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ITERATIVE SOLUTIONS OF MAXWELL'S EQUATIONS

by
John Stelios Asvestas

ABSTRACT

The problem of scattering of electromagnetic waves by a closed, bounded,
smooth, perfectly conducting surface immersed in vacuum is considered and a
method for determining the scattered electric and magnetic field vectors
(solutions of the homogeneous Maxwell equations satisfying well known boundary
conditions on the surface and the Silvér—Mﬁller radiation condition at infinity)
everywhere exterior to the surface is presented. Specifically, two integral
equations are derived, one for each scattered field vector. These equations
are coupled. The kernels of the equations are dyadic functions of position and
can be derived from the solutions of standard interior and exterior potential
problems. Once these dyadic kernels are determined for a particular surface
geometry the integral equations can be solved by iteration for the wave number
k being sufficiently small. Alternatively, the scattered fields in the integral
equations may be expanded in a power series of the wave number k and recur-
sion formulas be found for the unknown coefficients in the expansions by equating
equal powers of k. As a check, the method is applied to the problem of scat-
tering of a plane electromagnetic wave by a perfectly conducting sphere. The
first two terms in the low frequency expansions of the electric and magnetic
scattered fields are found and are shown to be in complete agreement with

known results.
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INTRODUCTION

The subject of low frequency electromagnetic scattering dates back to
Lord Rayleigh (1897). In his well-known paper Lord Rayleigh examined the
scattering of both acoustical and electromagnetic waves by two-dimensional
as well as three-dimensional bodies and he showed that in the limit as the
wave number k tends to zero the electric and magnetic scattered vectors
in the near field can be expressed in terms of solutions of standard potential
problems. Furthermore, he was able to continue these solutions into the
far field region and arrive at his famous fourth power of frequency law for
the scattering cross section of objects whose characteristic dimension is
small compared with the wavelength.

Since that time considerable work has been done in this direction. An
extensive bibliography for both acoustical and electromagnetic low frequency
scattering is given by Kleinman (1965a). Much of the work in deriving higher
order terms in the low frequency expansion,however, has depended explicitly
on a particular geometry for the scatterer and on a particular type of source
with a restricted direction of incidence. Stevenson (1953) overcame these
limitations by means of the Stratton-Chu integral representation of the scat-
tered fields. He showed that the scattered fields for a sufficiently smooth
three-dimensional scatterer and for arbitrary excitation can be written in

the form

where Efn and ﬁ fn are the coefficients of km in thek-series expansions ofthe

electric and magnetic scattered fields, respectively. The vectors Fm and

Gm are known in terms of the previous coefficients E (S), cees Efn—l and

-~ - ’

H S, e HS . The scalar functions ¢S and zps are solutions of Laplace's
0 m-1 m m

equation satisfying known conditions on the scatterer arising from the pro-

perties of the electromagnetic field. They also satisfy the Kellogg regularity



conditions at infinity. The vectors Exsn and ﬁlsn can be continued into the far field by

substituting them in the Stratton- Chu equations and using the far field approximation
for the free space Green's function which is involved in these equations. Kleinman

(1965b) showed, however, that Stevenson's method leads to incorrect results after
the first few terms and proposed an alternate scheme largely based on Stevenson's.
Wewill undertake this pointin Ch. ITI. In either case, however, the labor for ob-
taining higher order terms becomes prohibitive at a very early stage.

Inherent to all three-dimensional low frequency techrﬁques is the assumption
that the scattered electric and magnetic fields can be written in a power series of
the wave number k. Werner (1963) put the whole subject on a rigorous mathematical
basis by showing that this assumption was correct. Specifically, he proved that
the scattered electric field E® tends, as k = 0, analytically to a corresponding
electrostatic field.

In the present work we propose an alternate low frequency scheme by
means of which one can obtain as many terms as desired in the expansions of
the scattered fields by operating on potential functions (solutions of Laplace's
equation) satisfying certain boundary conditions on the scatterer and the Kellogg
regularity conditions at infinity, The advantage of the present method over
Stevenson's is that it does away with the determination of 2m potential functions
(¢fn and z//fn ). That is, for every -fl fn and ﬁ fn we wish to determine we do not
have to solve two boundary value problems to determine ¢fn and wfn . Moreover,
we believe (though we do not prove) that the resulting series expansions through
the present method represent the scattered fields not only in the near region but
everywhere in space. Its disadvantage is that it applies only to perfectly con-
ducting scatterers while Stevenson's applies to scatterers of finite or zero con-
ductivity also.

In order to facilitate reading of this work and to clarify our approach
we include an introductory section where the problem, its motivation, and

the main results are presented.



The Problem, its Motivation, and the Principal Results

The problem under consideration is the following:

In the three-dimensional free space (vacuum) we have a closed, bounded,
perfectly conducting surface S which separates the whole space into two regions:
the finite region V; enclosed by S and the rest of the space V. The surface S
is sufficiently smooth to guarantee the existence of a normal at -all of its
points, A time harmonic source of electromagnetic waves is located in V and
its electric and magnetic fields are denoted by _ﬁi and ﬁ i, respectively. The
time dependence e_iwt is omitted. The presence of the perfectly conducting
surface S gives rise to an electromagnetic wave whose electric and magnetic
vectors we denote by E S and ﬁ S, respectively. These two vectors satisfy

1) Maxwell's equations

VxES-ikzH® vxH =-ikYE®, (1)
Z=1 /Y, the free space characteristic impedance,
2) the homogeneous vector wave equation
>~ -~
vx VX{I%: k2 %2 =0 invV, @)
a consequence of Maxwell's equations,
3) the boundary conditions

L e e i
ﬁXES=-ﬁXE1, A. H%=-A.-H' on S, (3)

where 1 is the unit normal on S directed out of V
and into Vi’ and

4) the radiation conditions

A R [ﬁx( VXES)+ikEﬂ= 0,

A
. uniformly in R (4)
lim A x5 .. >8] ’
B> o R[Rx( VxH )-th:]- 0,
A
R being the radial unit vector and R the distance from

the origin of a coordinate system to a point in V,



Our intention is to determine E S and ﬁ S for k '"sufficiently'" small. The
plan is as follows: First, we express the scattered fields in terms of two
coupled integral equations. The kernels of these equations are dyadic functions
of position which are derivable from solutions of Laplace 's equation. The
equations are coupled in the sense that both ES and H° appear in each of them,
Secondly, for k '"sufficiently" small, we iterate these equations in an alter-
nating manner to produce a Neumann series for each of the scattered fields.

