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The assumption that a binary choice probability is expressible as a monotone 
function of the scale values of the two alternatives is investigated. Four different 

conditions are shown to be equivalent forms of the same substitutability, or inde- 

pendence, principle which underlies most probabilistic theories of choice behavior. 
In a study of judgments of relative size, the independence principle is contrasted with 

the hypothesis that interstimulus similarity facilitates discrimination. The data reject 
the independence principle while supporting the similarity hypothesis. 

Most probabilistic theories of choice behavior are based on a fundamental principle 
that has appeared in several different forms. The assumptions of simple scalability, 
strong stochastic transitivity, substitutability, and independence are different versions 
of the same basic principle. In the first part of the paper, these four assumptions are 
shown to be logically equivalent. In the second pait, this principle is contrasted with 
an alternative hypothesis in an experimental study involving judgments of relative size. 

To introduce the various conditions, let S be a set of alternatives or stimuli, denoted 
X, y,..., and let P(x, y) be the probability that x is chosen over y. More specifically, we 
assume that P(x, y) + P(y, X) = 1 and that P(x, z) = 4 , for all X, y in S. Further- 
more, it is assumed that all choice probabilities are neither 0 nor 1, that is, all preferences 
or discriminations are imperfect. These probabilities are usually estimated by the 
relative frequencies observed in binary choice experiments. 

A set of binary choice probabilities satisfies simple scalability if there are real-valued 
functions F and u such that for all x, y in S 

f% Y) = r;‘W), Q91, (1) 
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where F is strictly increasing in its first argument and strictly decreasing in the second. 
This property, introduced by Krantz (1964), states that the effect of each stimulus, 
x, can be summarized by a single scale value, U(X). Two alternatives are thus equivalent 
if, and only if, they have the same scale value. (Krantz’s original formulation is 
slightly weaker as F must only be one-to-one in each argument. The two formulations, 
however, are equivalent if F is continuous in both arguments.) 

Equation 1 is probably the most general formulation of independence between 
alternatives. The more elaborate choice models, such as Thurstone’s (1927, case V) 
and Lute’s (1959), require the stronger assumption that 

P(x, Y) = FM-4 - 4~11. 

The difference between the two assumptions is that in the former F is a function in 
two variables, u(x) and u(y), whereas in the latter it is a function of their difference. 
A detailed analysis of the relationships among the various probabilistic choice models 
can be found in Lute and Suppes (1965). 

Despite its generality, simple scalability has several testable consequences. In 
particular, it implies that if P(x, y) and P(y, z exceed one half then P(x, Z) exceeds ) 
both of them. This property, called strong stochastic transitivity (SST), is a probabilistic 
version of transitivity. Stated formally, 

P(X,Y) 3 B and P(y, 4 3 ik imply P(x, 4 3 ma@+, y), P(y, 41, (2) 

where strict inequality in both hypotheses entails strict inequality in the conclusion. 
(The present formulation of SST is slightly stronger than the usual one, as the 
requirement of strict inequality is typically omitted.) 

To derive (2) from (l), suppose P(x, y) > 4 = P(y, y), hence F[u(x), u(y)] > 
WY), u(r)1 and 44 3 U(Y) since F is increasing in its first argument. Consequently, 
F[u(x), u(.z)] >, F[u(y), U(Z)] or, P(x, Z) > P(y, z). Similarly, P(y, Z) >, 4 = P(z, 2) 
implies u(y) > u(x) and P(x, x) 2 P(x, y), sinceF is decreasing in its second argument. 
Finally, it is easy to verify that strict inequality in both hypotheses yields strict 
inequality in the conclusion, which completes the proof. 

Strong stochastic transitivity, in turn, implies the following substitutability condition 
for all x, y, z in S. 

P(x, 4 >, P(Y, 2) if and only if P(%Y) >3. (3) 

This property may also be stated as a conjunction of two implications: (i) P(x, z) > 
P(y, Z) implies P(x, y) > 4 , and (ii) P(x, Z) = P(y, a) implies P(x, y) = 4 . The 
equivalence of the two forms is readily established. 

To derive (3), assume (i) is false; hence P(x, Z) > P(y, Z) but P(y, x) > 4 . There 
are two cases to be considered, P(x, Z) > $ and 4 > P(x, a). First, suppose 
P(x, Z) 2 4 ; hence by SST P(y, 2) > P(x, z), contrary to our hypothesis. Second, 
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suppose 4 > P(x, x); hence by hypothesis Q > P(y, z) or P(z, y) > 4 , but since 
P(y, X) 3 Q it follows from SST that P(.z, X) 3 P(z, y), contrary to our hypothesis 
that P(x, a) > P(y, z). 

