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The fundamental Smoluchowski flocculation rate equations including the effects 
of polydispersity and particle-particle potentiM energy barrier have been solved for 
any initial particle size distribution. The procedure for the numerical solution of the 
set of nonlinear differential equations involved the combined use of the Runge-Kutta 
and the Hamming methods by the IBM 360 computer. It was assumed that the only 
rate process is the passage of the particles over the primary electrical barrier to 
flocculation of suspensions (or coalescence of emulsion droplets). The input data were 
the surface potential, dielectric constant, temperature, Debye-Huckel kappa, vis- 
cosity, Hamaker constant, and the initial particle size distribution. The output in- 
cluded the time changes in the particle size distribution, the polydispersity and inter- 
action barrier effects on the rate and the time dependency of the mean polydispersity 
and interaction barrier of the dispersed system. The changes in the particle size dis- 
tribution have also been studied by means of a similarity transformation which leads 
to a self-preserving spectrum. When the electrical barrier was small, any given initial 
distribution became more polydispersed with time and the total number of particles 
decreased more rapidly than second order with respect to time owing to the prefer- 
ential fiocculation of Miiller. When the electrical barrier was appreciable, the dis- 
tribution narrowed with time. These results were consistent with the particle size 
effects on the interaction potential. The predictions can now be directly used to com- 
pare experimental Coulter counter data with theory. The general method of numerical 
analysis can be easily adapted to cases involving other forces of repulsion between 
suspension and emulsion particles such as steric (or entropic) repulsion. 

The generM problem of theoretically pre- 
dicting the particle size distribution changes 
with time for suspensions and emulsions due 
to perikinetie flocculation and/or  immediate 
coalescence of emulsion droplets upon con- 
tact  has been undertaken usually for the 
case in which no repulsive barriers are 
present (1-3) and to some extent for the 
case when there is an electrical repulsive 
barrier (4). The changes in the particle size 
distribution have also been studied by means 
of a similarity transformation which leads to 
a self-preserving spectrum (2, 3, 5, 6). 

Recently, the problem of explicitly 
accounting for the particle size effects upon 
the particle-particle interactions was dis- 

1Tanabe Seiyaku, Osaka, Japan. 

Journal of Colloid and Interface Science, Vol. 29, No. 3, March 196g 

cussed and some computations were pre- 
sented (7). When electrical barriers exist 
between particles in a heterodispersed sys- 
tem, computations over a wide range of 
conditions have shown that  small particles 
may preferentiMly flocculate (or coalesce) 
with themselves or with larger particles at 
rates that  are 10 to 50 orders of magnitude 
faster than those of particles 10 times 
larger. 

In  the present study the fundamental 
flocculation equations including both the 
effects of polydispersity and interparticle 
potential energy barrier have been solved 
for any initial particle size distribution. I t  is 
noteworthy that  many of the computations 
represent the first of their kind. I t  is now 
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possible to directly rdate  time changes in 
particle size distribution of emulsions and 
suspensions to quantitative theories. 

THEORY 

The basic kinetic theory of rapid floccula- 
tion of colloidal particles was worked out by 
Smoluchowski (1). A refinement of the 
theory was given by Fuchs, who included 
the total interaction energy between two 
diffusing particles (1). The general floccula- 
tion expression, which is a set of nonlinear 
ordinary differential equations that  describe 
the rate of change in the particle concentra- 
tion of size nk in a discrete size distribution, is 

i=k--i 
clnl~ _ 1 ~ 47rDij Ri3"ni n3 

dt 2 i=l,j=k--i W i j  

- 

[1] 
i=l W i k  

( k  = 1,2 ,3  . . .  ~ ) ,  

where Dq is the sum of the diffusivities of 
the i th and j th  class particles, R~j is the 
collisional radius, W~i is the Fuchs stability 
function, n~, n3, and nk are the concentra- 
tions of the particles of class i, j, and k, 
respectively, and are time-dependent func- 
tions, and t is the time. I t  is assumed that  
all particles are spheres and conjoin into 
spheres of an equivalent volmne. 

If v~. is defined as 

it follows that  

vi = iv1, [2] 

ai = i:/3al, [3] 

k T  
Di3 = Di  ~- D3 = 67r~a1(il/~ + jl/~) , [4] 

Ri3 = ai -4- a3 = a: ( i  :/3 -4- i f 3 ) .  [5] 

Here v and a are the respective volume and 
radius of the particle, ~ is the viscosity of 
the medium, k is the Boltzmann constant, 
and T is the absolute temperature, and the 
subscript 1 denotes the singlet particle. 
Equation [2] states that  the volume of the 
i th class particle is i times that  of the singlet 
particle. 

