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ABSTRACT

An unsteady heat transfer analysis is presented
for single fluid heat exchangers having internal heat
sources. The transient effect is introduced through fluc-
tuations of the fluid velocity about a mean value. It is
found that the phase angle and amplitude for the fluid
and wall temperatures, and the interface heat flux have
oscillatory characteristics. These results apply to cer-

tain types of nuclear reactors.
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1. INTRCDUCTION

Although much work has been published on unsteady heat transfer,
it appears to have been confined to problems of the boundary layer type.
The customary method of solving these problems is to impose a boundary con-
dition along the fluid-wall interface, and then solve the energy equation
of the fluid. The interesting and important problem of how the wall re-
sponds to fluctuations of an external fluid flow about a steady mean has
apparently remained untreated.

In this paper a start is made to investigate this subject. The
fluid energy equation is simplified by neglecting the viscosity of the
fluid. Then the fluld and wall energy equations are coupled along the
fluid-wall interface by means of the natural boundary conditions. A speci-
fic example, taken from the field of Nuclear Engineering, is used to illus-
trate the analytical procedure. This example pertains to certain types of
nuclear reactors which can be idealized as consisting of three elements.
These are a coolant (fluid) which flows coaxially between a moderator and
a rod (wall) in which heat is generated (Figure 1). Because the coolant
thickness is much less than the radius of the rod, the radial variations
in the coolant velocity and temperature may be neglected. The energy equa-
tion for the coolant may then be approximated by a simpler equation. In
those instances where the moderator possesses a low thermal conductivity
as compared to the fluid and rod, the heat transfer from the coolant to
moderator may be neglected as a further simplication.

The purpose of this paper, under the foregoing assumptions, 1is
to present solutions for the temperature fields of the rod and coolant when

the coolant velocity fluctuates about a mean value.
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2, FORMULATION

The energy equations for the rod and coolant may be written as:

¥
§£EE§_1 = div (k grad 6*) + ¢q' , (1)
ot
D(C,T*
e _E_B;—Z = div (k' grad T¥) , (2)
Dt

where (p,p!') are the densities, (0%,T*) the temperatures, (CpsCp) the spe-
cific heats at constant pressure, and (k,k‘) the thermal conductivities of
the rod and coolant respectively. The time is t%*, and the heat generation
per unit volume in the rod is q"' .

Neglecting radial variations of the velocity and temperature of
the coolant, axial conduction in both the rod and coolant, heat transfer
from the coolant to the moderator, and assuming all physical properties

are constant, (1) and (2) can be replaced by the following equations:

do% _ . QPe% | 1 de* 1 ,
pCp Sox k(BT*E + X 5;;) a4 (3)
ity (OT¥ OT*, 00 I
(D CP)A(Bt* + U ax*> - - Pk(ar*)r*::R 3 ()

where A 1is the cross-sectional area of the coolant, U the velocity of
the collant, P the periphery of the rod; R the radius of the rod, and
(r*,x*) are the cylindrical coordinates.

This same physical system has been considered recently for a
starting type of transient phenomena by introducing a step change in the
rate of heat generation within the rodn(l> It will now be assumed that
the heat generation is constant with respect to time and uniform through-

out the rod, but the coolant is fluctuating in a simple harmonic motion



about a mean value Uy with a small amplitude € and an angular frequency
w¥, so that
U = Uyl + € exp(iwt)], (5)

where € << 1. By introducing the non-dimensional variables

x = (x¥/R)/Pet , r = (r*/R) ,

t = at*/Re , Pe'= QU,/R° ,

o = o*(q" R?/x), T = T#/ (2" R%/X) ,

A= (PR/A)(QCP/Q‘Cé), W = W¥R2/ (6)

in which & 1is the thermal diffusivity of the rod, and Pé, the Péclet

number, then (3) and (4) become

% . Pe .1 .,

St dr2  r or ’
Iy 1 iwt)] L= - (), 8
- + [1 + € exp(int)] < (5r>r=1 (8)

3. METHOD OF STUDY
Considering the steady periodic (or asymptotic) solutions of the
rod and coolant temperatures, which 1s the purpose of the present study,
it is appropriate to write:
0 = 0, + e9yexp(imt) , (9)
T = T, + €Tqexp(int) , (10)

where 04,75 and ©71,T] satisfy:

Fo, 1 d6g
0 = (855— + 2 _;—) + 1, (11)
dTo _ (9%
. S (12)
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and
2
07617 1 99
iwe] = (== + — —
1 (arg - ) (13)
iwTy + afy , 4T - . (é@_l) ; (14)
dx dx or .19
with the boundary conditions:
T, = 0, Ty = 0, at the inlet of the coolant, (15)
%9 =0, ¥L =0, at the center of the rod, (16)
or or
To = 655 T1 = 01, along the coolant-rod interface. (a7

T, and 6, may be obtained readily by solving (11) and (12)
subject to the boundary conditions (15), (16), and (17). The results are:
To(x) = x/2 , (18)

@O(x,r) = x/2 + (1~r2)/4 . (19)

To determine T and ©7, the method is outlined as follows:

the appropriate solution of (13) satisfying (16) is
01 (r,x) = A(x)dy(13/20l/2r) (20)

where A(x) is an integration parameter to be determined, and Jo is the
Bessel function of first kind of order zero in the usual notation.

Using the Equations (17), (18), and (20), the Equation (14)
may be reduced to the following first order, ordinary and non-homogeneous

differential equation:

s [io + (o/1)L/20y (13/21/2) /50 (13/260/2) 1 = — 172 5,(13/201/2).
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where J] is the Bessel function of first kind of order first., The solution

of this equation is:

A(x) = B exp {-[iw + (w/i)l/2gi(i3/2ai/2>/Jb(ia/ea;/e)]}

Sa/2 Tiedo(13/20M2) ¢ (w/1)V/25,(13/261/2) ), (ep)

where B 1s an integration constant to be determined. Combining Equations
(20) and (22), and applying boundary conditions (15) and (17) results in

the following:

T (x) = - 1 1 - exp { io + (/i) 1/2J1 .3/2 1/2 )/ Io! /2 1/2) }
t 2 1w + (w/1)125 (13/241/2) /Jo(l3/2 172y ’

(23)
and | |
11 - exp{-liw + (@/1)Y25 (13/201/?) /55 (13/241/2) 15
2 1w + (w/i)l/2Ji(i3/2 &;/2)/Jb(13/2 uﬁ/g)

@l(T,X> = -

Jo(i3/2w1/2r)

~ (24
J, (13/241/2) 2

For numerical convenience only, the coolant and rod temperatures
may be rearranged as:

o _ . 1/2 . '
[exp(_gax) 2exp( aX)COSbX+l] exp[1(wt-Pnp) 1, (25)

£
2 2 42

T(g,t) = — X -

N |-

and

1 oL
@(r,x,t) = > X + E(lmrQ)

1/2
exp[i(wt-pg) ],

(26)

)l/ [exp(-Eax)-Eexp(wax)cosbx + l]

€ 2
- (c +d!
2 a2 + b2



where
a = (o/2)Y2[(Uvy -V ) - (U,Up+V,V;) 1/ (U 2+ 2), (27)
b= o+ (w/2)R(Uv, T ) + (U Uy +VV9)/ (U247 2) (28)
¢ = [UgUp(r) + VoVo(x) 1/ (U2 + V2) (29)
. N1 2 2
d = [VoUo(r) - UVo(r) 1/ (U~ + V,°) (30)

¢T -~ tap-l D_- exp(-ax)(bcosbx + asinbx) ) (31)

a - exp(-ax)(acosbx - bsinbx)

pg = fp - tan-t(d/c), (32)

and (UO,VO) are the real and imaginary parts of the Bessel function of first
kind of order zero with complex argument, (Ul,Vl) the real and imaginary
parts of the Bessel function of first kind of order first with complex argu-
mento(2> It may be noted that Uy, V,, U; and V; should be calculated for
the modulus (wl/2> and the argument (m/4), but Ug(r) and V,(r) for the
modulus (wl/gr) and the argument (ﬂ/ﬁ)a The foregoing procedure completes
the required solutions for the temperature distributions.