Next, assume (ii) is false; hence P(x, z) = P(y, x) but P(x, y) # 4 , say P(x,y) > $ . 
There are three cases to be considered, P(x, z) > Q , 4 > P(x, a), and P(x, z) = 3 . 
First, suppose P(x, z) = P(y, a) > + ; hence by SST, P(x, z) > P(y, z), a con- 
tradiction. Second, suppose i > P(x, z) or P(z, X) > 3 ; hence by SST P(z, y) > 
P(z, X) or P(x, z) > P(y, z), a contradiction. Finally, suppose P(x, z) = + = P(z, y); 
hence by SST P(x, y) = & as required. This completes the derivation of the substi- 
tutability condition. Essentially the same result was obtained by Block and Marschak 
(1960, Theorem 4.1). 

A set of binary choice probabilities satisfies the independence condition if for any 
x, y, z, w in S, 

P(x, 4 2 qy, 4 if and only if qx, w) 2 P(Y, 4. (4) 

Thus, if two stimuli (x, y) are ordered according to their choice probabilities relative 
to some fixed standard then, under Eq. 4, the ordering is independent of the par- 
ticular standard. Essentially the same property plays an important role in the theory 
of conjoint measurement (see Tversky, 1967). To derive independence from sub- 
stitutability, suppose P(x, z) > P(y, a); hence by applying (3) twice, P(x,Y) > -& 
and P(x, w) 3 P(y, w) as required. 

The independence condition, in turn, implies simple scalability. To demonstrate, 
choose a fixed element z and define a real-valued function u on S by u(x) = P(x, a). 
Next, define another real-valued function F by the equation F[u(x), u(y)] = P(x,y). 

To show that F is well defined, suppose U(X) = u(x’) and u(y) = u( y’). Then P(x, z) = 
P(x’, z) so P(x, y) = P(x’, y) by (4). Also, P(y, z) = P(y’, z), so P(y, x’) = P(y’, x’) 
by (4). Hence, P(x,Y) = P(x’, y’), i.e., F[u(x), u(y)] = F[u(x’), u(y’)]. Reversing 
these steps shows that F is one-to-one in each component. Finally, to show that F 
is strictly increasing in the first argument, suppose u(x’) > u(x); hence, by construction 
together with independence, P(x’, y) > P(x, y) and F[u(x’), u(y)] > F[u(x), u(y)] as 
required. An analogous argument applied to the second component shows that F 
is strictly decreasing in the second component, which completes the derivation of 
simple scalability. Essentially the same result was established by Krantz (1964, 
Theorem 4). 

Using transitivity of implications, the previous discussion is summarized by the 
following result. 

THEOREM. The following conditions are equivalent: 

(i) simple scalability, 

(ii) strong stochastic transitivity, 
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(iii) substitutability, and 

(iv) independence. 

All four properties, therefore, capture the same principle that pairwise choice 

probabilities can be expressed as a monotone function of some underlying scale 
values in such a way that if two alternatives are equivalent in one context, they are 
substitutable for each other in any context. 

Although this principle has dominated much of the theoretical work in the field, 

research exists indicating that choice probabilities are affected by comparability 
factors which cannot be accounted for by any model based on simple scalability. In 
particular, Coombs (1958) presented subjects with gray color patches varying in 
brightness and asked them to select that patch closest to their ideal image of gray, 
As predicted by Coombs’ unfolding theory, SST was violated for some specified 

triples of stimuli that lay on both sides of the subject’s ideal point. More recently, 
Krantz (1967) has demonstrated serious violations of simple scalability in judgments 
of similarity between pairs of monochromatic colors. Krantz showed that the prob- 
ability of choosing one pair of stimuli as more similar than another pair is affected 

by comparability factors between the pairs, over and above the similarity between 
the elements of each pair. These results indicate that choice probabilities reflect not 
only the scale values of the alternatives, but also the degree of difficulty of the com- 

parison. Consequently, substitutability is violated as alternatives may be substitutable 
in some contexts but not in others. 

The similarity between stimuli has long been considered a determinant of the degree 
of comparability between them. In fact, it has been hypothesized that for a fixed 

difference between the psychological scale values, the more similar the stimuli, the 
easier the comparison or the discrimination between them. 

