THE UNIVERSITY OF MICHIGAN
COMPUTER AND COMMUNICATION SCIENCES

Final Report

A STUDY OF PROGRAMMING IANGUAGE EFFECTIVENESS

Bruce W. Arden
Principal Investigator

James Hamilton

ORA Project 03222

under contract with:
U. S. ARMY SAFEGUARD SYSTEMS COMMAND
CONTRACT NO. DAHC60-70—C-OOB6

CONTRACTS OFFICE SSC-C
HUNTSVILLE, ATABAMA

administered through:
OFFICE OF RESEARCH ADMINISTRATION ANN ARBOR

May 1970

A, TINTRODUCTION

The goal of this study is to compare the effectiveness of three program-
ming languages,; in terms of object code efficiency. There has been very lit-
tle effort te evaluate the ease of coding in the three languages, although
number of source lines is some measure of this.

The study consists of three separate problems, each coded in three lan-
guages: Assembler, FORTRAN IV, and PL/li Each problem was tested for several
different cases (data sets), in order to test each of the paths in the logic

of the program.

The object machine is the IBM 360 Model 67, running under the Michigan
Terminal System (MT'S). The language processors used were:

1l. MIS G Assembler.
2, FORTRAN H Compiler.
3 PL/1 F Compiler, version .

No statistics are given on the relation efficiency of these processors.

B. PROBLEM SPECIFICATION AND CONSTRAINTS

The problems were given by complete flowcharts, which were abstracted
from the Safeguard ABM system. The data structures were also specified. Very
little variation was allowed in program structure; the flowcharts were followed
quite closely. Greater variation was allowed in the implementation of the data
structures, and in an effort to evaluate the effefts of data structure con-
straints, two of the problems were coded in two versions-—one a strict inter-
pretation of the data structure specification, and the other, a fairly free
interpretation.

A brief verbal description of the three problems follows:

1. GET TASK—A task scheduler for a multiprocessor system. This essen-
tially implements a pert-like network of tasks and routines, in which each
task is conditionally enabled by each of its predecessors, and absolutely
enabled when it has been conditionally enabled by all of its predecessors.
The task 1s then started and passed the address of its data set. This is in-
tended to be a list processing problem, but it has bit manipulation aspects
also.

2. EXLIGEN--The execution list generator. This is part of a collection
of tasks which ultimately determines the sequency of pulses to be transmitted
by the radar. It processes a radar template and pulse pattern table, and pro-
duces an execution list of radar "events," ordered by priority and timing con-
straints, etc. This is intended to be a bit manipulation problem, but bit
manipulation is not inherently part of the problem, and the free interpretation
of the data structure requires no bit manipulation at all. Instead it involves
a fairly complex flow of control.

3. TFILTER--A Kalman filter which is a part of the radar tracking pro-
cessing. This is a very simple program using little more than floating point
arithmetic. It is intended as a numerical problem.

C. DRIVER PROGRAMS

For each problem a driver program was written to test the programs and
to collecting timing statistics. There were separate driver programs for each
problem, buty; in general, they all went through the following steps:

1. Read input specifying:

a. Whether or not to provide trace output verifying
the correctness of the program.

b. The number of iterations for which each case is
to be run, thus specifying also the number of
cases.

2. ©Set up the data structure, and execute each case for the indicated
number of iterations, printing the average time for each case.

The driver for problems 1 and 2 was written in assembly language, and was
identical for the three subject languages, except that the driver for the PL/l
version had teo be modified to interface properly with the PL/l library. The
driver for problem 3 was written in PL/l.

The timer used was essentially the 360-interval timer, which has an in-
crement of 13 pseec. The MIS supervisor attempts to simulate this timer for
each task, in such a way that it indicates only the CPU time used by that task,
but inevitably some of the supervisor overhead for other MIS tasks will be in-
cluded in this time supply because, at the time of an interrupt, the interrupted
task state must be preserved before the timer is sampled.

