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An explicit formula for the cyclotomic numbers modulo prime p = 1 
(mod ee’) is given in terms of the cyclotomic numbers for p,e and p,e’, 
and the mixed cyclotomic numbers p,(e’, e) when g.c.d. (e, e’) = 1. 
The derivation of this formula depends upon the invertibility of the 
circulant coefficient matrix of a system of linear equations involving the 
respective periods; the determinant of this matrix is shown to be, in fact, 
a power of p. 

1. INTRODUCTION 

Let p = (ee’lf” + 1 be a prime with e, e’ natural numbers greater than 1 
such that (e, e’) = 1. In this paper we introduce the mixed cyclotomic 
numbers (i, j){$ modulo p and exhibit a large class of circulant matrices 
based upon these constants whose determinants (up to sign) are powers 
of p. We then use these constants, together with the (ordinary) cyclotomic 
numbers for p, e and p, e’, to derive an explicit formula for the cyclotomic 
numbers for p, ee’. Results in this direction for the special cases e twice 
an o&prime and e four times an oddprime have been previously discussed 
in [2] and [3], respectively, and the reader is referred to [2] for additional 
results. The notation and results covering the ordinary cyclotomic-numbers 
for p, e will be as in [I]. 

2. DEVELOPMENT OF THE THEORY 
Let e, e’ be relatively prime natural numbers greater than 1 and let 

p G 1 (mod ee’) be prime. Write 
p = ef+l = elf’+1 = (ee’)f”+l 

and denote the cyclotomic numbers and the periods for p, e and a fixed 
primitive root g modulo p by (i,j)(‘) and VP), respectively. The similar 
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notation for the cyclotomies corresponding to p, e’ and p, ee’ will always 
mean with respect to the (same) fixed generator g. We now state a lemma 
which will enable us to express the periods for p, ee’ in terms of those 
for p, e and p, e’. 

LEMMA 1. Define L = exp (2zi/p) and let .5 be defined modulo e’ by the 
congruence eZ E 1 (mod e’). Then 

wherei=O, l,..., e-l;j=O, l,..., e’-I. 

Proof. The contribution of the inner bracket to the sum on the right is 
nonzero (i.e. is p) only if ges+i E ge’t+j (mod p), in which case es+ i =j 
(mod e’). Hence, with the above choice of Z, we find that es+ i G 
(i-eZ)i+ e2j (mod ee’), the right side of which is independent of s. n 

It is now convenient to introduce the mixed cyclotomic numbers (i, j)$!, 
for p and the (same) fixed generator g, defined to be the number of 
solutions to the congruence 

Zi+l~zj(modp) (Zi E ci (e’), zj E Csp)); 
that is, the number of ordered pairs s, t with 0 i s I f’ - 1; 0 I t <f - 1 
such that 

9 e’s+i+ 1 E gel+j (mod p)e 

We now use Lemma 1 to express the qy’ . m terms of the mixed cyclotomic 
numbers (i, j@, and the q$%$” Note that, since (e, e’) = 1, we may 
assume that e’ is odd, so that VP” = 0 qk (conjugate) is real for all k. 

LEMMA 2. Assuming e’ odd, we have 
e’-1 e-l 

P?ile’!Z)i+eZj = h;. kgo W, k)$?, -f@t$ -f ‘~&Jde?~tljP;)h, 

where Si:] = 
1 ifi=j(modn) 
o otherwise 

which is the lemma. n 
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An inverse relation to that given in Lemma 2 is given in the following 
lemma. 

LEMMA 3. 
t-d- 1 

qi’$f”) = kzo [(j - k, i - k){$ -f”]qp’) 

fori=O,l,..., e-l;j=O,l,..., e’-1. 

Proof. We have 

f-1 y-1 
= Jo “TO ;lflem+‘-g”“+J. 