The motivation for such an approach to the problem is a paper by
Kleinman (1965c) entitled '"The Dirichlet Problem for the Helmholtz Equation, "
In it the author derives a new integral equation for the regular part of the
Dirichlet Green's function for the Helmholtz equation. The "kernel' of this
equation is not, as is commonly the case, the free space Green's function but
the Dirichlet Green's function for the Laplace equation. The equation can be
solved by iteration as a Neumann series to produce the regular part of the
Dirichlet Green's function for the Helmholtz equation for the absolute value of
k sufficiently sma]ll. The practical value of this method lies in the fact that
it employs the static Dirichlet Green's function which is known for most coor-
dinate systems of interest and which usually involves special functions whose
proi)erties have been studied extensively. What is more important, however,
is its conceptual value: for the first time it was rigorously demonstrated that
the slowly varying dynamic Green's function can be obtained by suitably per-
turbing the corresponding static function. That this could be true had long been
felt among workers in the fieldz. The same feeling certainly existed regarding
the electromagnetic problem and now Kleinman's method suggested a way of

attacking it.

In connection with this work it should be mentioned that the Neumann pro-
blem for the Helmholtz equation has been treated in a manner analogous
to the Dirichlet by Ar and Kleinman (1966).

Cf. M. M, Schiffer's work in '"Lecture Series on Partial Differential
Equations, " The University of Kansas Press, 1957,



The equivalent concept of a scalar Green's function in the vector case
is the dyadic Green's function. After Levine and Schwinger (1950), we define

it as follows: 3

1)  vxvxG®R|R)-K%G ®R|R)=-B@|R' )V (5)
2) Either
fxG=0 on S (6)
or
AxVxG=0 on S (7
3 Hm  R(vxG-kRxG) =o0. (8)

We have in reality defined two dyadic Green's function depending on whether
we choose the boundary condition (6) or the boundary condition (7). (That the
Green's function must be a dyadic instead of, say, a vector is necessitated by
the fact that we wish to obtain a linear relation between the field vector in V and
the field vectors on the scatterer, and the most general linear relation between
two vectors is a dyadic.) Using these dyadics (one at a time) in the dyadic
form of Green's theorem we can find two sets of two integral equations each
for the scattered fields E° and ﬁs. The suitable form of Green's theorem in

this case is

| f [vxvxQ): B-Q- (vx vx Bj]av= f % [Ax(vx By+(vxQx Blds ,
S+S™+S,, (9)

where S! is the surface of a small sphere centered at the singularity atR! ,
Soo is the surface of a sphere with infinite radius, and 2 is the unit normal
always directed out of V. The vector Q stands for either of the scat-
tered fields while the dyadic P usually stands for one of the dyadics

defined above. In our case, however, we wish to use dyadics which

Arrows (=) over letters denote vectors while double bars (=) denote
dyadics. Carets () over letters denote unit vectors.



are derivable from potential functions. At this point one must exercise care
in defining these dyadics. They must have an appropriate singularity
to make (9) give a desirable result (i. e. evaluate the field at
the singularity) and they must satisfy appropriate conditions on S so that
together with the natural boundary conditions of the electromagnetic fields
they will make the integral over the scattering surface S in (9) a known term.
The boundary conditions on S are readily determined by inspection of
the surface integral in (9). The appropriate singularity was found by noticing
that vector wave functions for the equation Vx VxK —k2 K =0 are formed by
letting K =Vx (3;,//), ¢ being a constant unit vector and  a solution of the
Helmholtz equation. In our case we let ¥ be the free space Green's function
for the Laplace equation. Fromnow onthe roadis open andwe canreachthe

following result (with respect to the geometry defined at the outset).

If
1) ﬁs)= Vx [ :l 70 (10)
ar-|R-R|
47r| R-R'T T
E(D '
er
2) VxVx{ =0, inV (12)
=)
m
r
3) ﬁx§(1)= 0, ﬁxVx§(1)= 0, onS (13)
m e
4) le(ﬁxX)I <o, IRB\VXX|<00, asR >, (14)
=(1) (1)

where A stands for either H or E

A
5) E and H regular in V (15)



6) |vx RE)|<ow, [Vx (RH)|<w, asR >, (16)
then
v'xﬁ(ﬁ')=-f(vX Vi)« B )dV+f(an) (VXE( Myas, @
A S
and
VixH (R' )=- f (vxVxH)- H Dav+ fElx(VxH] Vas. e
\'

This is the principal result of Ch. I. (The notation used for the two dyadics will become
clear when we recognize their physical significance.) Wilcox' (1956) expansion
theorem makes it obvious that the scattered fields defined in (1) - (4) satisfy

condition (16) and we can therefore write

ES®"=-ikzZ f s, I={S‘)dv— f @xED. ﬁf:) ds (19)
v S
and
ikZ H (R 1= -szﬁs- E(l) f(an ). (VXE( )yds. (20
v S

The last equation can be written in a better form. To do this we need

=(1)

the explicit representation of E in terms of potential functions which leads
us to the question of how to determme the dyadics defined by (10) - (14) . This
problem may be attacked from a purely mathematical point of view. We had the
feeling, however, that these functions should be related to the electrostatic
and magnetostatic fields of infinitesimal electfi)c and magnetic dipoles. In-

deed, we can show (for our geometry) that H is the coefficient of k in

the low frequency expansion of the total magnetm field of three orthogonally
crossed infinitesimal electric dipoles at the point R' of V. Similarly, E —fn)
is the coefficient of k in the low frequency expansion of the total electric

field of three orthogonally crossed infinitesimal magnetic dipoles at the point



R' of V. After this the determination of the two dyadics becomes an easy
matter. In Chapter II we derive these dyadics in their explicit form. In
Chapter TII we start with Egs. (19) and (20) and modify them in a way that
will render them amenable to iteration. Finally, in Chapter IV we apply

our method to the sphere.



Chapter I

THE DERIVATION OF TWO INTEGRAL EQUATIONS

In this chapter we proceed to derive in detail the integral equations (17)
and (18) of the Introduction. To do this we need the divergence theorem in
its dyadic form. 1

If V is a volume bounded by a regular surface S (S € Ly, where Lp is
the class of surfaces whose equations have continuous derivatives up to and
including p'th order and whose p'th derivatives satisfy a HOlder condition?)

@ (n)

and if A is regular in V and on S (X € C*’, where C" is the class of functions

with continuous derivatives up to and including the n'th order), then

fv-Kdv=fﬁ-de, (1.1)

A% S

where /ﬁ is the unit normal directed out of V.

The proof of this theorem follows immediately from the corresponding
theorem for vector functions. Attention should be drawn to the fact that the
dot product in the surface integral is not commutative.