The Smoluchowski flocculation half life 

(1) is 

= , [61  

where No is the total initial concentration of 
the particles. By defining the dimensionless 
variables ¢{3, X, and Y~, we obtain 

~{~ = ~ ( i : / '  + 9 ) ( / - : / '  + j-:/~); [7] 

x = t/T; [8] 

Yk = nk /No  ; [9] 

and by substitution of Eqs. [4] to [9] into 
Eq. [1], the general expression becomes 

i=k--i 
dYk _ ~ ¢i3 Y{ Y3 

[10] 
elk Y~ Y~ 

2 
i=l W i k  

In order to relate the fundamental theory, 
i.e., the rate of change of individual class 
particles as described by Eq. [1] or [10], to 
the usual treatment of experimental floccula- 
tion data, i.e., the rate of change of the 
total number of particles irrespective of size, 
it is useful to extend Eq. [10] for all particle 
sizes; consequently, 

d ~  Y~ 
d Y ~  k = l  

- - 2 E ¢ "  Y i Y , .  
d X  d X  i=~ 3=~ W ~  

Here Y~,  Y3 ,  and Y~, are all dimensionless 
time-dependent functions. The mean value 
of ~rq /Wq at time X is 

(z{3/Wij>x = {=I 3=I ~j gi Y5 
y~ [12] 

(¢i3/W~3}x > 0, 

and the total rate becomes 

dY~ 
dX 

- (zi3/W<3}x y2. [13] 

Thus, the time- dependent function 
(¢q/Wq)x accounts for the effect of poly- 
dispersity and the interaction barrier be- 
tween particles on the flocculation rate. 
However, if one considers the mean values 
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of ~is and 1/Wn at time X, that  is, 

~ ~ ~isYiYs 
(z¢s)x = i=x s=~ [14] 

Y~o e 

<,ns)~ >= 1; 

(1/W~h~ = ~=~ S=l ~ Y~ Ys 

~ o.,y, ys [15] 
i=1 3=1 

o < (1/wis;~ -<_ 1; 

it can be seen from Eqs. [14] and [15] that  
the mean polydispersity and the effect of the 
interaction barrier are mutually dependent 
through particle size) When the flocculation 
proceeds according to the self-preserving 
theory, (o-is)x will be relatively constant and 
identical to Swift and Friedlander's poly- 
dispersity factor 3 derived analytically for a 
continuous size distribution. 

When Eq. [13] is evaluated by a 
Smoluchowski-type plot (1/Y~ versus X as 
in Fig. 2), the predicted slope is (crUWn)x 
and, consequently, various cases may be 
mentioned. 

1. If there is no barrier to flocculation 
(W~s ~" 1) and the particle size distribution 
is relatively monodispersed (zis ~ 1), the 
slope will be unity and the reaction will 
proceed according to Smoluchowski's rapid 
flocculation theory. 

2. If  there is no barrier and the size 
distribution is polydispersed, the floccula- 
tion will proceed more rapidly with time 
since (~ffW~s)x will be greater than unity 
owing to the 3/Ittller effect (1). 

3. If there exists an initial barrier of some 

Other possible expressions for the "means" 
of an and 1/W~i at time X are: 

~ ~ ¢ri~ yiys 
~=1 S~_l Wn 

(~riS)x = ~ ; [14a] 
1 

E X ~ r, rs 
i=1 5~1 "S 

1 

/ /  1 ~ ~'=i s= I  [15a] 
\ ~ / ~  = r ~  

Refer to the polydispersity factor A~ of Eq. 39 
in reference 5. 
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magnitude, the flocculation will tend to slow 
down until the dispersion becomes kineti- 
cally stable as (~riffWij)x approaches zero. 

4. Lastly, one has the intermediate situa- 
tion in which the reaction is initially rapid 
and then slows down at a later time. 

