) time checking
interval, ty; and (6) priority. These times are illustrated in Figure L.2.
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The first of these items to be described here is triggering time. There
are three basic methods for triggering sequencers; these are: (1) periodic;
(2) interrupts; and (3) direct triggering by the sequencers themselves.

4.2.1 Periodic Triggering

The basic timing period in the system is called a pulse burst period
(PBP), and is 50 msec in length. Most of the sequencers responsible for
actually controlling the radar run once in every PBP. These sequencers are
actually triggered by the external interrupt supplied by the radar interface
and control equipment (RICE) every 50 msec. Hence, although they are peri-
odic, the triggering mechanism is an interrupt. One of these sequencers
(MRTIME) is responsible in part for triggering the other periodic tasks,
which have periods ranging from 1/2 sec to 24 hr. For this purpose, an
ordered table of timing events is maintained, and at the beginning of every
PBP the first entry is compared to the current time. Thus, all timing events
are accurate to only 50 msec.

y.2.2 Interrupt Triggering

Aside from the PBP interrupt, the only other interrupts relevant here
are those related to communications, i.e., requests to display information,
maintainance of the communications link to the Space Defense Center (SDC),
etc. That is, sequencers responsible for man-machine interaction are trig-
gered by these interrupts. I/O interrupts and SVC's occur also of course,
but these do not trigger sequencers, although they may result in dispatching
of different sequencers (namely those which were in I/O wait, or those which
were executing in a shared processor).

4.2.3 Program Controlled Triggering

This function is normally called enablement. It is the mechanismwhereby
sequence dependencies are handled. Any sequencer may trigger itself, or any
other, in one of three ways: (1) a call to monitor entry TRIGR; (2) a call
to monitor entry DTRIGR (delayed trigger) in which one specifies a time delay
until the actual triggering (actually, the triggering of periodic tasks is
also initiated via this monitor entry); and (3) by enqueueing a queue block
on the standard input queue belonging to the sequencer.

Figure 4.3 lists some of the functions which fall into categories L4.2.1
and L4L.2.2. Each of these functions may be performed by several sequencers,
the first of which would directly trigger others, and so forth. This adds an
additional level of program hierarchy above the sequencer. This level corre-
sponds to the Operational Program Configuration (OPC) in NEXOS. This level
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also corresponds to the top level of hierarchy described in general ap-
proaches, and the sequencers themselves correspond to the tasks.into which
the basic functions are divided. The subdivision into processors is yet a
third level of hierarchy.

The actual triggering is accomplished by setting a bit in the monitor's
DO-1list entry for the triggered sequencer. These DO-list entries also serve
another purpose; they are the queue directory blocks for the sequencers' in-
put queues. This explains the triggering mechanism in (3) above. This is
apparently considered the standard triggering mechanism, hence the name stan-
dard input queue. The DO-list entries for all other triggering methods, in
which no input. data is passed, are called pseudo input queues. Note that the
use of input queues implies the use of the "row approach” described in the
section on general approaches. That is, each sequencer processes as many of
its inputs as possible, each time it is triggered. A sequencerywith a stan-
dard input queue is considered to be in the triggered state as long as there
are any queue blocks in its input queue. The removal of blocks from any
queue is completely under control of the sequencer itself, wvia the various
queue manipulation primitives supplied by the monitor.

4.3 PRIORITIES AND DEADLINES

Consider next the question of priority determination. The DO-list en-
tries are ordered by priority, with the highest priority sequencers first.
Since the dispatching algorithm scans the DO-list in order, the highest pri-
ority sequencers are usually executed first.

The DO-list is prepared in nonreal-time, apparently by ad hoc, trial and
error methods. There is provision for a preplanned reordering of priorities,
however. This is accomplished by inserting multiple DO-list entries for some
sequencers, with the higher priority entries called alternate pseudo input
queues. Every sequencer which has an alternate pseudo input queue has a time
checking interval associated with it (see Figure L.2). Upon expiration of
this time checking interval, starting when the standard or pseudo input queue
is triggered, the alternate pseudo input queue is triggered.