The present study investigated the simple scalability principle and the above 
similarity hypothesis in judgments of relative size. Geometric figures, varying in size 
and shape independently, were used as stimuli. The subjects were asked to judge 
which of two figures presented to them had a bigger area. Each stimulus was paired 
with each of two standards that were maximally dissimilar from each other with 

respect to shape. If  simple scalability holds, then the orders of the choice probabilities 
obtained under the two standards should coincide. This is precisely the independence 
condition of Eq. 4. If, on the other hand, shape similarity facilitates judgments of 
relative size, then the independence condition must be violated by some specified 
pairs of stimuli. The two opposing predictions are contrasted in the following 
experiment. 

METHOD 

Stimuli. The stimuli consisted of two sets of geometric figures: rectangles and lenses, where 
a lens was a figure formed by the intersection of two circles of equal radii. Each set contained 
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20 variable stimuli varying in size and shape, and two standard stimuli of the same size but with 

different shapes. The 20 stimuli in each set formed a factorial design with four size levels and 
five shape levels. The size levels were determined by the ratio of the stimulus area to the area 

of the standards. The ratios of .91, .94, 1.06, and 1.09 were used in both sets. The shape levels 
were determined by the ratio of width to length in the rectangle set and by the ratio of the 

minor axis to the major axis in the lens set. The ratios used in the rectangles were 2/3, l/2, l/3, 
l/4, and l/S, while the ratios used in the lenses were .70, .55, .40, .30, and .20. The shape levels 

of both sets were denoted by the letters (I through e. In both sets the standards had the two extreme 

shape levels. One standard (s,) was closest to a square (or a circle), while the other standard (s,) 
had the most elongated shape. A schematic illustration of the stimulus sets including sets of 
rectangles and lenses with the same area and all five different shape levels is presented in Fig. 1. 

SIZE 
RECTANGLES LENSES .91 .94 1.00 1.06 1.09 

t/5 1 .20 1 e 

l/4 I .30 1 d 

SHAPE l/3 1 .40 0 C 

l/2 I .55 . b 

2/3 I .lO @ 0 

FIG. 1. An illustration of the stimulus sets. 

Subjects. One hundred and sixty-eight inmates of the Detroit House of Correction participated 
in the experiment. Seven subjects were deleted because they failed to perform the task according 

to instructions. Of the remaining subjects, 78 were presented with rectangles and 83 were 
presented with lenses. 

Procedure. Each standard was paired with all 20 variable stimuli from the same set, yielding 
a total of 40 pair comparisons between rectangles and 40 pair comparisons between lenses. The 

subjects were asked to judge which member of a pair had the larger area. The stimuli were 
projected on a screen for a period of about 10 set, under normal viewing conditions. The ex- 
perimental session consisted of a practice period and three replications of a complete stimulus 

set (40 pair comparisons). The presentation order was randomized. The session, including the 
practice period, lasted about 2 hr, and the subjects were run in groups of approximately 45 each. 
In order to motivate the subjects, payments were given on the basis of the proportion of correct 

responses. Payments consisted of packs of cigarettes, which are used as currency in the prison; 
the average subject received about three packs. 

RESULTS 

The data consist of a set of 5 x 4 matrices in which the rows correspond to the 
shape levels, the columns correspond to the size levels, and the cell entries are the 
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relative frequencies of choosing the variable stimulus over the standard. Since each 
standard was compared with all variable stimuli, two such data matrices were obtained 
for each subject. The first test of the independence principle was based on the com- 
parisons where the variable stimulus had one of the two extreme shape levels. Hence, 
only the bottom and the top rows of each data matrix were utilized in this analysis. 
These rows correspond to the stimuli with the least and the most elongated shapes, 
designated by a and e, respectively. 

Let xai and x,, , i = l,..., 4, denote stimuli of the two extreme shapes (u and e) 
and the same size (i). If the independence principle is valid, then for any size level, i, 

That is, the order of the choice probabilities is independent of the standard. If, 
however, the similarity hypothesis is valid and shape similarity facilitates the judg- 
ments, then the more similar the stimuli with respect to shape, the easier the size 
discrimination between them. Consequently, the comparison between xai and s, is 
easier than that between xai and s, , since s, and xai have the same shape. Similarly, 
the comparison between xei and s, is easier than that between xai and s, since s, and 
X,i have the same shape. If both variable stimuli in Eq. 5 were of the same subjective 
area and if both standards were of the same subjective area, then the similarity 
hypothesis would imply that 

if and only if p(xei 9 se) 2 p(xai 9 se). (6) 

That is, opposite orders should be obtained under the two standards, in direct con- 
tradiction to the earlier prediction. Since in the present design, however, the stimuli 
in the pairs (s a , s,) and (x,~ , x,J are of equal objective rather than subjective area, 
Eq. 6 is not a necessary consequence of the similarity hypothesis. Nevertheless, one 
would expect Eq. 6 to be satisfied for some pairs of stimuli if the similarity hypothesis 
is true. 