Part of the time, measured by the timer, actually includes the time required
to execute the driver program and. timer processing routines., In an attempt to
exclude this component, a run was made for each problem, in which the subject
program was replaced by a null program (one which just returns). The timing
statistics resulting from these runs were subtracted from those measured with
the subject program. This yields the "adjusted" time listed in the talle of
results.

D. RESULTS

ASSEMBLER FORTRAN PL/1
GET TASK (strict data structure)
Source lines® 79 50 48
ObJject instructions ™ 251 327
Object sized 632 1254 17860
Time - Case 1© 2.37 4,51 8.h1
Time - Case 2 2.35 4,10 T7.0k4
Adjusted time Case 14 0.70 2.84 6.7k
No. of subroutines®
Explicit 0 8 5
Implicit 0 0 e
GET TASK (free data structure)
Source lines 67 39 18
Object instructions 65 170 292
Object size 332 1036 1650
Time - Case 1 2.16 3,42 4.81
Time - Case 2 2.15 3.45 4.86
Adjusted time Case 1¢ 0.49 1.78 3.1k
EXLIGEN (strict data structure)l
Source lines 259 122 133
Object instructions 228 L7 1100
Object size 1220 2618 4918
Time - Case 1 1.8% 4,08 19.2
Time - Case 2 1.75 4.90 18.46
External references 0 1 13
EXLIGEN (free data structure)i
Source lines 228 126 130
Object instructions 200 405 783
Object size 1104 2228 Log5
External datab
Structure size 10%6 121k 952
Time - Case 1 1.h2 2,86 7.03
Time - Case 2 1.k%0 2.89 6.84
External references 0 0 8

ASSEMBILER FORTRAN PL/1

FILTER

Source lines® 88 27 28

Object instructions 89 13k 351

Object size 3604 Tk 17860

Time 1.86 2.51 3,404
Ad justed® 0.7k 1.39 2.%2

External references 0 0 5

AVERAGE BATTOS

Source lines 0.50 0.5k

Objettt instructions 2.2 4.3

Object size 2.2 4.0

Time 2.7 7.4

NOTES:

a. Excluding comments.

b. Includes static storage csect and program csect.

e. All times are in milliseconds.

d. Adjusted time equals total time minus fixed time due to driver and
timer routines (1.67 msec).

e. Does not include calls to RTEXQ AND EOT, the two driver entries.

f. Actually, the number of external references. Not all of these are
actually called by the program. (In fact none are called by FILTER.)
All must be loaded, however, and the PL/l library required turns out
to be about LOK bytes, only a small amount of which 1s actually used.

g. TFixed time for FILTER driver - 1,12 msec.

h. For each of the problems that part of the data structure which was
specified by the problem was external to the procedure itself. In
problems I and III this quantity was essentially constant, even in
the review GET TASK.

i. The fixed time for the Problem II driver was negligible (0.016
msec), so no adjusted time is given.

J. ObJject size is bytes, decimal.

E. CONCLUSIONS

FORTRAN H appears to produce roughly twice as much object code as the
Assembler, for about half as many source lines, and PL/l produces about four
times as muchy for, again, about half the source code. The ratios in execu-
tion time are even worse., In an attempt to provide general explanations for
these differences, the following five categories are proposed:

l. Problem specification contraints.
2. Ianguage restrictions.
3. Language generality.

4, Inefficient compilation—difficulty of compiling for 360;
inherent and compiler induced obJject code inefficiencies.

5. Programmer bias and unfamiliarity with language features.
In more detail:

1. When designing systems, one takes language abilities into account.
Both program and data structure are heavily dependent upon language consider
ations. The programming language dictates, to a large extent, the style of
programming., A LISP program, for example, will typically be a collection of
recursive "functionals," PL/1l programs may have complex data structures, and
several levels of DO group nesting, procedures, and block structure, and
FORTRAN offers only a primitive DO loop. But the program structure for these
problems was specified by flowcharts taken from assembly language programs.
This structure did not allow the use of PL/1 block structure, and in many
cases did not even allow simple DO loops in places where DO loops would be
useful. This can only add to the differences due to the other four possi-
bilities.