It is this mechanism which attempts to assure that sequencers meet their
deadlines. Deadline times are not recorded explicitly within the System, and
apparently it is left to individual sequencers to do their own time checking
if necessary. The time checking described above is handled by the same mech-
anism as the triggering of periodic tasks. Hence it is accurate only to 50
msec, and cannot be applied to those sequencers which run in every PBP. One
must therefore suppose that all of these sequencers have highest priority,
and ‘hope that they all get done on time. Fortunately there is no great loss
if they do not; the system can skip a PBP if necessary.
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4.4 STORAGE ALLOCATION

Before describing the dispatching algorithm, it is necessary to briefly
describe storage allocation, since this is one of the factors in that algo-
rithm. Main storage is divided into six regions, as shown in Figure 4.lL.
Every sequencer is either resident in the root segment, or is assigned to a
specific one of the four shared areas. This assignment, as well as all re-
quired relocation and linking, are.done in nonreal-time, and a core image is
written into a disk file, one of which exists for each shared area. The
problem, of course, is that the triggered sequencer of highest priority may
not be in core, and, what is worse, its shared area may be occupied by a
triggered or executing sequencer. In addition, it is sometimes necessary to
expand queue storage into shared area U4, and this area may be occupied by a
triggered or executing sequencer.

4.5 THE DISPATCHING ALGORITHM

Now we can describe the actual scheduling algorithm, or, more exactly,
the dispatching algorithm. What we are describing here is the method by
which the dispatch times, tpy, tpo,..., indicated in Figure L.2 are deter-
mined. The reason for indicating multiple dispatch times is that the execu-
tion of a sequencer may be interrupted, for either of two reasons: (1) it
may be blocked, waiting either for an I/O completion, or to use a shared pro-
cessor; (2) it may be interrupted for the execution of a higher priority
sequencer.

Basically, the procedure is to scan the DO-list for a triggered input
queue, and give it control if possible; if not possible, various actions may
be taken, most of which include a continued scan of the DO-list.  The DO-list
scan does not begin at the top, but usually at the highest priority triggered
sequencer. Apparently, the triggering mechanisms maintain the scan pointer,
for this purpose.

In more detail; having found a triggered sequencer, several conditions
may exist:

A. The sequencer is in core and has not begun execution (is not
interrupted). In this case, the sequencer is given control
unless it is in shared area L4 and this area has been requested
for expanded queue storage, in which case the DO-list scan con-
tinues. (Supposedly the area is then given to queue control
and the sequencer marked as not in core, but this is not stated,
and something seems a little strange here.)

B. The sequencer is in core and has been interrupted. In this
case the sequencer 1s given control. Note that one sequencer
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may be referenced by several standard or pseudo input queues.

It is thus possible that the triggered queue just found is a
different, higher priority queue than the one for which the
sequencer was initiated. Thus its execution will automatically
be resumed at the priority of the highest input queue requesting
it.

C. The sequencer is in core, but is waiting, either for an I/O com-
pletion or for a shared processor. The DO-list scan continues.
The scheduling of shared processors is handled by a separate
algorithm, to be described later.

D. The sequencer is not in core. There are four subcases here,
depending upon the status of the shared program region assigned
to this sequencer:

(1) “The region is free. A READF is initiated to load the
sequencer, and the scan continues.

(2) The region is in use for, or has been requested for
expanded queue storage. The scan continues.

(3) A READF is in progress for the region. If the I/O
is complete, the sequencer read in is marked as in core. If
this sequencer is the one currently under scan, and the area
has not been reQuested for queue storage, it is dispatched.
Otherwise the scan continues.

_(H) The sequencer occupying the region is in use. If
possible, the occupying sequencer is given control. If not,
the scan. continues.

This completes the description of the dispatching algorithm. Figure 4.5
summarizes the various conditions .and actions.

A brief description of the shared processor scheduler is also relevant
here. All calls on shared processors are intercepted by the monitor. If the
desired processor is in use, the calling sequencer is marked as waiting (con-
dition C above) and the using sequencer is given control, thus running at the
(necessarily higher) priority of the calling sequencer. There are some unan-.
swered questions here however. What happens if this lower priority sequencer
is interrupted again, before concluding its use of the shared processor? In
this case two possibilities may occur. which do not seem to be accounted for.

(1) A sequencer of lower priority than the waiting sequencer may be

given contrbl, since condition C above states that the DO-list
scan will skip the waiting sequencer; and
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(2)

This

are two areas in which research seems most relevant.

if any sequencer, other than the using sequencer is dispatched,
then the shared processor may be called a third time.

concludes the description of CPU scheduling in AN/FPS~85. There
These are both con-

cerned with priority determination.

