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TOWARDS A STRESS CRITERION OF INJURY- 
AN EXAMPLE IN CAUDOCEPHALAD ACCELERATION* 

Y. KING LIUt 
Department of Engineering Mechanics, The University of Michigan, Ann Arbor, Mich. 48 104. U.S.A. 

Abstract-The usual specification of acceleration (in number of g’s) as the injury criterion 
in the biodynamic response of the human body to vibration and/or shock is quite misleading if 
not invalid. An injury criterion based on stress (or strain) is proposed and shown to have the 
potential of deciding where, w/ten and how injury is sustained. An example in pilot ejection is 
used for illustration. 

1. INTRODUCTION 

THE SPECIFICATION of the number of g’s 
allowable as the injury criterion has been in 
existence for many years. The reasons for its 
popularity are: (1) acceleration is relatively 
easy to measure and (2) the concept fits hand 
in glove with the usual lumped-parameter 
model employed as the idealization of the 
biomechanical system. 

Consider a pilot forced to eject vertically by 
catapult. He quickly acquires two motions: 
(a) a rigid-body motion having a trajectory 
which will clear him from the aircraft and (b) a 
‘wave’ travels from the seat upward toward 
the head. Assuming no mishaps during the 
ejection trajectory, one must now worry 
whether or not there has been any bio- 
mechanical injury due to the ‘compression 
wave’. Roughly speaking, there appears to be 
a concensus that if the chair acceleration is 
less than 20 g, the likelihood of injury is not 
high. These sort of ‘go-no go’ data have been 
the basis of design for many years. 

2.JZXPERlMENTAL CRITIQUE OF 
LUMPED-PARAMETER MODEL 

The mathematical idealization of the 
human body for this case is that of a spring 
(the spine) articulating a mass (the upper 
torso). If the chair acceleration is a rect- 
angular pulse, the response is given in terms 

of the ‘overshoot’ or dynamic load factor, D. 
D is defined as the ratio of the maximum 
spring force to the static spring force. For a 
linear spring, D C 2, while for a nonlinear one 
it can be larger than two, see Liu and Murray 
(1966). The essential point to be made here is 
that the dynamic spring force and the maxi- 
mum system acceleration are both functions 
of relative amplitude (for the linear case, 
they are proportional). 

Experimental evidence, Lissner and Evans 
(1963), using strain gages and/or accelero- 
meters mounted on cadavers show reasonable 
correlation for motions measured at the crest 
of the ilium and the sternum. However, the 
head experienced much higher accelerations 
than indicated by a simple linear spring-mass 
model, see Fig. 1. For instance, the dynamic 
load factor or ‘overshoot’ in Fig. 1 for the head 
is 1.6310.63 = 2.59, while for the lumbar 
region it is 0.5WO.38 = 1.53 (the strain is 
assumed proportional to the force). 

Clinical observations on the condition of the 
spine of 55 Swedish pilots, who had to eject 
by catapult from their aircraft, were reported 
by Hirsch and Nachemson (1961). Thirteen, 
or about one fourth of the subjects were found 
to have incurred vertebral fractures. The 
injuries were invariably compression fractures 
of the vertebral bodies, especially the end- 
plates. In five cases a single vertebra was 
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Fig. 1. Typical experimental record (Lissner,and Evans, 
1963). 

damaged whereas eight cases showed multiple 
fractures. Figure 2 summarizes the incidence, 
distribution and the level of vertebral fractures 
that were detected. It is interesting to note 
that the middle part of the thoracic spine was 
subjected to the highest frequency of fracture 
followed next by the lumbar region. 

A recent paper by Henzel, Mohr and von 
Gierke (1968) summarizes and expands on 
the mechanism of spinal injuries due to pilot 
ejection together with data on the statical load 
carrying capacity of many vertebrae. it also 
indicates the dynamical implications of these 
results. 

No amount of analytic pyrotechnics with 
the single-degree-of-freedom lumped-para- 
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Fig. 2. Incidence, distribution and level of vertebral 
fracture in pilot ejection (Hirsch and Nachemson. 1961). 

meter model can possibly explain or fit 
the experimental data and/or clinical observa- 
tions quoted above. One can, of course, 
increase the degrees-of-freedom, such as the 
seven-mass system proposed by Coermann 
er al. (1960). However, such a system has 
three inherent limitations: (a) it has a limited 
frequency content; (b) a ‘wave’ is transmitted 
with infinite speed, i.e., any motion of the 
first mass is immediately felt by the last mass, 
which is physically untenable: (c) the analysis 
of such a system is far from a simple task 
especially if certain nonlinearities are taken 
into account. 

