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BEHAVIOR OF GAS EMBOLI SUBJECTED TO 
PRESSURE VARIATION IN BIOLOGICAL 

SYSTEMS* 

K. S. CHANt and WENJEI YANG+ 
The University of Michigan, Ann Arbor, Mich. 48104. U.S.A. 

Abatraet- Dynamic behavior of gas emboti in a quiescent liquid having the rheological proper- 
ties of human or animal blood subject to pressure variations is studied. Consideration is given 
to step and sinusoidal changes in the system pressure. It is disclosed that in the study of 
dynamic behavior of gas emboli, a Newtonian model may be used to approximate the rheo- 
logical behavior of human or animal blood in which the emboli are situated. The instantaneous 
embolus size in blood under pulsating pressure change may be determined by the equilibrium 
condition of instantaneous static pressures. 

INTRODUCTION 

DURING open-heart surgery, microbubbles of 
air and oxygen in the extracorporeal circul- 
ation can enter the artificial circulation system 
and result in gas embolization which causes 
various degrees of harm to vital organs 
(Selman et al., 1967; Anderson et al., 1965; 
Spence et al., 1965; and Kaplan et al., 1962). 
The principal source of microbubbles is the 
blood channelled from the heart which is 
returned to an oxygenerator as an air-blood 
mixture. Venous air embolism is a recognized 
complication of various surgical (such as 
neurosurgical) diagnostic and therapeutic 
procedures. It may occur during anesthesia 
resulting from accidental injection or aspira- 
tion of large amounts of air into a vein (Durant 
et al., 1947; Michenfelder et al., 1966; Gott- 
lieb et al., 1965; Munson et al., 1966; and 
Mayrhofer et al., 1966). 

In the present work, the dynamic behavior 
of gas emboli situated in a quiescent liquid 
having the rheological properties of human or 
animal blood subject to pressure variations is 
studied. Experimentally measured shear 
stress-shear strain relationship of the blood 
of a dig, which is commonly supposed to have 
the properties of human blood, is used in the 

analysis. Consideration is given to sinusoidal 
and step changes in the system pressure. 
Results obtained from the study may cast 
light on the answer to two important ques- 
tions: the possible growth or decay of an 
embolus during intracorporeal circulation of 
blood and the validity of analytical results 
using a Newtonian model for blood. 

The study of bubble behavior subject to a 
step change and to sinusoidal changes of 
pressure has been reported by many investi- 
gators (Plesset, 1949; _Forster et al., 1954: 
Plesset et al., 1954; Striven. 1960; Borot- 
nikova et al., 1964; and Solomon et al., 1967). 
However, in almost all those cases, the pro- 
perties of the fluid, the magnitude of the 
pressure change and the frequency of the 
sinusoidal fluctuation are far different from 
those found in a biological system. In the 
present analysis, the shear stress-shear strain 
relationship of the fluid is as given by Bayliss 
(1960), the density and surface tension as 
given by Gottlieb et al. (1965). the frequency 
of the system pressure fluctuation is 72 clmin, 
and the amplitude of fluctuation 0.05. For the 
step change, the system pressure suddenly 
drops, at time equal to zero, from 1 atm to 
3 atm. The initial embolus radius is 1 Oe2 cm 
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and the gas in the embolus undergoes an adia- 
batic process during the growth or collapse of 
the embolus. The effect of approximation 
with a Newtonian fluid or inviscid fluid on 
the result of analysis involving blood is also 
considered. 

ANALYSIS 

In spherical co-ordinates and on the 
assumption of a homogeneous incompressible 
liquid surrounding the embolus, the continuity 
and momentum equations can be written 
(Yang et al., 1966) as 

+; (1324) = 0 

and ,,($+u$)=-~-IP.rl. 

respectively, where 

}V.?jr= 

(1) 

(2) 

(3) 

If R and R represent the instantaneous 
bubble radius and its first time derivative, 
integration of equation (1) from r= R to 
r = r yields: 

R2k 
u=P’ 

When the last expression is substituted into 
equation (2) followed by integration between 
limits r and r. it gives the following equation 
for the pressure distribution in the liquid. 