(1)

The discovery of an efficient, effective procedure for producing
a DO-1ist, together with the time checking intervals, etc.,
which is optimal or nearly optimal. This may require, or be

aided by—
(2) a method for dynamically reordering priorities, based upon
examination of system load factors, etc.
Sequencer Conditions Actions
In Core Interrupted Waiting Q Storage Give Control Continue Scan
Requested ,
A J -—-- —— .- J
v —-- - V J
B J J --- N/- J
NG J J/- J
D Region Fetch in
in Use Progress
E -— -—- -—— issue READ J
F —-- - J v
G - v - v
H —- v J J
J N -——- -—- Give control to occupying
sequencer
K J --- J J

Figure 4.5. Monitor priority scheduler.
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5.0 NEXOS-SENTOS OPERATING SYSTEMS

5.1 GENERAL PROGRAM ORIENTATION

NEXOS (Nike-X Operating System) and SENTOS (Sentinel Operating System)
[Ref. 4] are operating systems designed to run special purpose military com=
puters, phased array radars, and other special purpose peripherals in a real-
time environment, namely, that of ballistic missile defense. The operating
systems are designed to be executed on a large scale (large number of pro-
cessors) multiprocessor system. The system of processors and peripherals is
designed to carry out the detection, verification, tracking, and interception
of hostile reentry vehicles (RV's). The underlying design philosophy in NEXOS-
SENTOS is the "checkerboard" organization, outlined in Section 3.1.3. 1In
particular, the checkerboard in Figure 5.1 may be used as a first approxima-
tion to program organization.

~ - Q
5% ¥
& &
S ... "D
Q QS
Search
Aquisition
Tracking
Discrimination

Interceptor Allocation
Interceptor Guidance
Interception Assessment

Figure 5.1. NEXOS-SENTOS checkerboard.

For each square in the checkerboard, an organizational element called a
timed array is provided. A precise definition of a timed array will be given
later; however, for the time being, it will be treated in terms of its be-
havior and logical structure rather than in terms of the particulars of im-
plementation. At any point in time, a time array, TAij’ which carries out
the ith function on the jth RV, may bé turned on or off. TAij is in turned-off
status for one of the following reasons: (1) RV, has not yet entered the
system; (2) RVj is in the system, but is not currently at the ith stage or
processing; or (3) TAij has been turned off because of system overload condi-
tions, although if resources were available, it could still be meaningful to
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execute TA; 5. When TA;. 1s in a turned-on status, one or more of the following
TA properties affect its operation:

(1) A partitioning into units called tasks, each of which has a (static)
priority and may require the completion of other tasks prior to its
initiation (precedence conditions).

(2) Times relative to the beginning of a major cycle, a fixed cycle of
operation, at which certain of its tasks are to be enabled by the
operating system to execute.

(3) Major-cycle-relative times, deadlines, at which the opérating system
must check the completion of certain of its tasks.

(4) Data set locking conventions which administer the sharing of data
by two or more tasgks.

(5) Dependencies of task initiations on completion of I/O operations.

The goals of this organization are (1) to rigidly control the bounds within
which the system operates, and (2) to partition the workload into many small
pieces (tasks) which are capable of being executed in parallel on a large-
scale multiprocessor system. The advantages and disadvantages of this approach
are direct consequences of its design goals. Rigidity of task scheduling may
introduce an inordinate number of implementation constraints which are not
fundamentally a part of the actual problem. For example, the decision to
dperate (in the case of NEXOS and SENTOS) the system on a fixed length cycle
implies that performence degradation must come in discrete "chunks" as the
system is driven into overload. Thus a task either misses its deadline or
nakes it; and the conseQuence of either of these alternatives is to either run
or not run other tasks. This discrete degradation is markedly different from
the more nearly continuous degradation possible in a "row-oriented" approach,
wherein basic functions can, over some reasonable continuum, reduce their
executlon frequencies. If one conslders scheduling to be the determination

of the "best" time to execute a given piece of code, and dispatching to be

the operating system actlivitiy necessary to carry out what has been sceduled,
then NEXOS-SENTOS has at run time a crude scheduler and a sophisticated
dispatcher. By contrast, the row approach (Section 3.1.1) would need a so-

~ phisticated run time scheduler because of the variable execution frequencies,
but would also utilize a much simpler dispatcher. It is not immediately appar-
ent that one approach has a decided intrinsic advantage over the other. The
partitioning of the workload into discrete tasks with fixed timing constraints
also has the disadvantage of introducing occasional anomalous behavior, i.e.,
situations where lower priority tasks are run to completion while higher pri-
ority tasks miss their deadlines. While legislating task lengths to a minimum
will reduce anomalous behavior as well as introduce more parallelism, it has
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the disadvantage of raising relative overhead and perhaps forcing unnatural
breaks in execution flow.