3. FIRST-GENERATION CONTINUUM MODELS 

In order to obtain wave responses, a con- 
tinuous type model is needed. Hess and 
Lombard (1958) proposed the uniform linear 
elastic rod as the wave-guide model for the 
upper torso. By varying the wave speed c of 
the rod they were able to obtain a ‘close’ fit to 
the measured response of the head of test 
subjects. The time of wave arrival thus deter- 
mined averaged 25 msec with a range of from 
20 to 30 msec. A very simple continuum 
model with an adjustable parameter, time of 
wave travel, was developed for determining 
the motion of the head when the vertebral 
column is subjected to known longitudinal 
accelerations at its lower end. However, 
since ‘matching’ of experimental data and 
analytic results was obtained at only one point 
on the rod, namely at the head, such a con- 
tinuum model cannot be justified as a model 
for predicting injury to the vertebral column, 
not at least by virtue of the above study alone. 

Carrying the continuum approach further, 
Liu and Murray (1966) proposed and studied a 
model consisting of a uniform rod capped at 
one end by a rigid mass, Fig. 3. The rigid 
end-mass represents either the head or the 
head and part of the upper torso (e.g., the 
combined mass of the thoracic cage, limbs 
and head) and the rod represents the spinal 
column. The dimensionless form of the 
equation of motion is 
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Fig. 3. Continuum model for vertical acceleration. 

4f = u,rz (1) 

with the initial and boundary conditions as 

u(x, 0) = u&c, 0) = 0 (2) 

u(0. t) = f(r) (3) 

u,( 1.1) = - hutt( 1, t) (4) 

where subscripts denote partial differentiation. 
The dimensionless variables are defined as 

u = u’/l, x = ~‘11, t = et’/1 and 

A = MIpAL (5) 

where x’ = longitudinal coordinate, u’ = 
displacement, p = mass density, A = cross- 
sectional area, I= length of rod, t’ = time, 
A= head to stem mass ratio, c = wave 
speed = (~??/p)~‘* and E = modulus of elasticity. 

As a problem in mechanics, the proposed 
model has been previously investigated by 
Burr (1950) and Thomson (1960). The former 
used a recursive mathematical scheme due 
to Donnell (1930) to compute the effects for 
several wave-transit times, while the latter 
made use of the Mellin inversion theorem to 
obtain an infinite series solution. The Burr 
solution has the severe restriction that the 
scheme works only for a step-function input. 

Furthermore. the method became unwieldy 
as the number of wave transits increased 
beyond three. The Thomson solution turned 
out to be non-computable because the infinite 
series is very slowly convergent, if at all. The 
method detailed in (Liu and Murray, 1966) 
and summarized below avoids both these 
difficulties. 

Taking the Laplace transform of equations 
(l)-(4) yields 

n(x, P) = 

f(p)[e-““+ a( p)e-p(2-“)][1 + a( p)e-2p]-1. (6) 

where o(p) = (l-hp)/(l+Xp) and p is the 
transformed variable. Application of the bino- 
mial, shifting the convolution theorems give 
the following exact solution for an arbitrary 
pulse,f(t), i.e., 

u(x, t) =f(t-x)+ 

&f(r-x- 2n) -f(r+x-2n)] 

+ i i k-1) h”(v2: 1)‘(r) 
n=1 a=1 

I 
t 
WZ - 2n -4 -f@ - 2n + x)1 

x” (5 _ t)‘-le-Ut-O&t, (7) 

wheref(r) = 0 for t < 0. The results for a step 
function acceleration pulse (i.e., correspond- 
ing to J;@) = l/p3) is displayed in Fig. 4 for 
several wave transit times. The ordinate is 
given in terms of dimensionless stress and 
acceleration. The actual stress, o’(x. t). is 
related to its dimensionless counterpart by 

u(x, 1) = u’ (x, t)lE = - u,(x, 1). (8) 

If the injury criterion is the compression 
failure of the vertebral walls, then Fig. 4a 
shows that injury will occur in the lumbar 
region after two wave transits-in good agree- 
ment with clinical and experimental data; 
Lissner and Evans, 1963; Hirsch and 
Nachemson, 196 1. 
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Fig. 4. Theoretical predictions for acceleration and stress: 
(a) and (b). 