Data structure constraints are probably even more responsible for dif-
ferences of this type. FORTRAN, for example, deals only with arrays and
simple variables, and it is unfair te ask more of it than this. In an at-
tempt to determine the effects of data structure variation, the problem I
and problem II programs were revised, to allow a completely free data struc-
ture. All three languages appear to benefit about equally in terms of ob-
Ject instructions, and object size, but in execution time, the higher level
languages benefit somewhat more than the assembler versions. In the problems
at hand, the only important data structure variation involved removing the
necessity for some bit manipulation. Therefore, the effects of this wvaria-
tion on the three languages depends on the ability of the language to handle

bit manipulation. PL/l has this ability in the language, but its implementa-
tion tends to be extremely inefficient. FORTRAN does not have it at all, so
it was necessary to write small assembler language programs to perform the
bit string functions. This tended to benefit the FORTRAN versions, since the
functions written were more specialilzed than the very general bit string rou-
tines which implement the PL/1 functions.

Thus one concludes that problem specification constraints tend to exag-
gerate the differences between languages. This should not be interpreted,
however, as meaning that the problems themselves are inherently difficult to
code in higher level languages, but only that the specifications of this study
prevented the most efficient use of such languages.

2. language restrictions. One might think that a perfect compiler could
compile a program equal in efficiency to an assembly language program. But
language restrictions, and, to some extent, language generality, prevent this.
Most languages restrict the parameters of certain underlying functions in such
a way that additional statements are required to preprocess data into the re-
quired form. Examples are the restriction of FORTRAN DO-loop parameters to
simple integer variables or constants, and the restrictions of pointers, used
as bases or in pointer qualification in PL/l, to be simpley nonbased, pointer
variables. These restrictions result in extra processing which is irrelevant
to the task at hand.

3. Language generality. One answer to the problem of language restric-
tions is to make the functions more general. PL/l, for example, has removed
the restriction on the DO leop. But this requires elther that the resulting
object code be more complex to handle the more general inputsy; or that the
compiler recognize the simple cases when they occur. Unfortunately, the
former case usually occurs, because it is very difficult, and sometimes im-
possible for the compiler to recognize possible simplifications.

Many modern languages have added many powerful functions, and much more
varied data typesy; in an attempt to make the languages more generally useful.
It is only fair in evaluating the language, to use these facilities wherever
they are useful, even though it might be more efficient to do things differ-
ently. This has been done in PL/l, where such features are abundant. It
would have been possible to translate the FORTRAN programs directly to PL/l,
resulting in more efficient PL/l programsy but using none of the power of
PL/1; but it was felt that this would not be a true evaluation of PL/1.

It turns out that the most natural way to generalize language primitives
is to add levels of "indirection" in data references. In PL/1 this means
that the more complex data structures are referenced via dope vectors. This
turns out to be unnecessary in many cases, but it is done Just the same.

This i1s perhaps the most common form of inefficiency due to language gener-
ality.

L, Still, it is abundantly clear that the available compilers do not
recognize many of the possible simplifications, even where it would be sim-
ple to do so. FORTRAN H, for example, does not implement multiplication
and division by powers of two as shiftsy and PL/l puts out many instructions
which might as well be No-ops. Sloppy compilation 1s still the greatest
contributor to the differences observed here,

It has been suggested that the IBM 360, and machines like it are diffi-
cult to compile for, elther because of the base-displacement addressing, which
requires checking of addressibility, or because the 360 instruction set is not
well matched to the underlyling procedure oriented language primitives. There
seems to be evidence for this in the fact that FORTRAN compilers for other
machines seem to produce code which rivals assembly language efficiency.
However, a study of the object code from these problems does not show any
clear instances of language-machine mismatch.

It is true, beyond a doubt, however, that the 360 has many instructions
which do not correspond to any language primitives. Examples include trans-
late and test, and branch on count. These instructions are very useful to
the assembly language programmer, but useless to FORTRAN or PL/I; It gen-
erally requires several FORTRAN statements to perform the equivalent func-
tion. This 1s not so much an incompatibility, as the inability of the com-
piler to use the full %60 instruction set.