The expression describing the mutual 
interaction between flloeculating particles is 

f0 ~ du Wij = 2 exp (Vr(i,s)/kT) (u + 2) 2, [16] 

where Vr(i,s) is the total interaction poten- 
tim between the i th and j th  class particles 
shortest interparticle distance. If it is as- 
and u = 2H/(ai + as), where H is the 
sumed that  the only rate process is the 
passage of the particles over the primary 
electrical barrier to floeculation (or coales- 
cence), then 

_ a~as reCo 2 In (1  + e -"~) Vr(i,j) a~ + as 
l_ 

[17] 

- 6 H  k + 1 1 . 1 1 6  ' 

where e is the dielectric constant of the 
medium, ~6 the surface potential, K the 
reciprocal double layer thickness, and X the 
wavelength of the atoms (7-10). A useful 
approximation of Wii (11) is 

27r 1/~ exp ( Vf(i,i) .... /kT) 
W~s ~ [18] sr n ]2]cm~l/2 ( u ~ +  2)~( - ,  ~ . , j ) m ~ /  ~ J  

when the potential energy barrier from the 
Vr(~.ij versus u curve is sufficiently high. An 
examination of Eqs. [16] and [17] leads to 
the conclusion that  smaller particles prefer- 
entially flocculate because of the presence of 
a smaller barrier than that  for larger 
particles. 

M E T H O D  O F  C A L C U L A T I O N  

The flocculation process for a dispersed 
system in water in which the primary repul- 
sire barrier is electrical was simulated by 
the IBM 360 computer. Input  data included 

= 1 c p ,  e = 8 0 ,  T = 3 0 0 ° K ,  A = 10 -16 
ergs, ¢0 = 6 my, X = 10 -5 cm, ~ = 1.26 X 
106, 1 X 10 ~, and 8 X 10 a cm-L Two initial 
size distributions were used: (a) monosized 
distribution where Yg = 1 and v.~ = 1.1866 
X 10 -12 cm 3 (or al = 10 -a cm) and (b) 
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polydispersed sizes where I71 = 0.819, Y~ = 
0.173, Y10 = 6.74 X 10 -~, and Y15 = 1.26 
X 10% 

To solve Eq. [10] the stepwise integration 
procedure followed the predictor-eorrector 
method of Hamming (12) in which the 
initial three-step values of Y~ were obtained 
by the Runge-Kut ta  technique from the 
initial particle size distribution. The size of 
the largest aggregate was arbitrarily limited 
to km~ = 100 for the rapid and rapid-slow 
eases. Because this dimensional limitation 
and computational underflow tend to pro- 
duce a loss of particles as the reaction pro- 
ceeds, the total volume fraction was calcu- 

lated after each integration step; hence, 

kYk(X) 
~=1 - 1 . 0 .  [ 1 9 ]  

~Y~(0) 
4=1 

To compute Wcj, numerical integration by  
the Simpson method of Eq. [16] was used 
when V~m~x < 5kT. When VT .. . .  _-> 5kT, 
Eq. [181 was used. When the values of Wij 
were less than one, they were put  into the 
computer program as unity. 

RESULTS AND DISCUSSION 

Rapid, Rapid-Slow, and Slow Floccula- 
tion. To define the terms--rapid,  rapid-slow, 

12 

°1 

o 

- -2  

- -4 

(C) SLOW 
K ~  8"10 5 / 

(B) RAPID- SLOW 
FLOCCULATION 

K =  1.10 6 

J 

_ a |  I I I J 
0 2 4 6 8 10 

RADIUS in MICRONS 

FIG. 1. Effect of size of two equal spherical particles on the stability factor W¢i for various electrolyte 
concentrations K. 
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and slow flocculation, the stability factor as 
a function of the size of two equal interacting 
spherical particles for various electrolyte. 
concentrations as shown in Fig. 1. The 
smallest particle size taken corresponded to 
the initial sizes tha t  ranged from 1 to 2.47 
microns. 

When K = 1.2 X 106 (Case (A)), the W 
values are less than  one throughout the size 
region until a = 8u(vi/vl = 512). These 
values were taken as unity. In  this case (A) 
the flocculation is rapid over most  of the 
range of interest. Only at long times do the 
particle sizes become large enough and 
therefore the factor 1/W small enough to 
appreciably reduce the collision rate. For 
ease (B), in which K = 106, the intercept of 
the curve lies between a = 2u(vi/Vl = 8) 
and 3#(v~/vl = 27). Here, according to the 
initial particle sizes chosen, the initial rapid 
rate is soon slowed down; thus, this reaction 
is defined as rapid-slow flocculation. In  the 
last case (C) the W values were always 
larger than unity in the region a > 1~; 
therefore, the reaction was slow for all times 
in this region. 