Let N = gem+i-ge’n+j so that, as m and n vary over their respective 
ranges, we have N s 0 (mod p) exactly IC$‘) n Cy’)l = f” times. On the 
other hand, for fixed m and n such that N + 0 (mod p), there exist integers 
u and k such that N 3 gee’“+k (mod p), whence 

9 =‘(n-=u)+(i-W+l E g=(m-=‘u)+(i-k) (mod p)e 

The lemma now follows from the fact that (e’n-em)+(j-i) runs over 
a complete residue system module ee’ whenever n and m run over com- 
plete systems modulo e and e’, respectively. n 

The coefficient matrix of the ee’ linear relations of Lemma 3 is the 
circulant matrix % whose first row is given by 

[(j, i){$-f”, (j-l, i-l){,‘?,-f”,. . ., (j+l, i+l)$!,-f”]. 
and, in view of Lemma 2, one might hopefully expect the value of its 
determinant A to be &p. We shall show that, in fact, the correct value is 
A = (_ l)‘ej,““- I)(=‘- I), but to do this we need to develop the elementary 
relationships between the mixed cyclotomic numbers. 

First we remark that the mixed cyclotomic numbers are given in terms 
of the cyclotomic numbers for p, ee’ by the formula 

e-l e’-1 
(h, k)@, = c c (e’s+ h, et + k)‘““, 

s=o t=o 
and we use this as a check on Lemma 2 by verifying that the sum of the 
qy) is - 1. Here 

e-l e’-1 e-1 e’- 1 

P C C ‘i’{f%++e~j = C 
i=O j=O 

C [(h, k)l:?)-fs~~-f’S~‘o]?l’!k?~‘n 
i,k=O j,h=O 

e-l e’- 1 
= -e’f’-ef+ k s=. h z. (e’s+k et+k)(“‘) C 

= -2p+2+(ei’f”-i) =-p, 
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where we have used the fact that 
e-1 
~ollP=-l. 

LEMMA 4. If e, e’ > 1 are integral, then 

(a> (hgl:“={~:l~,~+~):::~~~::odb 

e-1 
(b) ko(h, k){z?, =f’-#“; h = 0, 1,. . ., e’-1. 

d-1 

(4 z,(h, k)$!, =f-?$$,; k = 0, 1,. . ., e--,. 

We remark that in part (b), since we are assuming e’ odd, 

1 

1 iff’ even, i = 0 
Of’) = 1 if f’ odd, i = e/2 

0 otherwise 
may in this case be replaced by Sj,$& since then - l&-J’). 

Proof. 
e-l d-1 

(a) (h, k)& = szO ,gO (e’s + h, et + k)‘“” 

i 

e-l e’-1 
szo ,zo (etfk e’s+Vcee’) iff” even 

= 
I$: yg: (et + k + $, e’s + h + ~)‘“” if f” odd 

={~;~~,hiq):::::::adb+~)~@;~~;:~~ 

e-1 e-1 
(b) kGo(h, k)$!, = c (h, k)@‘) =f’-fly’ 

k=O 
e’- 1 d-l 

(4 hzo(h, k)$ = c (h, k)@) =f-St’,. n 
h=O 

3. EVALUATION OF A 
We are now prepared to give the evaluation of A. 
THEOREM 1. A = (- I),, p~e-l)~e’-l)/~. 

Proof. If p1 = 1, pLz, pS,. . ., pee, are the roots of Ye’ = 1, and if we 
define 

d-1 

4~b.4 = ,so Co’ - k i - k>$?) -f “lpk 
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then it is well-known (see [4], p. 445, for example) that A is given by 

A = dh) $(PJ. . .4tclee,>. 
Now 

d-1 
9(/-d = ,go [tj- k i- k)$?, -f”] = - 1 

by Lemma 4, and the remaining terms occur in complex conjugate pairs, 
with the exception of that term pi = - 1 when ee’ is even. In this case 
we have 

ee’-1 

4(-l) = kzO (-1)&[--k, i-k)$,-f”] =-1, 

again by Lemma 4. Thus Sgn(A) = (- 1)“‘. 
With the exceptions of d( + l), the f d does not contribute to the sum 