5. It is only fair to point out that the programmer is biased toward
assembly language programming, and is certainly most conversant in it. The
programmer 1s quite familiar with FORTRAN, however, and it is felt that the
FORTRAN programs are reasonably effective for this reason. PL/l, however,
is a different matter. While he is reasonably familiar with the facilities
of that rather complex language, he is by no means an expert. To clte a
specific example, one of the biggest inefficiencies in the PL/l obJject code
is its handling of bit strings with implicit calls on external functions,
which requires creation of dope-vectors, etec. It turns out that if the bit
strings are declared ALIGNED, in-line code is generated. Thils reduced the
execution time in problem I from 11.99 msec to 8.41 mxec. It is not known
whether ther are any more changes of this nature which would so significantly
increase the efficiency of the PL/l programs. One might argue, however, that
if intimacy with the details of a language are required in order to use it
effectively, then that makes the language that much less desirable.

APPENDIX

FLOWCHARTS

Print Times
for This
Case

l Case<—Case + 1 I

Case>NCases

GET TASK DRIVER

Copy Case 2 Data to Real Entry
Case 3. Set BLTime for in CSect
Routine R35 to 5 Tables

!

Get Parameters From
SRun Command (SCards | <-@— Entry to
for PL/1 Version) CSect driver

Trace <—1st Char.

Convert Next Parameter
B to Binary. Putitin
ITERTBL (NCases)

No
Yes
ases<—NCases + 1 l

1 ne

ITCNT<—ITERTBL (Case) |

Initialize Timer

Move Data for
— Current Case
into Position

| irenre—imont -1 |

No
Yes

10

GET TASK DRIVER - Page 2

This Subroutine
"Executes'' a Routine

Insert Routine Name
and Data Set Name
Into Trace Message

Y

Print Trace
Message

Y

Record Time

Entry This Subroutine
EDT Records "End of Task"

Yes

Print
'End of Task'

Y

Record Time

11

GET TASK

Search For Non-Zero | Found Ret
AEB Bit eturn

Found

Reset Bit

Unlock TLT

| Unlock AEB Table |

Y

Get Block List Entry,
From Bit Offset,

No

Via TLT Set Corresponding
+ AEB Bit
Load 'Timer"
From Block
List Time More

Successors

Y

Get Addresses of
Routineand |—————
Data Set

'Execute’
the
Routine

Get Block List
Entry For
Next Routine

Get Address of
Successor List

+ Yes
Get TLT Entry
for Successor

'

Lock TLT Entry |

'

And SUCCLST
Mask With CEB

12

¢T

(

AEB TABLE

I T T IelT TT T TTTT
|

~— Displacement

TASK LIBRARY
TABLE (TLT)

BLOCK LIST
(Routine Printer Blocks)

SET SUCCESS LIST

A(PCAT Ent.)

A(BALT Ent.)

-~ BLINC

A(Succ. List

A(TLT Ent.) for Succ.

Time Reqd.

Successors

CEB Mask

CEB Word for Task

A (Block List Ent. (1st RTNM

Data Actual
Set Code

TABLE STRUCTURE - GET TASK

DATA SET
ADDRESS TABLE (DSAT)

PROGRAM COPY
ADDRESS TABLE (PCAT)

L~ A(Code)

Size

BASE ADDRESS
LOCATOR TABLE (BALT)

— A(Data Set)

"~ A(DSAT Ent.)

NOTE: "ENT" = "Entry"
A(x) = Address of x

FILTER DRIVER

Read Trace, No. lterations,
No. of Steps, (AVAR RVAR for Each
Step), Initial Data

Y

Initialize Timer

ITCNT<—1

Move Data Into
Position

Y

StepCNT<—1
’+
Call Filter (AVAR (StepCNT),
RVAR (StepCNT))

Print Results

] StepCNT<—StepCnt + 1

StepCNT>
No. Steps

ITCNT <—ITCNT + 1

ITCNT>

No .
No. of lterations

I Compute and Print Time I

1L

FILTER FLOWCHART
Start
Filter

RFact<—1/(RVAR + 2R1)
EFact<—1/(Theta*AVAR + QB2)

Y

'WR; <—QR;*RFact
WE;<— QE;*EFact
(i=123)