By writing A in the form

K:éx(foH(vXé)xl:) , (1.2)

we obtain the following Green's identity

f [(vxvxQ)- B-Q- (vxvx B ] av= | &-[Qx(vx B1+(vx QxBlas, (1.3
v S

1A11 dyadic identities that will be employed subsequently may be found in
Van Bladel (1964).

2A function f(R) is said to satisfy a Holder condition at _&R 1f there are three_
positive constants A, B, C such that |£®) -f(Ro)l < A|R—R for all points R
for Wh.lChIR-R I <C.
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where, in arriving at (1.2), we used the dyadic identity

V. (2 xb)=(Vxa)-b-a+ (Vxb) . (1.4)

Equation (1. 3) is the form of the divergence theorem that we will use to

derive the two integral equations.

The First Integral Equation

Let S be a closed, bounded, regular surface. This surface separates the

whole space into two regions: the finite region V; enclosed by S and the rest of

the space V. Let Eg) be a function of position defined in V and on S by

=(1) [ I =(1)

EV"=Vx |- — + E s (1.5)

m 47r| R- ﬁ'l ny,
where Egl)r is regular in V and on S and satisfies
=) _, . .

VxVx Emr—O, inVandon S. (1.6)
Moreover,

/1\1 X }=3(1)= 0, onS, _ (1.7

m
and
A = =
Rz(RxESl))|<oo and ]RSVng) <w, asR—> o, (1.8)

A
where R is the radial unit vector and R the distance from the origin of a
rectangular coordinate system to a point in V. For convenience, the origin
.
of the coordinate system is located in V; . Let, finally, E be a regular

- £ =
function of position in V and apply (1. 3) in V with Q substituted by E and P

(1)

m
-
V centered at R' with radius r and surface S'. Eq. (1. 3) then becomes

= S
Since the dyadic E_° is singular at R', we exclude a small sphere from
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f (VXVXE)-E;ll)dV = f dsﬁ-[ﬁ x(Vforll))ﬂvX‘E‘)xﬁg)] , (1.9
S+

where S00 is the surface of a large sphere, with center at the origin, bounding
the volume V at infinity (see Fig.1l). We now proceed to examine the surface
integrals one by one. First we examine the integral over S. Using the dyadic

identity,

(axb)-A=3a-(bxA) = -b - (axA) (1. 10)

and the boundary condition (1. 7), we have that

> =
Is=f(ﬁxE)- (Vx Efrll) ) dS . (1.11)
S
Next we examine the integral over S', where we take S' to be the
surface of a sphere of radius r centered at ﬁ' . We intend first to evaluate
the integral and then let the radius r of the sphere go to zero. In the process,
=(1)

the integral involving the regular part of E will go to zero and we are left

with the following expression

IS,= iiﬁofﬁ- ExVxVx[— —é—:—]‘V(VXE)XVX [— ——}_‘—:—.] ds.
o ar BRI ar BRI

(1.12)

. AN .
Since on S' n= -r and 'since

VXVXE —%]=VV '] IV [ J
4z |[R-RA | 4r|R-RY 4z [R-R!

B 1 = S
= Vv ——-:-_—_-—J—TG(R]R') )

L. 47 IR-R!
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we have that

I, lim f (D [Exvv(- )+ (VxBixVx(- z=)] @8, (113
S

Sl
1
where
r |R-R , (1. 14)
Now
Vx(56)=(Vx§)B -axVhb . (1.15)
Substitution of this relation in (1. 13) leads to
"‘ _rlizlof EVXE)V(——)-VX(EV(_‘EEE )
+(VxE)x\7x(—47rr] ds . (1.16)

A
By Stokes' theorem the part of the integral involving r. Vx vanishes and by
(1.10)

2= BV SoHOx B vx(- o )

= VxB) V(- o= )-(VxB)- [‘r‘xvx(—gﬂ:

(. VxE) V(-LJ—:%‘)-(VXE) -{Qx V- ﬁ)xﬂ } =

=(r VX_E’)V(-Z%)-(VX E)- {V(-Z;—r—)(f- DI [ v fﬁﬂ } =

=+ VxBV(- ) [(7xB) - V- po)] $48 V- ) (VR E) =

@B [A- 2 xF ] 48 V- DR E)=F- V- go) (OxE)
(1.17)

where, above, we made use of the dyadic identity,

;x (ng)=E(;- f\.)—f&(;- l-;) . (1.18)
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Equation (1. 16) then becomes

__lim A, __1 =
IS' r_)_ofr [_-_V( 4“‘)(VXE) ds
Sl

K9
= -1lim f as BB _ g E @y . (1. 19)
r->0 2
St drr
We are now left with the evaluation of the integral over Soo . To do this
we draw a sphere of radius R and center at the origin of the coordinate sys-
tem. We then let R go to infinity and we require the integral to vanish in the

A
limit. ¥ R is the unit vector in the radial direction we have that (see Eq. 1. 9)

A o =) oo s =] 4o
Is(x) =f R- l:_Ex(VxEm )+(VxE)xEm_] das .
S(I)

By (1. 10)

T 27

: A =(1 = A =1
0 0

from which we can write

T

2T
lim lim 2 =(1 )
R0 ‘Isoo < R+oof f sin6 do dg IR (RXE) (VxE
0 0

+|R%VxE) - Rx E(l) )| . (1. 20)

In order that this integral vanish in the limit we must have

11m ’R (ij (VxE(l) )l =0,

and
lim

am |- @xED) [ =0

k]
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which, together with (1.8), imply that

A o . ™
]RxE|<oo anleVxEl <m, asR>m. (1.21)

Since

KY A A KN
Vx(RE) = RXE +R VXE ,
Eq. (1.21) can be written
>
le(RE)l <mw asR->wm . (1.22)

This is the regularity condition on E if the integral (1. 20) is to vanish,
Collecting our results from (1. 9), (1. 11) and (1. 19), we can then state the

following theorem;

Theorem A:
If V is the volume exterior to a closed, bounded, regular surface S and

E is a regular function of position in V and on S satisfying the regularity con-

dition IVX (R E )'< o, as R - o, then f satisfies the integral equation

V‘xi(f.{') = —f (Vx Vx E) . Eg)dv+ j'(nx E): (Vx E(l)) das, (1.23)
v S
=(1)

where Em is defined in (1.5) - (1. 8), and ﬁ is the unit normal on S directed

out of V and into the interior of S.

The Second Integral Equation

The derivation of the second integral equation follows closely that of the
first and for this reason we shall be brief.

