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PRELIMINARY NOTES

BBA 61192

A stereospecific 2-keto-4-hydroxyglutarate aldolase from Escherichia coli

2-Keto-4-hydroxyglutarate, an intermediate in mammalian!~3, in bacterial4,
and possibly in plant®8 metabolism, has one asymmetric carbon atom and hence two
isomeric forms. 2-Keto-4-hydroxyglutarate aldolase, previously detected in extracts
of animal tissues?’? and in an unidentified soil bacterium!?®, catalyzes the reversible
cleavage of 2-keto-4-hydroxyglutarate yielding pyruvate and glyoxylate. All prepa-
rations of z-keto-4-hydroxyglutarate aldolase studied so far have the very striking
and unusual property of being nonstereospecific toward the two optical antipodes of
2-keto-4-hydroxyglutarate; the D and L isomers of 2-keto-4-hydroxyglutarate are
cleaved and formed enzymically to essentially the same extent. This peculiar charac-
teristic of 2-keto-4-hydroxyglutarate aldolase has been demonstrated with the enzyme
obtained in partially purified (10-fold) form from a soil bacterium grown on a-keto-
glutarate as the carbon sourcel?, in partially (70-fold)? or highly purified (400-500-
fold)® form from rat liver, and in homogeneous (1300-fold purified) form from extracts
of bovine liver®. In contrast, other highly purified aldolases (like fructose-1,6-diphos-
phate aldolase!?!, 2-keto-3-deoxy-6-phosphogluconate aldolase!?, and 2-deoxyribose-
5-phosphate aldolase!®) have strict optical isomer specificities. Just recently, we
obtained 2-keto-4-hydroxyglutarate aldolase in homogeneous form from extracts of
Escherichia coli; we report here the ability of the pure aldolase from this source to
preferentially utilize one of the two isomers of 2-keto-4-hydroxyglutarate as substrate.

pL-2-Keto-4-hydroxyglutarate, L-2-keto-4-hydroxyglutarate and bp-2-keto-4-
hydroxyglutarate were prepared by nonenzymic transamination of threo-DL-y-hy-
droxyglutamate, threo-L-y-hydroxyglutamate and erythro-L-y-hydroxyglutamate, re-
spectively, according to the procedure of MAITRA AND DEKKER?; the convention is
followed that D-malic acid is formed from D-2-keto-4-hydroxyglutarate and L-2-keto-
4-hydroxyglutarate yields L-malic acid by oxidative decarboxylation®3. threo-y-
Hydroxy-pL-glutamic acid was synthesized chemically by a modification of the
procedure of BENOITON AND BOUTHILLIERY; threo- and erythro-L-y-hydroxyglutamate
were prepared enzymically by reductive amination of pL-2-keto-4-hydroxyglutarate
with NADH and NH,* in the presence of glutamate dehydrogenase and by subsequent
resolution of the two diastereoisomers of the hydroxyamino acid on a column of
Dowex-1 (acetate) resin'®. Escherichia coli K-12 was grown in nutrient broth medium
and was harvested in late log phase; extracts were prepared by sonic oscillation.
2-Keto-4-hydroxyglutarate aldolase activity was determined by measuring the for-
mation of glyoxylate?. A unit of enzyme activity is defined as the amount of protein
that liberates 1.0 ymole of glyoxylate in 20 min at 37°; specific activity refers to units
of enzyme activity per mg of protein. Protein was estimated by the method of Lowry
et al.ls,

We succeeded in purifying 2-keto-4-hydroxyglutarate aldolase activity from
E. coli extracts over 2000-fold by procedures including ammonium sulfate fraction-
ation, controlled heat denaturation, addition of protamine sulfate, gel filtration on
Sephadex G-100 and column chromatography on DEAE-cellulose; the pure enzyme
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has a specific activity of approx. 100. Disc polyacrylamide gel electrophoresis of the
final enzyme preparation at three different pH values shows a single protein band
which coincides with aldolase activity. We have found that pure 2-keto-4-hydroxy-
glutarate aldolases from E. coli and bovine liver are quite similar in their divalent
metal ion requirement, sulfhydryl group requirement and mechanism involving
Schiff base formation with substrates®!? indicating that 2-keto-4-hydroxyglutarate
aldolase from this bacterium is a Class I and not a Class II aldolase (classification
according to RUTTER®).