Y

Ri<—Ri + WR;*DELRNC (i =1,2,3)
Ei<_ E; + WE;*DELSNA (i =1,2)
Aj<—A;+ WE;*DELSNB (i = 1,2)

Y

ARe-1 - WRl
AE<—1 - WEl

QE4<—(QE4 - WE2* QE2)/Theta
QE5<—(QE5 - WE2*QE3)/Theta
QE6 <—(QE6 - WE3*QE3)/Theta
QR4<—QR4 - WR2*QR2
QR5<—QR5 - WR2*QR3
QR6<—QR6 - WR3*QR3

Y

QRj<— AR*QRj
QFj<— AE* QE;
(i=1,23)

END

15

EXLIGEN DRIVER

Read Parameters

I Trace<—1st ParameterJ

Update NCases
ITERBL, from
Remaining Parameters
as in Get Task

'

Set Up Parameters
for Call

1L TNUM

2. Extemp. Array

Y

Move Data Into
PLITBL (PL/1 Version Only)

TNUM<—1

_>| ITCNT<—ITERTBL (TNUM) |
Initialize Timer
01d (TNUM)<—"New*

Call EXLIGEN
ITCNT<—ITCNT -1

Yes

ITCNT>0

Actually a Subprogram,
in CSect EXLCOM

16

EXECUTION LIST GENERATOR
FLOWCHART

Is
Template #
Passed in

Call =0

Return

No & (Let 'TNUM' = Templ. #)

XPTR Address of the Particular
Area in EXList to be Used for this
Template From Template (TNUM)

(There Are Four Areas Provided,
One for Each 'Sub' Templatej

Is
the '0ld' Bit
Set in Template
(TNUM)?

Return

XLISTIM=-0
XLINTEXT<—0
StartX<—XPTR + 4
StopX-—XPTR + 4

Y

Zero Out 1st
2 Words of All
Work Areas

Y

1C=-0
EC<-0

FlStart -—StartT(I1C)
F1Stop=«—StopT(IC)

Start - F|Start + 200
Cl-=—Template Link
Portion of Template (TNUM)

Cl

EC Edit Out From

PPP Template (CI)

Q UType=— Usertype
Field of PULPAT(PPP)

17

Is 'Inactive’
Bit of PULPAT
(PPP) Off?

Edit out From
PULPAT(PPP)

Y

XMITT ~ 6C* CHAN
+ FCHAN

CHAN
FCHAN
UserID

Y
(Test to See if XMITT
Time Falls Before Adjusted

FlStart)
No

CStop-+FlStop

(Test to See if XMITT Time
+ Gate Width Will Fall
Beyond FIStop)

Y

No

“=(2)
-GATEW -GateW(UType) “@
()

Set Up A(Work Area)
Corresponding to User Type

(Let WA Denote the
Work Area)

WA WA(0) +2
WA(1) CHAN

|

WA(WA(0)
WA(WA(0) +1)

UseriD
CHAN

Y

EC-1
PPP +1

EC
PPP

EC
1D
0?
No
Cl Yes

0?

No

Does XMITT Fall

Before Unadjusted
FiStart?)

(Are We in Format
Interval Zero?)

FIStart «—
XMITT - 200

(AT This Point We Have Established
That:

(1) XMITT < Start
2) XMITT >FlStart
B) 1IC>0

We Have "Moved Back' FlStart,

and Now We Must Check the Last
Entry Placed in EXList to See if We
Can "Get Away" With This Adjustment.

ECe-EC-2
PPP<«—PPP +2

1B

18

60*XListIM
+ XLINText
> FlStart
?