5.2 SPECIFIC PROGRAM ORGANIZATION

This section 1s intended to specify the implementation structure of
NEXOS-SENTOS-like system. We begin with some difinitions of terms and then
present paragraphs detalling for NEXOS the general concepts presented above.

5.2.1 Definition of Terms

DATA SET - a description of the structure of a collection of data-items
operated upon.by tactical programs (in SYSTEM/36O parlance, a DSECT).

DATA SET INSTANCE - one physical copy (record) of data items described
by a data set.

ROUTINE - a segment of code that may be logically connected to one or
more (fixed) instances of (fixed) data sets.

ROUTINE USE # - an identification of a particular routine and (implicitly)
the data set instances associated with it. (Different use numbers may
identify the same physical copy of the routine in which case it is usually
reentrant.) -

TASK - a collection of serially executed routine use numbers, which is
the dispatchable unit in system scheduling. Once a processor has begun
a task, it will attempt to run that task to completion, i.e., tasks are
not multiprogrammed. A task has a priority, CEB string and AEB (defined
below).

START TASK - a task which is enabled to run at a specified phase point by
the operating system.

CEB STRING - conditional enablement bit string. For each event that must
occur before a task can be run, there is a 1l-bit in its CEB string. An
event may be the completion of another task, the unlocking of a shared
data set, or the completion of an I/O operation. As an event takes place,
the 1-bits in various CEB-strings corresponding to that event are set to
zero. When all the bits in a task's CEB-string are set to zero, its AEB
is set to 1.

AEB - absolute enablement bit. The AEB signifies that a given task is

ready to be run. When a processor becomes free it will be assigned to
the highest priority task with its AEB = 1.
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MAJOR CYCLE - the fixed length basic cycle of system operations.
PHASE INTERVALS - fixed length equal divisions of = majof cyele.
PHASE POINT - the delimiting point between successive phase intervals.

TIMED ARRAY - a collection of one or more tasks which may have interacting
precedence conditions and which usually includes a start task, and an
end task, run at a fixed repetition rate, e.g., once per major cycle.

PROCESS - a collection of timed arrays, which in conjunction with the
operating system carries out the complete tactical mission.

PROCESS CONSTRUCTION - assembly of symbolically coded descriptions in
nonreal time, of all components of a process into tables used at execu-
tion time to control the process.

PROCESS DESIGN -~ the intelligent synthesis of process construction inputs,
based on problem analysis and prior experience.

5.2.2 How the Structure is Utilized

Within a process, there exist a privileged class of TA's called basic
function controllers, BFC's, each of which oversees the operation of TA's
which carry out the basic function. The basic function controller, via operating
system requests, turns on and off the TA's which it oversees in response to
requests made by other BFC's and in response to system loading conditions.

For example, assume the search BFC gets a positive reply. It can then pass
position data on to the verification BFC, which will assign a TA to handle

the alleged RV. If a positive verification is made, appropriate information
can be passed on to the tracking BFC, etc. As the system is driven into
overload, some of the deadline tasks will begin to miss their deadlines. When
the frequency of missed deadlines exceeds some threshold value, an overload
stage number is incremented. The basic function controllers have built-in
rules (functions of overload stage number) for selective deletion or curtail-
ment of the functions which they oversee. Thus the feedback loop, comprised
by a BFC requesting TA turn-on and the ultimate incrementing of overload stage
number which may in part be due to the request, is usually long and rather
indirect. ' )

5.2.3 Task Dlspatching
Figure 5.2 displays the principle data sets employed in NEXOS task dis-

patching. Task dispatching is comprised of three parts: (1) finding the
highest priority task for which all precedence conditlons have been satisfiled;
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(2) carrying out the calling sequence necessary to invoke the task; and (3)
serving succession, that is, altering the CEB words of other tasks (whose
execution must be preceded by—hence the term precedence condition——the current
task) to reflect the condition is now satisfied. The following description
assumes that a free processor is starting at step (1). The processor scans
the AEB string until it finds an absolutely enabled task (AEB = 1) and sets
the AEB to zero. The displacement of the AEB in the AEB string is used to
located the task library table (TLT) entry for the task. The TLT entry points
to the block list, which is a linked list of blocks that define the various
routines (tactical programs), data set linkages, succession to be served, and
maximum run time, for each routine in a task.