The  three sets of reaction parameters  
taken for this s tudy provide typical cases to 
conveniently compare the particle size dis- 
tr ibution changes with the stability factor. 
I t  is possible to obtain similar plots as shown 
in Fig. 1 for other surface potential and 
Hamaker  constant values when K values are 
adequate, although the slope and intercept 
on the abscissa will change. 

Flocculation of an Initially Uniform Size 
Distribution. The changes in the differential 
particle size distribution for an initially 
monodispersed dispersion are shown in Fig. 2 
for three cases, i.e., rapid (A), rapid-slow 
(B), and slow (C) flocculation brought  about 
only by  changing the ionic strength of the 
system. Although the distributions appear 
to be graphically smooth, the distributions 
are discrete in nature. In  the rapid case (A), 
the floeculation proceeds rapidly, the hetero- 
geneity of the dispersion increases, and the 
size spectrum broadens with positive skew- 
ness. Even in the absence of sedimentation, 
creaming, and/or  adsorption of particles to 
the vessel wall, it is not expected tha t  the 
size spectrum will broaden indefinitely in 
this case (A). As the particles grow in size 
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FIG. 2. Dimensionless particle size distribution 
as a function of time for an initially monodis- 
persed size distribution for rapid floeculation (A), 
rapid-slow (B), and slow (C) cases. Dimensionless 
time X equals 1 (I), 8 (II), 16 (III), 32 (IV), 64 
(V), and 80 (VI). At least 98% of the mass was 
accounted for with the exception of ease (A) for 
X = 32 (16% lost) and X = 64 (48% lost). 

by flocculation (or coalescence) the electrical 
barrier becomes increasingly important  with 
particle size (see Eq. [17]). Consequently, 
although this is not seen ill Case A, the 
flocculation rate will eventually become 
progressively slower. In  the rapid-slow case 
(B), where ~0 = 6 m v ,  K = 1 X 10 s c m  -1, 
and 16 < X _-< 80, this slowing down is 
more evident. A smooth size distribution 
slowly develops after the initial rapid floceu- 
lation period. Eventually,  the distribution 
shifts to a larger mean particle size and be- 
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FIG. 3. Smoluchowski-type plot from solution of dimensionless flocculation equation for an initially 
monodispersed size distribution for cases of rapid (A), rapid-slow (B), and slow (C) flocculation. 

comes narrower. Finally, in the slow case 
(C), there is relatively little skewing and 
broadening of the distribution at any stage 
and the distribution slowly shifts to larger 
sizes. 

Figure 3 shows the Smoluchowski-type 
p l o t / o r  the rate of change of the total num- 
ber of particles according to the dimension- 
less form of the rate equation [13]. The three 
previously mentioned cases are compared 
with each other and the classical Smoluchow- 
ski theory for rapid flocculation. The curve 
for the rapid-slow case is the most general 
one and also the most interesting for discus- 
sion since it best describes the situation for 
a freshly prepared, finely dispersed suspen- 
sion or emulsion. I t  is observed that  the 
rate of flocculation (or coalescence when the 

surfactant coverage is only 5 % to 10 %) is 
rapid and can even exceed the theoretical 
rapid Smoluchowski rate owing to the poly- 
dispersity effect of Miiller. However, the 
rate progressively slows down until the dis- 
persed system becomes kinetically stable. 

The mechanism of flocculation is clearly 
shown in Figs. 4-6. The discussion in this 
section is confined to the initially mono- 
dispersed system. According to Smoluchow- 
ski's theory for rapid flocculation of a rela- 
tively monodispersed system, (~iffW~)x = 
(~}x = (1/W~i}x = 1. The (o-~ffW~j}x 
versus X plot describes the time dependency 
of the mean interaction of polydispersity and 
electrical barrier on the flocculation rate. I t  
is observed in Figs. 4 and 5 that  in the 
initial stages of flocculation polydispersity is 
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20 40 60 
X 

FIG. 4. Time dependency of the mean second-order rate constant from the numerical solution of 
Eq. [12]. Legend: initially monodispersed distribution---, initially heterodispersed distribution---. 