The geometry of the problem remains the same. We define the dyadic
=(1)

ﬁe as follows:

a0 vx E ] il (1. 24)
e 4r |R-RY
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=(1)

where He, is regular in V and on S and satisfies

=0, inVandonS, (1.25)

Vx Vx flélr)
Moreover,

'I}XVXE(el) =0, onS, (1.26)
and

IRz(ﬁxﬁgl)) | <o and IR3 Vx ﬁg) ] <w, asR>w. (1.27)

=(1)

Letting in (1. 3), P be He and 5 be H (ﬁ regular in V) we have that

f (VxvxiD) - Foav = f f - [HxvxED) + (vxi x50 ] as. (.28)
v S+SM8,

By (1.26) and the dyadic identity (1. 10), the integral over S becomes

I~ f [_ﬁx(Vxﬁ)]- ﬁg)d S . (1.29)
S

The integral over S' is evaluated as in the previous section yielding

I ,=-V'xH®) . (1. 30)

Similarly, the integral over Sw vanishes in the limit as R 9 o provided

lvx (Rﬁ)]<oo as R >wm. (1.31)

Collecting these results we can state the following theorems:

Theorem B.
If V is the volume exterior to a closed, bounded, regular surface S and
-

H is a regular function of position in V and on S satisfying the regularity con-

-
dition [Vx (Rﬁ )] <o, as R <> w, then H satisfies the integral equation
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e €

V'xﬁ (ﬁ')= —f (VxVxI'-LI) . ﬁ(l) dv + [I?X(Vxﬁ) : }=I(1) das , (1. 32)
v S

where E(é) is defined in (1.24) - (1.27), and #f is the unit normal on S directed

out of V and into the interior of S.

At this point we conclude Chapter I, the main results being Theorems A
and B. The integral equations (1.23) and (1. 32) will be subsequently employed
to find integral representations for the scattered field defined in (1) - (4) of
the Introduction. Our immediate concern, however, is the explicit represen-

=(1)

tation of He and Egl) , the dyadic kernels of these equations, in terms of

potential functions. This we proceed to do in the next chapter.



Chapter II

THE FIELDS OF INFINITESIMAL DIPOLES AND THE SOLUTION OF
THE TWO DYADIC PARTIAL DIFFERENTIAL EQUATIONS

As mentioned on p. 7 of the Introduction, the problem of finding explicit
solutions in terms of potential functions for the dyadic kernels H( )a.nd E(l)
can be dealt with either from a mathematical point of view (i. e. w1thout takmg
recourse to the physical significance of the dyadics) or by recognizing the
relation between these dyadics and the fields of static electric and magnetic
dipoles and proceed to determine them by utilizing the available knowledge on

potential theory. We chose the second course of action.

Let S be a closed, bounded, perfectly conducting surface immersed in
vacuum, This surface separates the whole three dimensional space into two
regions: the finite region V; enclosed by S and the rest of the space V.

It is, moreover, regular in the sense that it satisfies the requirements of
Green's theorem: S € Ly, where Lp is the class 6f surface whose equations
have continuous derivatives up to and including pth order and whose pth derivatives
satisfy a HOlder condition. For later purposes, erect a rectangular coordinate
system x, y, z with origin in V; . Let J be the volume dyadic current density

in a finite region of V. We let J have a harmonic time variation e_mt which

we suppress throughout this work. Then the electromagnetic fields in dyadic
form satisfy

1) the dyadic Maxwell's equations

Vx
Vx

= ikZH (2.1)

E
H=J-ikYE (2.2)
Z = 1[Y, the free space characteristic impedance,

2) the dyadic wave equations
VxVx E k2 E = ikZ J | (2.3)
VxVx A -k2H = Vx J (2. 4)

18
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3) the boundary conditions
ﬁxﬁ=0, ﬁ-I=I=OonS, (2.5)

'I} the unit normal on S directed out of V and into Vi .

Moreover, these fields satisfy a radiation condition in which we are not pre-
sently interested.
Except for the harmonic time variation we have left the current distribution

J completely unspecified. We now turn our attention to two types of it, namely:

3 =-ikI s R®|RY , (2. 6)
and
3m =-YV x[:f 5 (R| ﬁ')], 2.7

where I is the identity dyadic defined by
1

AN A AN
+a_a_ta_a

T-=24
Bt B R B S

a (2.8)

The current distribution in (2. 6) is that of three harmonically oscillating in-
finitesimal electric dipoles situated, each along one coordinate direction, at

the point ﬁ' of V and of dipole moment
., 1=1,2,3, (2.9)

¢ being the speed of light in vacuum, Similarly, the current distribution in
(2.7 is that of three harmonically oscillating infinitesimal magnetic dipoles
situated, Veach along one coordinate direction, at the point R' of V and of
dipole moment
'ﬁmi= -Y Qi, i=1,2,3 . (2.10)
Let now Ee and ﬁe be the fields due to the current distribution (2. 6) and
expand them in a power series of k:

[00)
=_§:.n=(n) = ??.n=(n)
Ee— (ik) Ee s He = (ik) He . (2.11)

n=o n=o

1 . A M A AAA .
For convenience we use aj, o, a3 instead of X, y, z for the rectangular unit
vectors.
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Substitution of these equations together with (2. 6) in (2. 1) - (2. 5) leads to

the following relations

0)

VXEi =0

Vx E(:ﬂ) = zﬁg‘) , n=0,1,2,...

VXH(O) 0

VXH( ). Ts®IRY YES))
_(n+1) YE( D ne1,2,3,...

VxVx E(O)

VxVxE 1)= 0

Vx Vx E(Z)+E( -1z s (RIRY

VXVXE(n+2) —g‘) -0, n=1,2,3, .

VX Vx fig)) =0

VXVXE(D - -vx[T s (BIRY)

Vx Vx H(n+2) ( m_0. n=0,1,2,...

2

fix Ein) . 0 n (n)

Repeating the procedure for the fields

= =) = _ (n)
E = ? (ik)™ E . H = (ik)™ H

n=o =

of the current distribution (2. 7) we obtain

\% E(O) =0

—(n+1) =(n)

=ZH ', n=0,1,2,..

0, n=0,1,2,..., onS.

(2.

(2.

(2.
(2.

(2.

.
@.
.

(2.

(2.
(2.

(2.

(2.

(2.

(2.