Through several levels of indirection, the address of the code to be
executed and its data set pointers are located; and control is passed to the
routine. Within the routine all data (other than internal scratch variables,
which are allocated from a pushdown stack "owned" by a processor) is located
via a GETADR macro which maps at assembly time a data set name into a displace-
ment from the pointer into the data set address table. When the routine returns,
an exit number (return code) is used as a displacement in the block 1list to
determine what succession should be served on other tasks. The exits taken
by a routine are generally a function of data, e.g., presence or absence of
returns for a search function routine. The block list entry selected by the
exit number has a pointer to a set succession list and a count of the number
of continuous entries to process on this list. Each item in the set succes-
sion 1list has a bit mask and a pointer to the TLT entry for another task.

The logical product (AND) of the mask and the TLT entry CEB work is formed,
and if the result is all zeros, the task's AEB is set and the CEB work set
back to the initial value, CEB,, defined for the particular task. When all
succession has been served, the processor continues execution with the routine
just completed. Note that all routines in a task are completed, even though
a higher priority task may have been enabled. When there are no more routines
left in a task, the processor is free to rescan the AEB string to select a new
task.

5.2.4 System Timing

The timing characteristics of a timed array are determined by (1) its
start phase point, end phase point, and frequency (possible fractional number
of executions per major cycle), (2) the precedence conditions of its consti-
tuent tasks, and (3) the task types of its constituent tasks. Precedence con-
ditions have been described above, so we present now a discussion of the task
types depicted in Figure 5.3, and-their utilization. A SYS-START or SYS-
ENABLE task in a TA has a special CEB bit which is set [only] by NEXOS at the
start phase point of the TA. START and NEITHER tasks are enabled only by
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Figure 5.3. NEXOS task types.

fulfillment of precedence conditions by the completion of other. tasks., Asso-
ciated with STS-START and START tasks are initial termination counts used for
deadline checking. When a SYS-START or START task is absolutely enabled, a
termination counter is incremented, The completion of the task, and possibly
the completion of other tasks causes the appropriate termination counter to be
decremented, At the deadline phase point of a TA, all termination counters
for tasks in the TA are examined, with non-zero counters indicating missed
deadlines. When deadlines are missed, all tasks in the TA are disabled (AEB's
set to zero), Most TA's begin with a SYS-START task followed by NEITHER tasks
which also decrement its termination counter. Such TA's are said to be
synchronous.,

When a TA 1s turned-on, entries for the appropriate tasks are inserted
in enablement lists and deadline lists for the start- and deadline-phase points,
respectively, of the tasks. These lists are used by NEXOS to carry out the
functions described above. TA's with a frequency of greater than once per
major cycle have entries for multiple pairs of phase points, while TA's executed
at fractional frequencies have counters that are decremented each major cycle,
with task enablement being performed only when the counter has gone to zero.

One of the distinct differences between NEXOS and SENTOS is in the
handling of data set conflicts. It is possible that any given object might,
for example, be under consideration for interceptor allocation while continuing
to be tracked, giving rise to the necessity to insure that certain programs
cannot have simultaneous access to the same data set, i.e., they must access
certain data in a serial fashion. In NEXOS, this must be accomplished by time
frame exclusion, that is, the process designer must guarantee that certain
tasks will never be absolutely enabled at the same time. The most apparent
way of doing this is to assign mutually exclusive enablement-to-deadline
intervals for the tasks involved. TIf all tasks of a certain function are con-
strained to run time-exclusive of the tasks of another function, then the
process designer is forced to "stack up" similar tasks in the process. This
appears to be the case in the MIP/M process. To the extent that such stacking
conditions are present, the checkerboard approach degenerates into a multi-
processor-implemented row approach, i.e., first all tracking computations are
done, then all the searching, etc. The capability of data set locking and un-
locking which exists in SENTOS allows a much greater granularity in time-
exclusive task execution, since a task may be permitted to run immediately
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after its data sets are free rather than being enabled at some future phase
point (as in NEXO0S) which guarantees time exclusion since it follows the
deadlines of other contending tasks. o