1.00 I I I 
20 40 60 

X 

FIG. 5. Time dependency of the mean polydispersity. Legend same as Fig. 3 
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:FIG. 6. Time dependency of the mean electrostatic energy interaction barrier 

the predominant factor and this tends to 
increase the rate. Unless the mean particle 
interaction barrier is initially high (Case C), 
it does not exert its influence appreciably on 
the rate until some time later. The mean 
interaction barrier involves the energy bar- 
tiers for all pairs of particles and, at small 
times, is weighted in favor of the small 
particles, for which the barrier is less than 
those between larger particles. From a 
mathematical viewpoint, the foregoing dis- 
cussion can be explained by the fact that  
(crij/Wij}x is the product of (¢~j}x, a poly- 
nomial function of particle size, and 
(1~Wit}x, an exponential function of par- 
title size and energy barrier. In the later 
stages, the mean barrier is weighted to- 
wards the larger sizes and will have a two- 
fold effect. Firstly, it will control the particle 
size distribution by preferential flocculation 
of smaller particles and, thereby, narrow the 
polydispersity. Secondly, it will decrease the 
over-all rate of floeculation. If we compare 
the rapid, rapid-slow, and slow flocculation 
cases (Figs. 3-6), the differences in the 
rates lie in the corresponding magnitudes of 
the mean polydispersity and the interaction 
barrier at the time. 

Flocculation of an Initially Heterogeneous 
Size Distribution. In Figs. 4-8 the floccula- 
tion of an initially heterogeneous size dis- 
tr ibution is shown in an analogous manner 

as that  for the monodispersed situation. 
The initial distribution is positively skewed 
and rather na~wow, that  is, about 82 % of the 
total number of particles are 1.0 micron 
radius, the rest are equal or greater than 
1.71 micron, and the size range is 1 to 2.47 
micron radius. Since t t idy  (2) had already 
treated this initial distribution for rapid 
flocculation, only the rapid-slow and slow 
floceulation cases are shown. I t  is observed 
in Fig. 7 that  the multiple peak distribution 
of the rapid-slow case at somewhat early 
times eventually smooths out to a distribu- 
tion that  maintains its general shape with 
time. For  the slow case the similarity of the 
spectrum develops even more slowly. 

Although the effect of polydispersity and 
interaction barrier on the rate is qualita- 
tively the same for an initially mono- 
dispersed and heterodispersed size system, 
there is a quanti tat ive difference between 
them relative to time for the same flocculat- 
ing conditions. In the rapid-slow case the 
polydispersity ({¢ij}x~0 = 1.023) and the 
interaction barrier ((1/Wiy}x=o <<, 1) cause 
the initial rate to be 2 % faster than that  for 
the initially monodispersed distribution (Fig. 
4). After X = 3, the rate becomes slower 
and approaches the same rate as the latter.. 
In the slow ease the strong influence of the 
mean interaction barrier of the heterodis- 
persed distribution significantly delays the 
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According to the theory, a plot of ¢(~) 
versus ~ should show an asymptotic be- 
havior of the particle distribution becoming 
eventually independent of time and the 
initial distribution. 

For the case of the initially monodispersed 
distribution in Fig. 9, the distribution of the 
similarity function approaches an asymptotic 
behavior after some period of flocculation. 
Whether the flocculation is rapid, rapid- 
slow, or slow, the spectrum reaches a self- 
preserving form more quickly in the upper 
range of ~ than in the lower ranges. The data 
in Fig. 9(A) for rapid flocculation compare 
well with the numerical results by Hidy, 4 

~According to Hidy ' s  no ta t ion  (2), r = 3; 
X ~ ~T]gidy. 

course of floceuiation. As a result the develop- 
ment of similarity between the two initial 
distributions takes a great deal longer. 

Analys is  of the Self-Preserving (Similari ty)  
Spectrum. The self-preserving dimensionless 
size distribution function ~(~) for a discrete 
distribution is defined by I t idy as 

¢'(,7~)- n~¢ _ g~¢ 
n 2V 1 Y 2NoVl, [20] 

where the volume fraction is 

= Z ini  = Nov lZ  iY~ [21] 

and the dimensionless volun~m ~ is Z 

iv1 n~ i~;1 No Y~  
~ - - [ 2 2 ]  