12a)

12b)

13a)
13b)
13c)
14a)
14b)

1l4c)

144d)

15a)
15b)

15¢)

16)

.17)

18a)

18b)
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VXH(O = -YVx[_Ia(RIR')] (2. 192)
v H(n+1)= YE® n-012... (2. 19h)
m m
Vx Vx E( ) =0 (2. 20a)
Vx Vx E(l) - -Vx Ta(ﬁlﬁ')] (2. 20b)
VXVXE(n+2) '(n) =0, n=0,1,2, ... (2. 200)
VXVXH( O -y vxvx[Ts (&I H7) (2.21a)
VXVXITIS;) =0 (2. 21b)
Vv E® +5™ - 0, n=0,1,2, ... (2. 21c)
m m
'ﬁxﬁ(n) 0, n- ﬁ(g) =0, n=0,1,2,..., on S . (2. 22)

At this point we offer some relief to the reader by saying that, of all this
multitude of equations, we are only interested in those involving H( D and E( )
These two dyadics are directly related (if not identifiable) with those deflned in
Egs. (10) - (14) of the Introduction; By (2. 15b), Hi)
(10) by Eq. (2. 13b) and the boundary condition (2. 16) on E
Similarly, by (2. 20b), E(l) can be written in the form (11); by (2.22),

=M 4 Ea)

can be written in the form

) ), it satisfies (13).

satisfies (13). Our next step is to find explicit forms for H
terms of potential functions. Subsequently, we will verify that these solutlons
satisfy the regularity condition (14) of the Introduction and, therefore, they
qualify as kernels of the integral equations (17) and (18). In effect, we will
have shown that the kernels of the integral equations can be obtained from the

solutions of electrostatic and magnetostatic problems.
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The Dyadic I:iil) in Terms of Potential Functions
Let
ﬁSL Vx [— —_I;T] + 7D (2.23)
ar|R-RY r
where
VXVXES) =0. (2.24)

r

The dyadic i_-I(el) satisfies Eq. (2. 15b), namely

=(1)_ = |- )
VxVxH_ = - v 16 (RIR')] ) (2. 25)
and is related to ESJ) by (2.13b). Equation (2.12a) permits us to write Ego)
in the form
3
=(0) (O\ A
E =-Z v¢ei a, . (2.26)
i=1l

Substituting this expression in (2. 13b) and taking the divergence of the re-

sulting equation we have

v2¢f§) 3 -1-ve®lR 2.27)
=1

We wish then to find solutions to the problem
2 A >
v ¢fe? - 2:Ve®IR), i=1,2,3. (2. 28)

By virtue of (2. 16), these scalar functions satisfy the boundary condition

'ﬁxV¢f§) =0ons§, i=1,2,3. 2. 29)
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For the total field ¢$) we can write

¢(e(1»= 8- VE ] ¢(0) &Ry | (2. 30)
47 R R'
where
v @Ry -o0. (2. 31)
ei
r
(0)

Stokes' theorem together with the boundary condition (2. 29) implies that ¢

is a constant on the surface S. From (2. 30) we can then write

0 Y 1 Y
¢(el) (RSlR')z _gi . VS E -_":‘J +Cei, RS € S, (2 32)
r 4 IRS-R'

where C , a constant, is the value of ¢$)on S. We now employ Green's
ei

theorem and write

(0) ST (0) - 9 (e) -~ o~
fo; RIRD = § ¢ (Rsl R') a G (RgIR)dS, (2. 33)
T T
where G(e) is the exterior Dirichlet Green's function for S;
O RIRY - L +aO@IRY | (2. 34)
ar |R-R|
with
2 G](f)(ﬁlﬁ') =0, inV, (2. 35)
and (e) -
Rg|R) =0, Ryes. (2. 36)

Substituting (2. 32) in (2. 33) we have
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(0)(R|R') =(&;- v')f[ e :J o O & IR as +
g an[R RN s

+C f oo © (R R)ds
S

_-(a V')Ge)(R|R')+C f = (e)(R IR) as . (2.37)
S

By a simple application of the divergence theorem we find that

fé-g-l:-——i—r]ds:o; (2. 38)
g s L an|R R

therefore,

O B18n= 2. vl RIE 9
¢eir(R|R)— ~(a;" VG (RlR)+Ceif

ans
S

(e) > 1
¢ ®RJRds . (2.39)

Substituting (2.39) in (2.30) and taking (2. 34) into account we have

¢(0) -8 e @ElRn+c f (e) RJR) as . (2. 40)
ei dng
S

In order to determine the constant Cei we employ the relation

f Be v, # (IR as = 0. (2. 41)
r
S

This is a consequence of (2. 13b) and Stokes' theorem. It is a mathematical
statement of the physical fact that the total induced static charge on the per-
fectly conducting surface must be zero. Substituting (2. 39) in this expression

we have that
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(a V) f 82 (e)(R |Rnd s

S
dT _a f ds —G(e)(R i
s

A -
=@y V) D (R)  (2.42)

S T
where
f a_a_ © & & as
> S
D (R") = (2. 43)
© f ar -2 f ds G(e)(R|
The electric field dyadic (2. 26) can then be written
3
=(0) 2, E’ A (e)aia 2 o
E ®RIRY=2 ani V& T (RIRY ceif ds o R IR]
i=1 S (2. 44)
or by (2. 42)
Eg))(ﬁlﬁ»: Z VvV IE;;“”(RIR') -D (" f — Gie) (ﬁslﬁE] ,  (2.45)
, S s
and if we let
(O)J-_s' _ (e).h.s' _ -~ __a_ (e).L -
v, RIR) = ¢*“(RIRY D_(R") f ds n G, (Ris) , (2. 46)
S
then
E(e(’)(ﬁlﬁ')= 7 Vv wg’) @Ry 2. 47)

In passing we note that this is the electric field due to three orthogonally

crossed electric dipoles with moments defined by (2.9). Now that we have

=(0)

we return to (2. 13b) and substitute our result in it;

Vxﬁil)= -1 5 ®RIRY -v™ (pg))

determined E

(2. 48)
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Substituting (2. 23) and (2. 46) in this expression and employing the identity
dyadic
VxVx T ¢)=VVy T vy (2. 49)

we obtain

VV[ ___.,:I =1V [ :|+Vxﬁ(l)
arfR-R | 47|R-R)|

- -I5(R R)- W'l:(e)(RlR') -D (R') f ds == (e)(R | R]
S

S 2. 50)

e)

By taking into account the definition (2. 34) of G( and that

sz —{T-J - s(®IRY | (2.51)
47r'R—R'

I: ] v E—j ‘] ) (2. 52)
4r | R-RY arlR-Rr'l

Eq. (2. 50) reduces to

=(1__ oot | (&) B 130 1 @ 9 (&)= =

VxHer— \Av/ E;r [RIRY D, (RY f ds n G, (Rsl R;_l , (2. 53)
S

(0)