4. LARGETIME LIMIT AND THE ‘OVERSHOOT’ 

The expression for compressive stress in 
the transformed variable p is 

UN, P) = -i;i,(x,p) = 
--f(p) Tp e-P=+ a(p)e-d2-*p][l + a@)e-*P]-l. 

The large time limit is found from the 
Tauberian or Final-value theorem which 
states: If u(x, t) and aa@, t)l& are Laplace 
transformable and the limit of a(x,t) exists, 
then the behavior of a(x, r) in the neighbor- 
hood of t --* m corresponds to the behavior of 
-p&(x,p) in the neighborhood of p + 0, 
(see Thomson, 1960). Proceeding formally for 
f(p) = 1/p3, i.e., a step acceleration input, one 
encounters the O/O indeterminate form. Using 
L’Hospital’s rule once will yield readily 

!im [a(x, r)J = 1+ h - x. (IO) 

We now examine whether the conditions on 
~(x, t) are satisfied. Both cr and au/al are 
Laplace transformable, but the limit of 
u(x, t) does not exist since the system has no 
dissipation. What then is the meaning of the 
limit shown in (lo)? It is precisely the stress 
on the bar due to the dead weight above the 
coordinate under consideration, e.g., a( 1, t) + 
A and ~(0, t) + 1 +A. These statical stress 
values are the asymptotes to which the res- 
ponses tend to if dissipation were included. 
A similar situation exists for lumped-para- 
meter damped and undamped systems. In 
view of (4) and (lo), one gets 

KiI [un(l,t)] = 1. 

The ‘overshoot’ is now defined as the ratio 
of the maximum dynamical value (of accelera- 
tion, stress or strain) to its statical equilibrium 
value. Since stress and acceleration are differ- 
ent things, it is interesting to compare the 
overshoot using these quantities. For instance, 
using A = 0.2, we get from Fig. 4a: 

(a) At x = 0 (load end) 
Acceleration overshoot = 1 -O/l -0 = 1-O 
Maximum dimensionless stress = 2-3 
Stress overshoot = 2-311-2 = l-9. 

(b) At x = 1 (head end) 
Acceleration overshoot = 2*44/1*0 = 2.44 
Maximum dimensionless stress = 0.485 
Stress overshoot = 0*485/0~2 = 2.425. 

It is significant to note that low overshoots 
correspond to high absolute stress values 
(x = 0) and vice versa. 

The above examples point out clearly that 
the absolute value of stress is the meaningful 
injury criterion and the ‘overshoot’ concept is, 
in fact, quite misleading, if not invalid. 

5. DISCUSSION OF RESULTS AND 
GENERALIZATIONS 

It might seem far-fetched to model the spine 
by a rod. Its justification was most succinctly 
stated by Payne (1961) for lumped-parameter 
models: “For short-duration accelerations, 
however. the soft. low-freauencv Darts of the 
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body (such as the viscera) do not deflect far 
enou& to load up the spine, _ . . “. These 
remarks when applied to the present model 
means that the model is valid only for short- 
duration accelerations. If waveshape corres- 
pondence is to be better than indicated by 
comparing Figs. 1 and 4, one must incorporate 
the many factors which have not been taken 
into account, e.g., damping, internal (muscles, 
viscera) and external (seat belts) constraints, 
curvature, nonuniformity of mass distribution 
and section properties, nonlinear material 
properties, etc., etc. 

Damping can be incorporated into the model 
through the one-dimensional ‘correspondence 
principle’ in viscoelasticity (Fliigge, 1967). It 
can be shown that the maximum and equili- 
brium values are only slightly affected by the 
viscoelastic properties, but the waveshape of 
the response is altered. 

By considering the upper torso as a one- 
dimensional but complex bar-type structure, 
it is possible to take into account the trans- 
mission and reflection of stress waves through 
elements with gradual changes and dis- 
continuities in area and material as well as the 
presence of rigidly attached masses. The 
technique is essentially a modification of the 
well-known method of characteristics 
(Kolsky, 1963). 

The above refinements are in progress but 
they do not detract from the observations 
that the spatial distribution of the human 
body is of pn’mary importance. In fact, its 

consideration is the first step towards an 
understanding of where, when and how 
injuries occur. 
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