¢ ¢ 
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]FIG. 7. Dimensionless par t ic le  size d is t r ibu t ion  as a funct ion of t ime for an in i t ia l ly  heterodispersed 
size d is t r ibut ion .  Legend same as Fig. 2. All mass was accounted for. 
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I~G. 8. Smoluchowski-type plot for an initially heterodispersed size distribution 

i.e., ¢(~/) develops after X = 12 and its 
maximum lies at ~ ~ 0.1. Any slight dis- 
crepancies may be due to the differences in 
computer schemes used in this study. On 
the other hand, the results of the slow case 
(C) are different from those of the rapid 
one (A). The former shows that the shape of 
the spectrum is markedly changed, ¢(7) 
develops after X = 8, and its maximum is 
at v ~-~ 0.8. A comparison between the 
rapid-slow case (B) and the other two shows 
that the distribution for the rapid-slow case 
first approaches the asymptotic spectrum of 
the rapid case, then, at later times, under- 
goes a marked change, and finally asymptoti- 
cally develops the distribution of the slow 
case. Accordingly, if the rapid flocculation 
(A) is carried out long enough so that the 

interaction barrier becomes appreciable (Fig. 
1A), the spectrum for the slow flocculation 
condition may be attained. Swift and Fried- 
lander used a mixture of two unimodal 
emulsions in their flocculation experiments. 
However, their results show the same trend 
of a marked shift and change of ¢(7) after a 
period of time to larger values of ~ as that 
of the rapid-slow flocculation case of an 
initially unimodal distribution. 

In accordance with the similarity theory, 
the initially polydispersed system approaches 
the same distribution as the monodis- 
persed system (Fig. 10), provided that the 
flocculation is carried out long enough. In 
case (B) three distinct peaks at ~ = 0.1, 
0.4, and 0.8 when X = 8 are found at early 
times. These peaks eventually disappear 
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l~zG. 9. Self-preserving size distribution • (n) for an initially unimodal distribution for rapid floccula- 
tion (A), rapid-slow (B), and slow (C) cases. The broken curve is Hidy's result for rapid floeculation and 
the solid curve is the asymptotic distribution for slow flocculation. 

with the development of a single ¢(7) 
maximum at ~ = 0.8 and a smooth asymp- 
totic distribution. (At relatively early periods 
of the flocculation, i.e., X = 16, the distribu- 
tion was self preserving for ~ > 1.3.) Com- 
paring case (C) with (B) in Fig. 10, one 
observes a qualitative difference in the 
development of the similarity distribution. 
I t  is expected that  both the distributions 
will be the same at sufficiently long times. 

The time required to assume the self- 
preserving form was greatest for the poly- 
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dispersed system. In contrast to the mono- 
dispersed system, the time required for the 
polydispersed system was much greater for 
the slow flocculation than the rapid-slow case 
I t  is interesting that  the ¢(7) for all three 
flocculation cases for an initially monodis- 
persed system became time independent 
when their particle size distribution changes 
with time were smooth and similar in shape 
(Fig. 1), and simultaneously their mean rate 
constant, polydispersity, and interaction bar- 
rier (Figs. 2-4) became essentially constant 
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Fio. 10. Self-preserving size distribution ¢(n) for an initially polydispersed distribution, The solid 
curve is the self-preserving distribution for an initially unimodal distribution taken from Fig. 9. 

with time. However, these observations did 
not coincide with the floceulation cases for 
an initially polydispersed system. Although 
the mean rate constant and other quantities 
(Figs. 2-4) were somewhat time independ- 
ent, ¢(~) was not constant until the particle 
size distributions (Fig. 7) were smooth and 
similar in shape. 

The effect of the degree of initial poly- 
dispersity and interparticle energy barrier on 
the time required and the form of the similar- 
ity function seem worthy of investigation. 
Since W~j is not a homogeneous function of 
particle size, it is not expected that the 
self-preserving spectra exist according to the 
exact theory of Friedlander and Wang (6). 
However, in certain cases quasi-self-pre- 
serving spectra seem to exist even though 
W~j is not homogeneous (13). The example 

for slow flocculation in this study appears to 
be another case. As shown by Wang and 
Friedlander (13) in the slip correction prob- 
Iem, there can exist different self-preserving 
functions. 

CONCLUSION 

In conclusion the theoretical predictions 
of the changes in the particle size distribu- 
tion in emulsions and suspensions may be 
directly compared with experimental data 
obtained from an electronic resistance multi- 
channel particle size analyzer (14). The 
general method of numerical analysis should 
be easily adaptable to cases involving other 
forces of repulsion between particles such as 
steric (entropic) repulsion. It  is believed 
that these techniques should provide a 
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powerful handle on various complex prob- 
lems in dispersed systems. 
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