= -VV'y,

(2.54)

r

where zpe )(RIR') is the regular part of Y )(RlR') This dyadic equation can
be broken into three vector equations of the form

vx ﬁ( ]f)
ei

(a V) V¢ (0 . (2. 55)
From (2. 40), (2. 42) and (2. 46) we can relate ¢£§) to 1//20) as follows:;

4= @ vy @, (2. 56)
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and consequently,

¢$) - _(Qi. V) wg’) 2.57
T T
Equation (2. 55) can then be written
(1) _ 400
VEH =V . (2.58)
T r

Stevenson (1954) has shown that the necessary and sufficient conditions for

(2. 58) to have a solution are

v2¢(9) =0inV (2.59)
elr
and
f’ﬁs- v, ¢ Pas-o. (2. 60)
5 elr

But ¢$) was constructed to satisfy Laplace's equation and (2. 60) is automati-

cally satisfied if C,; is chosen according to (2.42). According to Kleinman

(1965b), a particular solution, ﬁgi)p , of (2. 60) may be cast in either of the
r
following forms:
(0) Y
P Vv¢eir(RV|R')
i PRlR= = vx dv +
€ly 47 l -Rs —ﬁ l
\'% Vv
(D=
V. N (R,,)
_l_f Vljel _‘}7 avy | (2. 61)
|RV—R

where Vi is the volume interior to S, or

(0 = =, (D =1] a
Edeir(RSlR )-N_4 (RSZI A
ds
S

FO
R -R
S

.s(]_)p =T 1
Heir RIRY= I Vx (2. 62)
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The function Nfeli) (f{), ﬁ interior to S, is a potential function satisfying

2 (1)(R) 0, R interior to S (2. 63)
with
A (1) = A (0) S _s' -~
ng- V. N (R)=n_-V_ ¢eir(Ris), R e 8. (2. 64)

This is a standard interior Neumann problem and has a solution provided that

f fs v @R N /(R ds =0, (2. 65)
/s

which is satisfied by virtue of (2. 64) and (2. 60) .

The complete solution of H( ) can then be written;
) 3
flfal)= Vx E ——-I-_-_—__—;l + iI_'S)p + E VNS) Qi , (2. 66)
47l R-R r & !
i=1
where VN( €) is a solution of the homogeneous part of (2. 58). The functions

()

are extermr Neumann functions and can be uniquely determined from the

boundary condition (2. 16) on H(l)

VZN(‘?) =0 inV

( ) regular at infinity } (2.67)

A A A
ng: VS NS’I,')= —ns- [VS <— ——i———:—)an (i)p onS .
47 RS—R' S T
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=(1)

The Dyadic Em in Terms of Potential Functions

Let )
EY - vx E——I:-—- +EW (2. 69)
alg-mld M’
with
vxvx EY 20, (2. 69)
m
Ir
The dyadic Efrll) satisfies (2. 20b), namely
Vx VXE -Vx [6 (RIR] (2. 70)
( )

and is related to H
—( )

by (2.18b). From (2.19a) and (2.21a) we can write

in either of two forms: Either

890. vis@|Ry +5© (2. 71)
m m
or _ = i
47 |R-R r
where
Vx}?(o) =0 and Vx Vx ﬁ(o) =0. (2. 73)

T m.
From (2. 18b) we see, however, that if we are to be consistent with (2. 68) we
must choose H( 0) according to (2. 72). Thus substituting (2. 68) and (2. 73) in

(2. 18b) we obtaln

Vx E(l) 2 5O (2.74)
r
The first of (2. 73) permits us to write ﬁ’(‘g:)r in the form
=(0) () , A
Hp,=-Y ) (V) 3 (2. 75)
i=1

and by taking the divergence of (2. 74) we see that

2 (0) _ .
\% ¢mir =0, i=1,2,3 . (2. 76)
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=(0)

From the boundary condition (2. 22) on ﬁm and (2. 72) we can write

A —-(0)
YnS- VSXVSX[ ] +n H
ar [Ry -R'l

VxVx[ J |: ] -IV [:—1] . (2.78)
ar|R- ar|[R-RY| ar [R-R]

By (2. 75) and (2. 78) the boundary condition (2. 77) becomes

3
A
ﬁs. vsst 1 ] AS v E ¢£2)1 a; =0, (2. 79)
an |[Rs-RY| r

,onS. (2.77)

But

1

i=1
or
ﬁs- vs vs <— ) E ¢(0) a, =0, (2. 80,
4r |R —R'
A A 1 (0) A
n-v (a.-V) <—T> —¢ . a.=0, (281)
S s[ i 'S ar |RS—R'| m_lr] i

The last relation gives us

P OSSN R G _
dng ¢mir(Rs' R'") = n (ai Vs) ( remmre l)], i=1,2,3. (2.82)

4 |RS -R!
We now employ the scalar Green's theorem and write
0
o) (R | Ry

a mi
¢(0) ®IR" = f NO& | R) = ds , 2. 83)
r )
S

where N(e) (ﬁli’:‘) is the exterior Neumann Green's function for S :

1
-h--\-l

N RIRY- -
47|R-R!

+ Nie) ®IRY | (2. 84)
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with

2 (e) oy .

VN ®R|RY =0, inV, (2. 85)
and

9 (e).s _s' _ -

BnSN (RJRN =0, Rg € 8. (2. 86)

Substituting (2. 82) in (2. 83) we have *

(0) 2 13,._/A ()= =, 0 1
¢ . (RIR')=(a-'V')fN (R lR) _ ‘T] ds
My A T s | slR R
- &y vy xRy @ (2.87)

Equation (2. 73) then becomes
3
VXESB = -Z (V¢(O) ) Qi=- vv! Nie)(ﬁlﬁ') . (2. 88)

mi
r Rl t

The necessary and sufficient conditions (2. 59) and (2. 60) for the equation

vx ED = - vgl0 (2. 89)
mlr mlr

to have a solution can be seen to be readily satisifed; ¢§gir satisfies Laplace's

equation (2. 76) and it also satisfies the condition

A (0) _
f -V, f . dS=0 (2. 90)
S T
by virtue of (2. 82) and (2. 38). According to Kleinman (1965b) a particular
solution, E(l).p , is
mi

2I’c is interesting to note that substitution of this expression in (2. 76) and then
in (2. 71) gives the total magnetic field of three orthogonally crossed static mag-
netic dipoles of moments defined by (2. 10) as

70y vornl@ -y s R ) .
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EJ(O). (& IE')-N(i)_] iy
ﬁ(l)p "|"'r ) 1 mlr s mi
mir(R RY)= - — Vx [ dS — . (2.91)

S Rs R

@) =

The function N (R) R interior to S , is an interior Neumann function satis-

fying
2..(1) = = )
Nmi(R) =0, R interior to S (2. 92)
with
A i) =~ A (0)
ns-VSNmi(RS)— A (R IR) , Rges. (2. 93)