where r, is the reference radius from the The corresponding pressure distribution 
embolus center in the liquid. equation in the liquid at distance r from the 

For the embolus surface, substitution of R embolus center is: 
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for r and consideration for the equilibrium of 
forces on the bubble surface yields, as in 
Yang et al. (1966): 

= P,,(R) --PAro) -f-hR %rrdR) 

-J,V.,,& (5) 
R 

in non-dimensional form. 
The shear stress r,+z (R) and the integral 

in equation (5) for various fluids are given in 
Yang et al. (1966). Yang et al. (1965) presents 
an approximate method for the analysis of 
bubble dynamics in an incompressible, non- 
Newtonian liquid having an arbitrary stress- 
strain relationship. Briefly, if the shear 
stress-shear strain curve is approximated by 
(n+ 1) linear combinations, 0, 1, 2,. . . n, 
and the slope of each is cc, ql, qz,. . .r),, 
bubble equation (5) can be expressed as: 

pl(Rji+&*) = P,(R)-P,(=J)-$ 

. 
--4(q.+pp)+h) 

( 
n-1 

x $7, +I: n In 
i=O 

5 (6) 
ri ) 

where the upper sign is for R 2 0, lower 
sign for R < 0 

r,= (2d(3)R2 1 R 1 /Cr)1’2 fori=O, l,... , 

n, 
and 



BEHAVIOR OF 

P,(r) = Pdw) +[y+R2(+$)] 

a (7) 

The initial conditions are R(0) = 1.0, 
andi = 0. 

For the gas in the embolus undergoing a 
polytropic process, its pressure may be ex- 
pressed as: 

P, = P&JO) gg 3y c 1 (8) 

where P, is identically P,(R) in equation (6), 
P,(O) is the initial gas pressure and y is the 
polytropic constant. The two variations in the 
system pressure under consideration are: 
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slowly applied to the embolus. Hence. the 
instantaneous mean bubble radius can be 
determined using the equation R = 2alP,-- 
P(m) obtained by the equilibrium condition 
of static pressures. where P(m) is the instant- 
aneous blood pressure and u is the surface 
tension. 

Numerical calculation was performed for 
the case in which the external pressure acting 
upon a human body undergoes a step change 
from one atmosphere to one half atmosphere. 
This corresponds to the case of P(w) = PO 
(1 +A sinQr+D) where PO = 760 mm Hg, 
D = -0.5, A = 0.05, and w = 72 clmin. The 
shear stress-shear strain relationship for 
blood flowing in a rigid tube shown in Fig. 1 
was used from which the parameters of a 
corresponding Bingham plastic was obtained. 
Results are illustrated in Figs. 2 and 3. The 

P,(w) = 
P,( 1 +A sinn r) . . . for a sinusoidal change 
P,(l+AsinRt+D) . ..forastepchange (9) 

where PO is the atmospheric pressure, PoA is 
the amplitude of blood pressure pulse, Sz is 
the dimensionless frequency of blood pressure 
pulse and P,,D is the amount of a step change 
in the external pressure. 

RESULTS AND DISCUSSION 

For a human body under normal atmos- 
pheric conditions, the blood pulse frequency is 
about 72 clmin or 04007 rad. per unit of non- 
dimensional time. The natural frequency of an 
embolus of radius lo+ cm in human blood is 
about 19.5 rad. per unit of non-dimensional 
time. Therefore, relative to the natural 
frequency of the embolus, the frequency of 
the blood pressure fluctuation is very slow. 
Under this condition, the embolus will os- 
cillate at its natural frequency. This implies 
that as the blood pressure undergoes one 
cyclic change, the embolus oscillates as many 
times as its own natural frequency. Therefore, 
the effect of the blood pressure fluctuation on 
the embolus is like that of blood pressure 

I 

sudden fall of the mean external pressure 
causes the sudden expansion of the gas in the 
embolus. The emboius then oscillates about 
its instantaneous mean radius corresponding 
to the instantaneous blood pressure. Its 
frequency is not the natural frequency at initial 
blood pressure which is 19.5 rad. per unit of 
nondimensional time but that corresponding 
to the subsequent instantaneous blood 
pressure. 