Within the checkerboard architecture it is advantageous, for two reasons,
to enforce limitations on task run times. First, it i1s essential to the success
of a multiprocessor strategy to break the entire job into many separately
identifiable tasks which can be run in parallel. Second, granularity is de-
sirable to guarantee a high frequency of task dispatching so that low priority
tasks preclude the execution of higher priority tasks for as short a time as
possible. There are two principal disadvantages to the enforced limitation
of task run times. First, artificial partitioning of the workload may result.
Second, and more important, the overhead in such a system is at least inversely
proportional to mean task length. The overhead is reflected both directed in
the increased frequency of dispatching of more tasks and in the internal task
structure, since proportionately more of the task must be devoted to initia-
tion and "cleanup."

5.3 OBSERVATIONS

1. The NEXOS-SENTOS checkerboard philosophy requires a very sophisticated
scheduling algorithm. The term "algorithm" may be misleading, however, since
scheduling appears to be done in a nonmechanized ad hoc manner.in the nonreal-
time activities of process design. Algorithms for optimizing‘(or even measuring,
for that matter) load distribution, minimizing scheduling anomalies, ete., if
employed have not been specified in documentation avallable to us. Analytic
approaches to optimal scheduling have been outlined in articles by Jordan and
R. L. Graham, among others, and the modification, application, and simulation
of such algorithms should be explored in future efforts.

2. The NEXOS-SENTOS checkerboard philosophy also requires . a sophisticated
run-time dispatching algorithm to carry out all aspects of system timing,
enablement, deadline checking, and time exclusive data set access. Because of
the sophistication of dispatching, the deterministic approach of process con-
struction (resulting in a fixed "menu" of system behavior) is buried in a
vast probabilistic combinatorial problem.

3. It is not clear that all the restrictions of implementation under the
checkerboard philosophy are inherent to the basic problem., One example of
this is the discrete nature of system degradation under overload conditions:
one elther runs or does not run subsets of fixed sets of fixed tasks of
- fixed priorities with fixed timing and enablement constraints. It 1s not at
" 8ll clear that a decrease in execution frequency of certain basic functions
might be a reasonable alternative under a more dynamic approach.

60



4. Inversely, certain natural constraints may limit the range of appli-
cablility of the checkerboard philosophy. As an example of this, consider the
"stacking" phenomenon discussed above. Since one pays dearly for a very
general checkerboard system in terms of overhead, natural constraints which
restrict applicability must be weighed very carefully.
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6.0 SUMMARY AND GENERALIZATION OF SECTIONS 3-5

The summary of this brief study of variable load real time operating
systems is divided into two parts. Section 6.1 consists primarily of some
observations about the two systems studied and specific instances where
the software organization appears troublesome to implement or' to generalize
and where alternate approaches might have been preferable. It should be em-
phasized that, although such observations are unavoidably criticisms, the
authors are aware of such considerations as the state of computing systems at
the time the design was‘undertaken, the pressure to adopt certain organiza-
tions because of existing software packages and the value of an early commit-
ment to specific hardware and software organization-——even with full knowledge
that the selected structure is not ideal. '

Section 6.2 reconsiders the general problem of variable load real time
operating systems and suggests some alternate implementations using recently
developed machine organizations.

6.1 SOME OBSERVATIONS ABOUT THE TWO SYSTEMS

6.1.1 The AN/FPS-85 System

This system must be judged to be successful. To the authors knowledge
it is the only case where a beam-switching radar is routinely controlled by a
computer in the task of tracking extra terrestrial objects. It 1is apparently
conservative in that the load rarely exceeds the capacity and, if it does, it
is admissible to simply skip radar cycles. Deadlines are detectable only
with respect to 50 msec increments. As programmed the system is not readily
extended to multiprocessors. The utilization of serially reentrant common
routines precludes the simultaneous execution of such routines. Even in the
single processor case the necessary completion of shared sequencers precludes
high priority scheduling changes during the execution. The overlaying into
fixed storage regions is, however, the most serious programming problem. The
fixed boundaries complicate programming and limit the dynamic load-leveling
capabilities desirable in a real time system. The system operates on a
demand overlay strategy which is apparently adequate for the program re-
sPonses required. The handling of intertask dependencies is accomplished for
"~ both data and program sequence by the passage of queue (and pseudo queue)
blocks. Again there would be complications in the multiprocessor case. The
dual processor model 65 is used for back up only. It seems that reliability
and load handling would be improved if it could be run as a duplex (true)
multiprocessor.
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6.1.2 The Safeguard System