E. coli 2-keto-4-hydroxyglutarate aldolase, however, is strikingly different from
the liver enzyme in two respects. Both rat liver® and bovine liver®:!” 2-keto-4-hydroxy-
glutarate aldolases have molecular weights of about 120 000; in contrast, the molecular
weight of our pure bacterial aldolase is estimated to be approx. 62 ooo by Sephadex
G-200 gel filtration!® and by sucrose density gradient centrifugation?. In addition,
and quite surprisingly, 2-keto-4-hydroxyglutarate aldolase from E. coli exhibits a
strong preferential utilization of r-2-keto-4-hydroxyglutarate, as shown in Table I.

TABLE I

SUBSTRATE STEREOSPECIFICITY OF E. coli 2-KETO-4-HYDROXYGLUTARATE ALDOLASE

The reaction mixture contained 100 mM Tris-HCI buffer (pH 8.4), 5 mM reduced glutathione,
0.7 ug of purified aldolase, and substrate as indicated. Water was added to a final volume of
1 ml. After incubating for 20 min at 37° the reaction was terminated by adding o.4 ml of 129
metaphosphoric acid and 1-ml aliquots were removed for the determination of glyoxylic acid.

Substrate tested Initial  Glyoxylate
conen.  formed
(mM) (umoles/mg

protein)
pL-2-Keto-4-hydroxyglutarate 5.0 97
L-2-Keto-4-hydroxyglutarate 2.5 97
5.0 121
D-2-Keto-4-hydroxyglutarate 2.5 5
5.0 9

This result was exactly reproducible with four different preparations of the purified
aldolase. For the E. colt enzyme, the K, value for D-2-keto-4-hydroxyglutarate is
about 10 times greater than that for L-2-keto-4-hydroxyglutarate (25 mM vs. 2.4 mM,
respectively), whereas for pure bovine liver 2-keto-4-hydroxyglutarate aldolase these
two values are nearly equal (about o.r mM). Also, L-2-keto-4-hydroxyglutarate is
preferentially formed when E. coli 2-keto-4-hydroxyglutarate aldolase catalyzes the
condensation of glyoxylate with pyruvate. Direct tests demonstrated that the minor
extent to which the D isomer is utilized as substrate is due neither to a small con-
tamination of D-2-keto-4-hydroxyglutarate with L-2-keto-4-hydroxyglutarate nor to
the presence of racemase activity in the aldolase preparations.

This finding of E. coli 2-keto-4-hydroxyglutarate aldolase with markedly
different properties from the liver z-keto-4-hydroxyglutarate aldolases previously
studied presents several interesting possibilities. For example, since the molecular
weight of the bacterial aldolase is essentially one-half that of rat and bovine liver
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aldolases, it would appear that 2-keto-4-hydroxyglutarate aldolase could have several
molecular forms; we have also detected in bovine liver preparations a species which,
in order of magnitude, has a molecular weight of about 240 ooo (ref. 17). Furthermore,
the substrate to enzyme binding ratio (moles of substrate bound per 120 000 g protein)
so far determined for rat® and bovine liver® 2-keto-4-hydroxyglutarate aldolase may
actually be greater than the value of 1; we have found with the enzyme from E. cols
that 1T mole of substrate is bound per 6z ooo g of protein. In addition, having 2-keto-
4-hydroxyglutarate aldolase in pure form from both E. coli (mol. wt., 62 000) and
bovine liver (mol. wt., 120 000) extracts, with the former being highly stereospecific
for L-2-keto-4-hydroxyglutarate and the latter virtually nonstereospecific toward the
two optical antipodes of 2-keto-4-hydroxyglutarate, would seem to provide an inter-
esting system for studies which correlate enzymic properties with molecular structure.
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