To compare the predictions of (5) and (6), the following measure (M) of the degree 
of correspondence between the orders obtained under the two standards was devised. 
To each size level (i = 1,2,3,4), +l was assigned if Eq. 5 was satisfied, and -1 was 
assigned if Eq. 6 was satisfied. The cases in which a tie occurred in at least one of the 
two orders do not provide an adequate basis for comparing the orders and were, 
therefore, discounted from the analysis. The value of ikl for a given individual is 
simply the sum of the +1’s and -1’s (over the four size levels) normalized by the 
number of untied comparisons. Thus, M ranges from +l to - 1, where + 1 is 
predicted by Eq. 5, -1 is predicted by Eq. 6, and 0 is expected on the basis of random 
choice. The value of M is essentially an average Kendall’s tau where tau is based on 
two stimuli only. 
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The distributions of the M values are presented in Table 1. The obtained distribu- 
tions were positively skewed in both stimulus sets. The average M values were -.38 
for rectangles and -.24 for lenses, both of which were significantly (p < .05) 
negative according to the significance test for Kendall’s tau. 

TABLE 1 

THE FREQUENCY DISTRIBUTIONS OF THE INDNIDUALS M VALUES 

M Rectangles Lenses Total 

+1 12 16 28 

+‘s 3 4 I 

0 9 11 20 

-f 3 2 5 

-1 36 32 68 

The overall relative frequencies of choosing the variable stimuli over the standards, 
totaled for all subjects, are given in Table 2. The group data provide strong support 
for the similarity hypothesis and strong evidence against the independence principle, 
which is violated in all cases. In every column of Table 2, the cell entries are ordered 
oppositely under the two standards in complete agreement with Eq. 6. 

TABLE 2 

THE OVERALL FREQUENCY OF CHOOSING THE VARIABLE 
STIMULUS AS LARGER THAN THE STANDARD 

Size level: 1 2 3 4 

Standard Shape 

& e 93 106 154 180 

Rectangles * 23 41 205 208 

$8 e 16 26 198 210 

a 58 13 117 125 

so e 129 153 202 203 

Lenses a 40 48 222 232 

& e 37 49 211 215 

a 44 56 100 102 
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The only implication of the similarity hypothesis that is independent of perceived 

area values is that violations of independence should be due to shape similarity. That 
is, if the discrimination between s, and x is better than that between s, and y  whereas 
the discrimination between s, and x is worse than that between s, and y, then s, 
should be more similar to x than to y, and s, should be more similar to y  than to s. 

Letting 9(x, y) denote the proportion of correct area judgments between x and y, 
it is readily seen that any strict violation of independence is expressible in the form 

!a% 4 > Q(Y, 4 and Q(Y, 4 > 0(x, 4 (7) 

To test the similarity hypothesis, two sets of pairs of variable stimuli, where the 
elements in each pair have the same area, were employed in this analysis. Set I contains 
all such pairs where one element has shape a and the other element has shape e, while 
Set II contains all such pairs where one element has shape b and the other element 

has shape d. In accord with the natural partial order of shape similarity between 
stimuli, all pairs from Sets I and II were classified as follows: a pair of variable stimuli 
(x, y) satisfying (7) is compatible with the similarity hypothesis if and only if x is 
less elongated thany. That is, if either (x, y) belongs to Set I and x has shape a while y  

has shape e, or if (x, y) belongs to Set II and x has shape b while y  has shape d. The 
proportions of pairs of rectangles and lenses, from Sets I and II, which satisfy (7) and 
are compatible with the similarity hypothesis are given in Table 3. If  all violations 

TABLE 3 

THE PROPORTIONS OF PAIRS OF STIMULI WHICH 

VIOLATE THE INDEPENDENCE PRINCIPLE AND ARE 

COMPATIBLE WITH THE SIMILARITY HYPOTHESIS 

Rectangles Lenses Total 

Set I SO/83 62172 142/155 

set II 41/60 28142 69/102 

Total 121/143 90/l 14 21 l/257 

of independence were due to indiscriminability or random error, then only one half 
of the violations should be compatible with the similarity hypothesis. However, all 
the entries of Table 3 are significantly greater than one half. (The proportion of pairs 
of lenses from Set II is significant at the .05 level, whereas all other proportions are 
significant at the .Ol level.) The results show that most violations of independence are 
attributable to similarity, and that this effect is stronger in Set I than in Set II where 
the similarity differences are less extreme. The results of Set II show that the similarity 
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hypothesis is supported even when the variable stimuli do not have the same shape 
as the standards. 