This is a standard interior Neumann problem and has a solution provided

A (1)
fs Nei (R)dS 0, (2. 94)
S

a condition guaranteed by (2. 90).
=(1)

can then be written

~ 3
_]([Ill) Vx E——I:—:]+ Efrll)p+ Zvaf;), O (2. 95)
an|R-R] r !

i=1

The complete solution of E

where V Giz)i is a solution of the homogeneous part of (2. 89). The functions
G(e), are exterior Dirichlet functions that can be partly determined from the
boundary condition (2. 22) on E(l) <
sz(e)i =0inV
( © regular at infinity } (2. 96)
ﬁs X VSG£§)1= —gsx VS <— —I1T> xa -nS X -ﬁfrllip on S
47r|RS—R'| T
w

(e)

To completely determine G

f ["(1)p+v G(e)]ds 0,i=1,2,3. 2. 97

; e employ the additional condition
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This condition arises from (2. 19b) and Stokes' theorem over a closed surface.

()p

Since E ;" is the curl of another vector (see 2. 91), by Stokes' theorem again,
miy,
its normal component integrated over a closed surface is zero. Equation

(2. 97) then becomes

f A va@as-o i-1,2 3. (2. 98)
S s mi
S

At this point we conclude Chapter II. In summary, we have derived ex-

plicit expressions for the dyadics H( ) and E( ) defined at the beginning of
the chapter, in terms of potential fu;nctlons. These dyadics satisfy Egs. (10) -
(13) of the Introduction. They also satisfy the regularity condition (14) as
shown in Appendix A. It is of interest to note that in order to determine the
two dyadics we employed more boundary conditions than those specified in
Eq. (13). Specifically, for H( ) g 0) and (2. 41); for

E;ll) we used (2. 22) ( _(O) =0) and (2.98). The question then arises

we used (2. 16) (n H

whether the boundary condltlons (13) together with the regularity con-
dition (14) of the Introduction determine uniquely the two dyadics, as
specified there. If the dyadics are determined uniquely, one should

be able to show that the two boundary conditions, together with the
regularity conditions, imply the additional ones mentioned above. This
question has not been answered as yet. The only statement we can make
(from Appendix A) is that the boundary condition (2. 41) implies the regularity
condition

IR (Vx H(l))l <w , asR>0 .



Chapter III

INTEGRAL REPRESENTATIONS OF THE ELECTROMAGNETIC
SCATTERED FIELDS

In this chapter we employ theorems A and B of Chapter I to find integral
representations for the electric and magnetic fields scattered by a perfectly
conducting surface. We start by defining the geometry of the problem and
the properties of the scattered fields.

In the three-dimensional free space (vacuum) we have a closed, bounded,
perfectly conducting, regular surface S which separates the whole space into
two regions: the finite region V; enclosed by S and the rest of space V. A
time harmonic source of electromagnetic waves is located in V and its elec-
tric and magnetic fields are denoted by -ﬁi and H i, respectively. The time
dependence ev'i“’t is omitted. The presence of the perfectly conducting sur-
face S gives rise to an electromagnetic wave whose electric and magnetic

vectors we denote by E° and ﬁs, respectively. These vectors satisfy

1) Maxwell's equations
A5 g - S <5
VxE =ikZH , VXH =-ik YE , (3.1)

1
=5 the free space characteristic impedance,

2) the homogeneous vector wave equation

=S =S
VXVX[ES K2 ES =0, inV, (3.2)
H H

a consequence of Maxwell's equations,

3) the boundary conditions

=g -

s N .
AxE = -nxE ,d-H =-fH ons, (3. 3)

where 8 is the unit normal on S directed out of V and into Vi’ and

34
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4) the radiation conditions

lim

A e | _
Ry o B[R (VEE)HKE :|- 0,

uniformly in R , (3.4)
i A 5 5
i o B[Rx(vxE)+ik H ]=o.
A
R being the radial unit vector and R the distance from the origin ~f

a rectangular coordinate system with origin in V; to a point in V.

Our intention is to substitute ES and ﬁs in the integral equations (1. 23)
and (1. 32) of Theorems A and B, respectively. In order to do this, however,
we must show that le (RE®) |< o and I Vx (Rﬁs)l <o, as R » . This
follows from the following expansion theorem by Wilcox (1956):

Theorem C

Let Z(ﬁ) be a vector radiation function1 for a region R > ¢ where (R, 0, ¢)

are spherical coordinates. T_llen K(ﬁ) has an expansion

R 2 Rn
n=o

which is valid for R > ¢ and which converges absolutely and uniformly in the
parameters R, 6, ¢ in any region R > ¢ + € > ¢ . The series can be dif-
ferentiated term by term with respect to R, 6, and ¢ any number of times and
the resulting series all converge absolutely and uniformly.

It immediately follows from this theorem that

| v RE®)| <@ and |vx(RE®)| <@, asR>w. (3. 6)

Letting then E® and ﬁs stand for E and H of Eqgs. (1.23) and (1. 32), respec-
tively, and at the same time, employing (3. 1) - (3. 3), we obtain

1A vector radiation function is one that satisfies Eqs. (3. 2) and (3. 4).
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ez A (RY) =k f £ Efall) dv- f(ﬁxﬁi). (Vx ES’) ds, (3.7)
v S
and
ES(RY) =-ikZ f T ES) dv- f AxE)- ﬁil) ds. (3.8)
v S

Equation (3.7) can be written in a better form. By Eq. (2. 68)

vxED- vv(- ——i-T) +vxED | R+Re, (3.9)
an|R-Rl r

and by (2. 81)

vx B = vv<- S > _vv'n© (ﬁ]ﬁ')
m r

- -
47 R—R'I
--vvN® ®|Ry, R+R', (3.10)
where N(e) is the exterior Neumann's function for S defined in (2.84). Em-

ploying the identities
(axh)- A=2- (ExK)

Vx (2b) = (Vx a)b -ax Vb

we have

Bx B (xED )=t [Ex (vx 5] - 4 [ v N -
=f. I_-_(Vx Ei)V'N(e)—VX (E v! N(e)J ) (3.11)

The second term of this last expression vanishes by Stokes' theorem when in-
tegrated over the closed surface S. Employing (3. 1) in the first part we have
that

f Ax ) (vx ED)ds= -ikz f @- #)vn®as | (3.12)

m
S S
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Substituting this result in (3. 7) we have that

H°(R")=ikY f £ Eg) dv+V! f(ﬁ- N ® @ &y as - (3.13)
v S

We can then state the following theorem.