The Safeguard software exploits the specialized nature of the problem to
an extreme degree. It is a true multiprocessor and hence is subject to the
problems of simultaneous use of routines and data. The process construction
operation is a prescheduling of functions and storage up to some maximum
load. The simultaneous data set access problem is avoided, at least in part,
by this procedure. The execution of functions are specified in certain time
intervals relative to the major cycle but the dispatching to the several pro-
cessors is handled dynamically. There is no dynamic storage assignment
except for the overlay of some nontime-critical functions. The complete de-
pendence on primary storage contributes to growth difficulties (i.e., more
equipment) and, in a sense, is not necessary. The old time-sharing argument
that a hierarchical storage machine is adequate provided that there are
always tasks ready to accept a processor seems to apply here, too. It is
clear that the "paging" implied by such a hierarchy should make use of the
known structure of the system. A hierarchical system is more readily
enlarged. " : "

The storage management is one reason for the specialized process con-
struction which;:in itself, inhibits change in the system. It is unclear at
this point, whether this exploitation of the special structure significantly
improves performance over a simpler, more general, and dynamic scheduling.

The designed granularity of the system introduces programming impedi-
ments. The running time constraints lead to artificial partitioning of func-
tion.

6.2 THE GENERAL PROBLEM

The general problem comes under the heading of a scheduling problem and
is related to, but more complex than, jobshop scheduling. Typically with the
latter one has several machines, a number of jobs whose machine use charac-
teristics are known and certain sequence dependencies among the jobs. The
goal is to obtain a machine schedule with the highest utilization but without
regard for processing deadlines. A variant which admits deadlines but not
sequence dependencies is the knapsack problem where space (time) must be al-
located to packages (jobs) having certain marginal values (priorities) such
that maximum value is packed (executed). There is a linear programming
approach [Ref. 5] to solve this problem but the extension to sequence depen-
dencies seems most difficult. When this complication is added there is ap-
parently no known algorithm to produce an optimal schedule but there are some
for suboptimal (hopefully near optimal) assignments [Ref. T7].

It is probably worthwhile to extend the "checkerboard" model adopted in
this report (see Section 3.1) to incorporate time as a third dimension,
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because such an extension permits the statement of the problem as an assign-
ment problem assuming quantized time and provides a basis for a discussgion of
scheduling strategies.

Consider a three-dimensional matrix A = {am n, t} where the dimensions
represent, respectively, ‘the functions, the obJects, and the discrete time
intervals. The indices are bounded 1 <n <N = some maximum numbers of
objects. The operatlon is cyclical w1th l <t < T = the cycle time. This
conceptual assignment array is depicted in Flgure 6.1 below, with the unit
elements designating the assignment of a particular function to a particular
object over a specific time interval in the cycle..

e

3

Functions

Objects

Figure 6.1. Assignment array.

If, in addition, it is assumed that there are P processors, the statement of
an assignment problem becomes possible. In any given m-n plane only P func-
tions can be invoked, hence '
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St % m?n ®m,n,t <

If the "object" axis of the assignment array is refined to represent the data
sets which describe an object, then for shared data sets which are indivis-
ible (incapable of being multiply accessed) over a given time interval, we
have the further summation constraint that

This is probably not an admissible assumption but the point will be reconsid-
ered later. The sequence dependencies are somewhat more cumbersome to ex-
press but essentially certain may be unity only if certain elements Ppreceding
in time are unity.

am 0ot = 1 iff am 0ot = %}
2’72’ "2 1’71771

The indexed subscripts can have any value in their ranges but t; < tp. If
mo, Ny are to assume all possible pairs then some provision for the insertion
of a time function (a unit element in each column in each time step) could be
included but that is a complication that can be avoided here.

The assignment problem is then to find a (0,1} valued matrix A subject
to the given constraints and a given object computation

S =

a = K
n m?t m,n,t

such that

S = ’ a =
m,%,t m,n,t NK

and P is minimal.