The final analysis was also based on the frequencies of correct area judgments. 
From the original 5 x 4 frequency matrices of each subject, a 5 x 1 column vector 

was computed whose entries were the number of correct choices for each shape level, 
summed over areas. Two such vectors were obtained for each subject, one under 
each standard, and the rank order correlation (Kendall’s tau) between the two vectors 
was computed. The independence principle predicts a perfect positive correlation 
between the two vectors. A zero correlation is expected under the assumption of 
random choice, and a perfect negative correlation is expected under the similarity 

hypothesis provided stimuli with equal objective area are equal in subjective area. 
Since the stimuli were not equated in subjective area, however, one would expect 
a negative but not a perfect correlation. The distributions of the tau values from 

each stimulus set are presented in Table 4. The obtained distributions were positively 

TABLE 4 

THE FREQUENCY DISTRIBUTION OF THE INDIVIDUALS’ TAU-VALUES 

TaLl Rectangles Lenses Total 

+0.76-+l.OO 1 0 1 

+0.51-$0.75 5 5 10 

+0.26-$0.50 7 5 12 

+O.Ol-$0.25 9 11 20 

0 8 8 16 

-O.Ol--0.25 15 6 21 

-0.26--0.50 17 17 34 

-0.51--0.75 11 17 28 

-0.76--1.00 5 14 19 

skewed, as 102 subjects had negative values as compared with 43 subjects with 
positive values. The average tau was -.15 for the rectangles and -.26 for the lenses, 
both of which were significantly negative (p < .Ol) according to a test for the 
significance of Kandall’s tau. 

The relative frequencies (totaled over subjects) of correct choices for each shape 
level under the two standards are shown in Fig. 2 for the rectangles and Fig. 3 
for the lenses. 

The orderings of these values, under the two standards, appear inversely related 
to each other and monotonically related to similarity, in accordance with the similarity 
hypothesis and in contradiction to the independence principle. 
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L.0 

.9 

.6 

. - Standard’s Shape: l/5 

0 - Standard’s Shape: 2./j 

FIG. 2. Proportion of correct choice between rectangles (N = 936) summed over subjects 

and area values. 

DISCUSSION 

Two incompatible principles of choice were compared in the present study. The 
data provide evidence against the independence principle and for the similarity 
hypothesis. It was found that the similarity between stimuli facilitates the discrimina- 
tion between them. But since the similarity between two stimuli can be varied without 
changing their scale values, simple scalability, and hence independence, must be 
violated. 
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. - Standard’s Shape: .20 

0 - Standard’s Shape: .70 

, 
.20 

I I I 
1 I I I 

.30 .40 .55 .70 

Shape 

FIG. 3. Proportion of correct choices between lenses (IV = 996) summed over subjects 
and area values. 

Although these findings hold for both types of stimuli (rectangles and lenses), 
their applicability to other stimuli and to different types of judgments are left to be 
explored. If, as available data indicate, simple scalability is violated in many contexts, 
then both theoretical and applied research on choice behavior should be fundamentally 
reevaluated. 

Is this the end of simple scalability? Not necessarily. It should be recalled that in 
the present study, the stimuli were paired so as to maximize the similarity effect. 
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Simple scalability may still hold for more homogeneous sets of pair comparisons. 
Moreover, all violations of simple scalability have been obtained in studies of pair 
comparisons. This, however, is not the only empirical procedure for estimating binary 

choice probabilities. Alternatively, a single-stimulus method may be employed to 
obtain replicated magnitude estimates for each stimulus. The P(x,y) may then be 
defined as the probability that a value assigned to x exceeds a value assigned to y. 
In this method each stimulus is presented alone so that comparability factors cannot 
operate. Simple scalability may very well be satisfied by choice probabilities estimated 
in this fashion. 

Finally, to the extent that the similarity hypothesis is applicable to the decisions 

of consumers or voters, it suggests the intriguing possibility of influencing choice 
probabilities between products or candidates by manipulating the similarity between 

them. 
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