StopT From
Previous Interval
(Now Stored in
EXTEMP)
<— FlStart

Start<—FIStart + 200

(COULD NOT MAKE ADJUSTMENT)

TEMPLERR <—
A(PULPAT(PPP))

(1f the XMITT of the Last Entry +

its Gatewidth (or Interval Extent) is
Less Than the Adjusted FlStart,
Adjustment was Legitimate)

(Return to Either Test Entry
Processing or Tactical Entry
Processing)

19

TestWA (0)
TestWA(0) + 2
TestWA(1) «—
TestT/60

Y

WAWA(0) <— TINTUL
WA(WA(0) + 1) <— TestT/60

No

TestT :

Edit Out
TINTVL From
PULPAT(PPP),

PULPAT(PPP + 1)

CStop «<—
FlStop
- TINTVL

0c

No

Temp <«
F1Start - 200

Yes

FIStart
<Temp

==

=@

No

Temp e—
TestT + TINTVL + 15

F1Stop
<Temp

WAPTR

A(lst Wk. Area)

Any
Work Areas
Left?

Yes

WAPTR <
A(Next WA)

—

Get # ENT, Time

of Last From
WA(0), WA(1)

'

CE <1

Yes No @

WAPTR
WAPTR + 2

Y

CUSERID «<~WA(WAPTR

@—— CCHAN <~ WA(WAPTR + 1)
#ENT<—ENT - 2
()

No

21

——=WAPTR<— WAPTR +2|

(Check for

WA(WAPTR)

CUser1D
+1

[cuserip < cuserip +1 |

Consecutive
UseriD)

No

Format Into CE CUserID
EXList Entry Usertype

EXList (XPTR) €<— New Entry

| XListIM <— CCHAN |

(Check for
Same CHAN
No - ves Test Entry
?
No
[ce < ce+t | XLINText < e
WA(WAPTR) (Usertype)
[#ENT < #ENT-2 |
StopX < StopX + 1
XPTR <= XPTR +1 ’
No
Yes
CE UseriD

Format Into
EXList Entry

EXList (XPTR)

Usertype

<— New Entry

[xistim <= cchan|

XLINTEXT <=} _ Yes
WA(WAPTR)

No

XLINText <—
Gatewidth (Usertype)

'

StopX <«— StopX +1

XPIR <€— XPTR+1

22

CE<1

5C

Calculate Address
for 4 EXList Header
Words in EXTemp

'

XStartX(1C) «— StartX
XStopX (IC) €— StopX
XStartT(IC) €«<— FIStart
XStopT(IC) <— FIStop

[startx < stopx |

C<IC+1

Zero Out 1st
2 Nords of WA's

FlStart <—F1Stop
Start <—FIStart + 200

[Fistop < stoprtic) |

23

(One Complete EXList
Header Stored in EXTemp
for Each Format Interval.)

XSTARTX(IC) <= STOPX
XSTOPX(IC) < STOPX
XSTARTT(IC) <« STARTT(IC)
XSTOPT(IC) < STOPT(IC)

Yes

'

IC <—
IC + 1

IC <4

No

EXIT

ol

(These entries made

for Remaining Intervals.
All of Which Have

No Pulses)

Set '0ld Bit' in @
Template (TNUM)

(sasind [ealjoe] |le
Joj} 0T = Wipimale9)

dAlasn [30 [anuasn

ot
: pAop SIy} Ul
: TAINIL ulRu0) NYHO 1401S
01 S9ldju] 1591 —P aryasn LI¥VIS
01 15E7 JO Bwi| |auuey) XdO01S
01 spio Aaju3 4 X14VI1S
M3Lv9 VRIY YYOM TVIIdAL 151713
AYINT 1VdInd TVOIdAL
sojejdwsa] ¢ Joj
panJasas aoeds ajededas
—
S|eAJa)u] jew.od Jo yoes
4o s1apesy [S|TX3 858U} JO BUQ]
3dALy3sn[a1y3sn [NvHo4 [NwHo 014 |
19 93 ddd 0 —
v 1d01SX
o ¢ 0 1yvisx
0
Xd01SX
. yun MaN
: ooy /7| aetdusy |V ED V] pio ! bion Oy 1avisx
1d01S [1S 0 yur alay pasn 10N 0 juewubissy P # ajejdwa) [#eay
aejdwa) aejdwaj
1vdind IVIdWIL dWILX3

FINIONILS VIVA - ¥OIVIANI9 1SIT NOILIND3x3

25

UNIVERS! GAN

(TR

3 9015 9 5345