It remains to determine the fluctuating heat transfer from the

rod to the coolant. The total heat flux per unit area of the rod is:

*
% = k(2 (33)
51’"* r*:R
In terms of non-dimensional variables Equation (33) becomes
_ 90
a=- () (34)

where

= gq*/q"R . (35)
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It follows that

q = qo + €q1 exp(iot) , (36)
where
B =& =2, (37)
_ (a@l 11 - exp{~[iw+(a/i)l/gql(i3/2wl/2)/Jb(13/2aﬂ/2)]x}
q=-F) =3 ,
r=l 1+ (13/201/2)3,(13/201/2) /3, (13/20L/2)

(38)
Again, for numerical convenience only, the total heat flux per unit area

may be written as:

_ 1, € (-2ax)-2exp(-ax)cosbx + 1 1/2
) = L+ £ (ezlen) Foxplan)eo explilot - )1, (39)
where
e =1+ (w/E)l/gl(Uon-VoUl) + (UpU+VoV1 )1/ (U241 @), (40)
£ = (0/2)Y 2 [ (U Vo) - (UgU1+Vor1) 1/ (11241?), (41)
B = tan'l[f - exp(-ax) (f cosbx + e sinbx)] (42)
q . .

e - exp(wax)(e cosbx - T sinbx)

It will now be convenient to introduce the gquasi-steady value of
the amplitude of the collant and rod temperatures, and the interface heat
flux. Accordingly, in the Equations (23), (24), and (38) replacing the
Bessel functions and the exponential terms by their series expansions for
small values of the argument results in

T, (x) = 61(r,x) » - %X s (43)

and

q(x) - ( =)exp(in/2). (44)



The ratio of the amplitude of the fluctuating term to its quasi-
steady value for the collant and rod temperatures, and the interface heat

flux may then be written as follows:

=1 exp(-2ax) -2exp(-ax)cosbx + 1 1/2 |
i X[ a2 + 12 ‘] ’ (45)
2 2\1/2 1 (exp(-2ax)-2exp(-ax)cosbx + 1112
ARg = (c=+d”) L [eXpl-caX)-ceXp)-aX)CcOoSpX ] ’ (46)
and
AR, = 2 [exp(-Eax)-2exp(-ax)cosbx + 1]1/2 -
q ~ wx el + f2 ) 7

where AR stands for the "Amplitude ratio".
Values of ¢T’ ¢@ at the center of the rod and ¢q’ and ARq, ARy

at the center of the rod and AR for three different locations and as

ql
functions of the angular frequency, are given in Figures 2, 3, M, 5, 6,

and T.

L. CONCLUSIONS

Single fluid heat exchangers having internal heat sources serve
as the basis for analysis in this paper. The problem is one of unsteady
heat transfer wherein the transient phénomena is introduced through fluctua-
tions in the coolant velocity.

It is found that the phase lag in the coolant temperature approaches
zero for small values of w and ﬁ/2 for large values of w, being similar to
boundary layer type problemsa(3) The behavior of this lag,; however, shows
a fundamental difference when compared to boundary layer problems. Phase
lags in the latter are monotonic in nature but show an oscillatory character

for the situation discussed in this study.



The phase lag in the rod temperature also approaches zero for
small values of w, but, unlike the coolant temperature, approaches infinity
for large values of w.

In regard to the interface heat flux it is found that small
values of ® cause the phase angle to lead the coolant velocity by n/2
whereas large values of ® produce a lag of ﬂ/40 This apparently strange
result can be understood if the same angle is evaluated with respect to
its quasi-steady value. If this is done, a phase lag approaching zero for
small values of @ and 3ﬁ/4 for large values of ® 1s obtained.

Amplitude ratios for the coolant and wall temperatures and the
interface heat flux behave in a similar manner, approaching unity for small
values of w, and zero for large values of . Again, in contrast to the
monotonic variations in the amplitude ratios of the boundary layer problems,
here one finds damped fluctuations in the variation of the amplitude ratios.

It would seem pertinent now to mention two possible extentions of
this present study. The first 1s related to the power generation in the
rod. As is well known, heat generation in a nuclear rod varies cylindri-
cally in the radial direction and hyperbolically in the axial direction
rather than being uniformAthroughouta(4> This condition of space dependent
power generation causes additional complexities, but could be handled in a
manner that is essentially similar to the procedure presented in this paper.

A second extension of this study regards the introduction of fluc-
tuations in the power generation instead of coolant velocity as was done in
the present analysis. The first two approximations of coolant and rod tem-
peratures would yield the exact solutions, thus, the assumption ¢ << 1

would be unnecessary.
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