4(p), and hence, for the remaining terms we may fix p= exp(2ni/ee’) 
and consider the terms 

et?‘- 1 

444 = kgo tj - k i - k)$!) prk 

for r # 0, ee’/2. 
It is now a considerable simplification to observe that, for these 

remaining terms I#J($), we have 
ee’- 1 

4W = k&‘. (j - k i - k)@prk 

ee’-1 e-l e’-1 

= kzo z. ,zo (e’s+j-k, et+ i-k)‘““prk 

ee’-1 e-l e’-1 

= kFo prk ,go ,go (k, et - e’s + i-j)(ee’)$(e’s+i) 

fd- 1 es?‘-1 

=P 
‘[( 1 - e’i?‘) j + P’i+‘i] C /gk ,zo p-=‘?‘h(k, h)‘“” 

k=O 
ee’-1 e-l e’-1 

=P 
r[(l -e’E’)j+e’Zi] 

kzo szo ,go (k, et- e’S)fee’)$(e’s+k) 

ee’-1 e-l e’-1 

=lu 
r[(l-e’Z’)j+e’B’i] kzo szo ,zo (k, et-e’s + k)(ee’)p-‘(k-e’s) 

ee’- 1 
=P 

r[(l-e’E’)j+e’Z’i] 
kzo ( - k - W&‘k, 

where C’ is defined modulo e by e’Z’ = 1 (mod e). Since p’ = - 1 is 
excluded in these terms, the product of the units of the @$) is 1 and 
hence we may, without loss, consider #Q’) to be given by 

d-1 4(/J) = ,zo (- k - W$!,P’~. 
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The above observation has also shown that &u~) may be replaced by 
d-1 et?‘- 1 ee’- 1 

c&O = k;. (- k - k#:?,ifk = kzo prk *go Ke’B’r”(k W’““, 

which last sum is the Lagrange sum R(,,,(r(l -e’F’), r) when ee’ does 
not divide r(1 -e’Z’) or r(2- e’s’). 

It is further convenient to notice that, given m{e and m’le’ (m, m’ > l), 
the mixed cyclotomic numbers for m, m’ are given in terms of those for 
e, e’ by the formula 

Now, given r < ee’ with (r, ee’) = n > 1 but neither elr nor e’lr, the 
corresponding term #($‘) in the expansion of A is 

d-1 
kgo (- k, - k)$+fk = ;$ ;$; f s- k, g s- k)o) yk@, 

n (0 

where y = $. But since 

the original sum reduces to 

th) root y1 = y”“, 

we have 
d-1 
kTo (-k, - k)$!,prk = ‘i’ (-k, - k)$y;, 

k=O 

which occurs in the expansion of the corresponding circulant of (the lower) 
order eel/n. 

If (r, ee’) = 1, we say that the factor &J) in the expansion of A occurs 
primitively; otherwise imprimitively. If (r, ee’) > 1 but neither elr nor dir, 
then we say that the imprimitive factor $(,d) is properly imprimitive. At 
this point we have shown that each properly imprimitive factor corres- 
ponding to a given e, e’ arises primitively as a factor for some mle and 
m’le’, whence (by the observation) it is a Lagrange sum and, therefore, a 
square root of p in Z(p). Clearly, the number of primitive and properly 
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imprimitive factors 4($) is (e- l)(e’ - 1). It therefore remains to show 
that the value of each of the (nonproperly) imprimitive factors &nr) 
1s - 1. 

We now suppose that &A’) is nonproperly imprimitive because ejr. 
Then we have 

ee'-1 ee’- 1 d-l 

,zo (- k - k){:$Jk = kso ifk kgo (k Q(ee’) 

d-l 

= -,z,l’“lpf’ 

= $1) 
-t 

if f” is even 
iff” is odd 

=- 1, 

sincef” odd implies ee’ even, whence e (which divides r) is even by the 
hypothesis e’ odd. Similarly, if &J) is nonproperly imprimitive because 
e’(r, we have 

C?.?'-1 d-1 

kgo (-- k - k)&fk = c 
k=O 

(a - k, a - k)[$fk, 

where 
0 

a = 1 
if f” is even 

eel/2 if f” is odd 

whence the sum in question becomes 
ee’-1 

/.f“ C C-k, - k)@prk = 
k=O 

iff” even 
iff” odd 

=- 1 

by the analysis of the preceeding case, using the fact that a = 0 if f” is 
even. 

This completes the proof of the theorem. n 

4. DETERMINATION OF THE CYCLOTOMIC CONSTANTS 

We now combine Lemmas 2 and 3 to obtain additional relations for 
the determination of the mixed cyclotomic numbers for p, e and e’, and g. 
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Proof. Direct combination of Lemmas 2 and 3 yields 
e’-1 e-l 

x go[(j+h-s, i+k-s)@,-f”]ny) 

d-1 
-f’ sFo (f-g~))ll~)+eff”-f”-eff”-elSIf”, 

which is equivalent to the theorem. n 

COROLLARY. 
d-1 e-l 

& & (k k)::$O’ + h -s, i+k-s)$?, =f”(p-2)+ 

+ pslf~l-ea)i+eaj-fs~fl -fS!f~, 

for all s = 0, 1,. . . , ee’ - 1; in particular, 
e’-1 e-l 

go &(h, k)@,(h - s, k - s){:?, = f”(p - 2) + p6$’ -fSrJ -j’dSfb. 