Analogous to the previous case, it can be 
concluded that the effect of blood pressure 
pulsation on the dynamic behavior of the 
embolus is negligibie. Through physical 
reasoning, one may find that the conclusion 
is also applicable to the case where the gas in 
the embolus is soluble in blood. 

Figure 2 shows the time history of the 
embolus radius following a step change in the 
blood pressure at a large distance from the 
embolus. Because of the presence of gas in 
the embolus, the embolus size oscillates with 
time. Its amplitude decreases slightly but 
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Fig. 1. The pressure-flow curve of dog’s delibrinated blood, 
relative cell volume O-49, observed in a tube of radius 

0348 cm and length I55 cm. 

I 
B 
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Fig. 2. Time history of embolus radius following a step change in system pressure from 1 atm to O-5 atm. 
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Fig. 3. Time history of blood pressure at r = 1.5 R, following a step change in system pressure from 1 atm 
to 0.5 atm. 

continuously due to energy dissipation (ir- 
reversible conversion of mechanical energy 
into internal energy due to viscosity). Eventu- 
ally, the oscillation will vanish leaving the 
embolus at a size consistent with the final 
system pressure. 

In the absence of viscosity, blood will 
behave like an inviscid fluid. For such a case 
the oscillating amplitude remains constant as 
shown in Fig. 2. A significant difference in the 
dynamic behavior of the gas embolus resulting 
from viscous and non-viscous models for 
blood becomes obvious. Figure 2 also shows 
that the difference in results using a Newtonian 
Model or a Bingham Plastic Model to express 
the rheological behavior of blood is very small. 
This is because in the Bingham Model the 
yield stress r. is small, and so the shear stress- 
shear strain curve can just as well be approxi- 
mated by a Newtonian model. Hence, for 
practical purposes, a Newtonian fluid may be 
assumed. 

Figure 3 gives the blood pressure fluctuation 
in the liquid at r = 1.5 R. from the embolus 
center following a step change in the system 
pressure. The curves are similar, though of 
opposite sign, to those of radius oscillation 
shown in Fig. 2. Since the magnitude of local 

blood pressure falls rapidly away from the 
embolus center, the actual blood pressure in 
the immediate vicinity of the embolus can be 
expected to be much higher. In a manner 
analogous to the time history of the embolus 
radius, the amplitude of the blood pressure 
oscillation decreases with time for both the 
Bingham and Newtonian models. In the 
absence of viscosity, however, the oscillating 
amplitude will remain the same. 
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NOMRNCLATURRt 
n,m parameters in power law model 

p pressure; P,(R), of gas at embolus surface; 
PM. of gas inside at zero time; Pr(r), of blood, 
Pr(r& of blood at a reference radius rO; P,,(r), 
of blood at zero time; PC,,, of blood at infinity 
or system pressure. 
pressure difference, = P,_, - Pm 

tUnit in GGS system. 

p(+h 
p* T;P:= 

PAR)-P, 

AP 
; pr* = 

P(r) - P#~ , p:. = h(r) -h -. 
AP AP 

R embolus radius 
R. initial embolus radius 
R dRldt 
R d2R/dt2 

y RIR, 
6 * R@,/ApP 
R* R Rop,lAp 

r distance from the center of spherical embolus 
r0 reference radius 
t time 

r’ (t/R3(Ap/pr)“* 
u radial velocity of blood flow at r. 

Greek letters 
parameter of Bingham model 
viscosity; pf. of liquid; pp. of gas 
WR~UIPPPY* 
density: p,, of blood; pO, of gas 
surface tension 
&UP) 
normal stress; rrr, 7ge and rti. in the direction 
of r, 6 and 4. respectively 
yield stress of Bingham model 
viscous force per unit volume in radial direc- 
tion 
frequency of blood pressure pulsation 
natural frequency of embolus radius oscillation 
in blood 
oRo(Ap/p,)-“Z 

Superscripts 

* dimensionless physical quantity 
. first derivative with respect time 

*- second derivative with respect time. 

Subscripts 

g gas 
1 blood 
0 at zero time, except r, and rw 