This assumes an unrealistic uniformity of objects but it permits a for-
mulation. It is generally agreed that the ijects constituting the load are
largely independent and the sequence dependencies arise mainly from the pro-
cessing within anbobject. In fact the scheduling algorithms such as those of
Manacher [Ref. 7] would apply mainly in the m-t planes.
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The complications arising from using multiple processors within an
object suggest a strategy that appeared in computing history with
multiprogramming. When a single task was handled on a channel-structured
machine considerable program complexity was introduced to permit the simul-
taneous use of channels and processors. The decision to handle a number of
programs at the same time permitted a return to the simpler sequential execu-
tion of single tasks and yet keep the device utilization high. Under the
assumption that N >> P it seems that a similar assumption can be made for the
real time case. That is, unless the object calculations are highly nonuni-
form or if, what amounts to the same thing, there are some extremely pressing
deadlines for a small subset of tasks the object calculations can be carried
out in a sequential'(possibly often suspended) menners. These counter as-
sumptions seem unlikely since, if they were true, the seemingly productive
"row-wise" or pipe line processing approach would not be valid. In other
words, a successful row-wise implementation implies a unifermity that would
permit the simplifying-sequential approach within an object task. Pursuing
the analogy to multiprogramming (and time sharing) somewhat further this sim-
plifying assumption would allow the fixed task population saturation and bal-
ance analysis like that of Kleinrock [Ref. 6] but more appropriately Moore
[Ref. 8]. The obvious and much oversimplified relationship N < PT/K could
probably be refined by such analyses. However the assumptions need verifica-
tion and the modelling examined in detail.

6.2.1 Machine Organization

The appearance of "de facto paging" in the FPS-85 and the overcommitment
of storage in the Safeguard system suggest that properly designed virtual
memory, used with anticipatory paging that exploited the knowh.computational
structure, would greatly simplify the system. Not only would this sort of
hardware solve the storage allocation problem, but it would énable the
function-to-object linkage to be greatly simplified. While the storage allo-
cation function of virtual addressing is widely understood, the table-
localized dynamic linking that is possible because of this indirection is not
widely appreciated. For example, the functions (common to all objects) could
be in the addressing space of every object computation but the object data
could all be addressed with the same virtual addresses, with data real
addresses provided by the supervisor dynamically. Thus a programmer could
write the object computation as if it were a single, conventional program
with bound addresses, and the linkage would be handled dynamically by a table
substitution. Of course such table driven address transformation provide an
inter-data protection that would be valuable in a BMD implementation.

Another hardware feature that would be desirable is priority controlled
interrupt circuitry. The issue of granular programs versus interrupts and
program state storage is a long standing one. The interrupts approach makes
programming simpler but there still remains the supervisory issue of whether
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controlling programs should run with interrupts enabled—thus permitting
queue entries and dynamic scheduling changes—or disabled so that interrupts
are stacked and a flood of interrupts is prevented. The usual answer is that
both strategies are desirable on occasion and that a hardware implemented
task list could produce the appropriate division between these approaches. A
running processor would have a register containing the priority of the run-
ning program. The ingertion in the task list of a higher priority program
would cause the processor(s) to be interrupted. If the priority were lower
the task would be stacked until a processor completion and no higher priority
was active. Conventional interrupts would operate in the same manner: rela-
tively high priorities in all processors would cause hardware stacking but
lower prioritiés would permit interrupts. Rudimentary hardware algorithms of
this sort currently exist in some small process control machines.

The time quantization of Figure 6.1 was necessary for the discussion of
an assignment matrix. As has been stated it should be avoided—at least as
an explicit program division. It would be necessary to establish a regular,
schedule-checking. cycle, however, and this could be handled within the prior-
ity mechanism just described. If the timer interrupt is (hardware) assumed
to be at a priority Jjust above the lowest priority processor, one processor
would then make periodic checks of the schedule. This processor's initiation
of a suitable high priority rescheduling task would then cause the proper
number of processors to store their state and be reassigned. Of course such
a tasgk-list driven algorithm could be implemented in the software but only at
the price of taking all interrupts and deciding which should be queued and
which should initiate a reassignment.

Finally, on the subject of interrupts, it seems that the appearance of
cache techniques on modern machines should permit the solution to the problem
of state storage overhead. Just as a cache provides a continuous "store
through" to memory a cache could provide a continually updated state of the
machine. Therefore at interrupt time the time consuming sequential stores
need not be taken.
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