Proof. The period equation is irreducible.. . 

It is, of course, clear that the ee’ equations in the above corollary are 
not independent. We show by example in the next section how Lemma 4 
and this corollary can be combined to yield the mixed cyclotomic numbers 
for primes p s 1 (mod 6) with e = 2, e’ = 3. First we give a formula for 
the cyclotomic numbers for p, ee’ in terms of the cyclotomic numbers 
for p, e; p, e’, and the mixed cyclotomic numbers. 

THEOREM 3. 

p’((1 - eZ)i + eZj, x) (==‘) = f~tp2~((y~~ec)i+ezj f 
e’- 1 e-l 

+ c m * s=. 9 9 ” p& Co% 4% -f%,?l -f’qJ x , 9 
X [(h + nt, k + n)l:!,-fSjle;)m,0-f’8~~0!n, o] [(i + k, t)“’ -fdt)l-i] X 

x [O’+h, s)(=‘)-f’spj] [(m+s-x, n+t-x)$!,-f”] 

where - 1 E Cy). 
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Proof. From Lemma 2, we have 

1 

ee’- 1 
p*qb’e”q{y;-‘el)i + el j = p* xgo ((1- eZ)i +eizj, ~)(~~‘)tl~‘)+f”O~~l)e~)~+.$~ 

I 
e’- 1 e-l 

= m Lo ” go C(m, 4% +$‘b +%I x 

which, after Lemma 3, is the theorem. n 

We remark that the right side of the expression in Theorem 3 above 
can be expanded and simplified, although with little apparent gain in 
insight. For example, using the Corollary to Theorem 2 and observing 
that 

pl) _ _ . = pl) _ . 
(1 ee)i+eeJ 

_ . 
(1 ee)a+ee,, (1 ee)l* 

_ _ 
we may write 

p2((1- eZ)i + eZj, x)(~~‘) = (f”)*p* -f”p2(p- l)@J - _. ee)i + ee, 

e’- 1 e-l 

+ c m,h, s=. ” k~zoLh ~>‘(‘,kfc,% -.ml x I , 
x[(h+m, k+n)l~!,-fs~~)~,o-f’6~~!,,o]x 
x [(i+k, t)“‘--fdif{-i] [(‘j+h, ~)(~‘)-f ‘arLj] X 

x (m + s -x, It + t - x>{;!,, 
and so forth. 

5. APPLICATION TO THE CASE p- I(mod 6) 
Let p E 1 (mod 6) be prime, and e = 2, e’ = 3. Then the form of the 

mixed cyclotomic numbers from Lemma 4 is given by the matrix 
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and the elementary linear relations 

A+B =f’-1 
C+D =f’ 
E+F =f’ 

A+C+E =f-1 
B+D+F =f, 

only four of which are independent. Solving in terms of D and F, we have 

A =f’-f-l+D+F 
B=f-D-F 
C =f’-D 
D=D 
E =f’-F 
F = F. 

From the Corollary to Theorem 2, with i = j = s = 0, we obtain the 
additional relation 

A2+B2+C2+D2+E2+F2 =f”(p-2)+p-f-f’, 

whence, substitution yields 

2D2+2DF+2F2-pD-pF+f”p = 0. 

Multiplying this last equation by 18 we find, after combination and 
simplification, that 

60 = p-x-3y 
6F = p-x+3y, 

where p = x2 + 3y2 with x 3 1 (mod 3), the sign of y being ambiguously 
determined. Hence we have 

LEMMA 5. The mixed cyclotomic numbers for e = 2, e’ = 3, are given by 
the above array and the relations 

6A = p-5-2x 
6B = p-3+2x 
6C = p-2+x+3y 
60 = p-x-3y 
6E = p-2+x-3y 
6F = p-x+3y 

where p = x2 + 3y2 and x E 1 (mod 3). 
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