Theorem D
The fields E and T defined in (3. 1) - (3. 4) satisfy the integral equations
HO(R") = ikY dV+V' f & HNO® JEn as (3.14)
v
and
ES@&)= -ikz f 5% A 0av- f BxEh - B as, (3. 15)
v S

where Eg’ is defined by (2.95), H(l) by (2. 66) and N'© by (2. 84)-(2. 86).
Equations (3. 14) and (3. 15) constltute a system of two coupled integral
equations for the scattered fields E® and H® . They can be written in operator

form by defining

L=iky | [ ]'E(l) &|Rnav, L --ﬂ{zf C ]'H(l)(RIR') dv

v (3. 16)

and

H )—v'f @- H])N(e)(RlR')dS Eg,- f @xEh - 5 (| R as.

S S (3.17)
With these definitions, (3.14) and (3. 15) becomes
£ i "?), (3.18)
and a5 Tl
E = L,H (3. 19)

oy -
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For the wave number k sufficiently small we can solve these two equations by

the method of successive approximations. We let ﬁs and E°_ be the first ap-

(0) (0)

proximation to ﬁs and ES, respectively. The first correction to this solution

is
_\S _ -hs —ﬁs
H(l) = LlE(0)+H(0) s (3.20)
>3 =5 | =5
E(l) = LZH(0)+E(0) s (3.21)
and the second one
=5 o xS S ] b S
H(2) LlE(1)+H(0) L1L2H(0)+L1E(O)+H(O), (3.22)
A5 o XS xS = *g g
E(Z)—LZH(1)+E(()) L2L1E(0)+L2H(O)+E(0) , (3.23)

and so on. In this manner we generate two sequences of functions {ﬁ?N) J

and E(SN) , Which we must show to be convergent for a certain range of
values of k and, also, that they converge to the desired solutions, i.e.

a5 lim S wS_lim 7S

H N-»ooH(N) » E =N ™ (3.24)

We strongly suspect, however, that this approach would lead to divergent
volume integrals quite early in the process. The reason for this is the
following:

The incident fields of the zeroth order iterates (3. 17), be they dipole

fields or plane waves, are independent of the primed coordinates. This fact

(e) =(1)

together with our knowledge of the nature of N* and He from Chapter II

s
(0)

. In fact, by a simple inductive argument it can be shown that none

leads us to the conclusion that ﬁ?o) (ﬁ}) and —ﬁ (ﬁ') do not contain the exponen-

tial eikR'
of the iterates contain the eikR! as a factor. From (3.5), however, we know
that the scattered fields should contain this factor. We are then led to the
conclusion that elkR' appears in the iterates expanded in a power series in
k. As the iteration proceeds there will come a point when positive powers
of R will appear in the volume integrals of the operator and these integrals
will diverge and this is precisely what happens when applying Stevenson's

method.
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To avoid this difficulty, we must remove the troublesome elkR factor from
-
E and ﬁs. Accordingly, we propose to use the following vector functions in

the integral equations

-1 S

g=e E andﬁ=e_]kRﬁs.

(3.25)
The motivation for doing so lies in (3. 5) of Wilcox' expansion theorem. From
this equation we see that, at least in the region where the expansionholds, the
new fields & and h do not contain the troublesome factor eikR. Our next

step is to rewrite the integral equations (1.23) and (1. 32) in terms of & and
ﬁ . That these two fields satisfy the regularity conditions

le(Ré) |<oo and I_Vx(Rﬁ) I <w, asR > o , (3.26)

so as to be admissible in the integral equations, is obvious from their definition
and Eq. (3.5).
In terms of & and h Eqgs. (1.23) and (1. 32) are written

V'x 3R = -f (VxVx€) * Eg) dv +f(ﬁxé) o (Vx E(l) )ds , (3.27

m
v S
and
v xB(R")= - f (Vxvzh)« B av+ f [BxExd] -8 as. (.29
v S
From the definition (3. 25) the functions e and ﬁ satisfy:
By (3.1)
Vx3 = ik (zh -Rx3) , (3. 29)
Vxh = ik (Yo +Rxh) ; (3. 30)
and by (3. 2)
VxVx 8 = k2(8+ZRxh) -ikvx(Rxd) (3.31)
Vx Vx h=Lk2(h-YRx &) -ik Vx (Rx 1) . (3. 32)

Substituting these expression in the integral equations we obtain
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ik [zﬁ(ﬁ')-ﬁ'x é(ﬁv)] -2 | @+zhkxh)- Eg’ av +
v
+ikf [vx (Rxe)] * Eg) dv+f(ﬁxa) . (VX_E:SI) yds,  (3.33)
v s

and
o, A > X - AL =
-ik [YS(RN+R'xh(RY) = &2 f (h-YRx3) - erl)dv +
, \%
: A ~Y, =(1) - 2 A 29 =(1)
+ik f [Vx(fxh)] H_dv-ik f [Bx(vésRadi]- F 7 as.  (3.39
\% S

The second of the volume integrals in each of these expressions may be

written in a different form. We start with that of (3. 33):
By the dyadic identity

Ve (3 xA)=(Vx3) e A-a+ (VxA) (3. 35)

we have )
f (7 Rxtf] B av= | v- [efoxdyx B Javs f (Rxd)» (VxEL )av .
v v v (3. 36)

By (2. 66) and (2. 88) and application of the divergence theorem to the first in-
tegral on the right, (3.36) becomes:

f [ox(x)- Eg)dwf 8+ [(RadyxE ) as- f (Rxd) vy N Vav. (3.37)
A% v

S+St

Using the boundary condition 1 x E(rg = 0 on S and the identity

Ve (3b) = (Ve 8)b+3 » Vb (3. 38)

) In the discussion that follows we will use the notation of Chapter I: S' de-
notes a spherical surface over the singularity at R' and the volume enclosed by
this surface is excluded from V. Integrals over the surface at infinity (Sy,),
will be omitted if it is clear that they vanish. A knowledge of the properties of
the dyadics and the notation of Chapter II will also be assumed.
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we can write (3. 37) as follows:

f Fx 8] - Elav=| A [(RoxdxE" Jas- | v-[RxdyviNav+ f Ve (Rxd)v'Nav-
v v v

S!

- f ne [(ﬁxé)x'ﬁgz]ds- f 4. Kﬁxé)v'N(ejder f 3. vxh-Re v Sy @av -

St S+S! A%

= | 3. [(ﬁxé)xﬁg)—(ﬁxé)V'N(e)]dS+ R Eﬁxé)v'N(e)_]ds -
St S
ik f Re[zh -ﬁxé]v'N(e) av (3. 39)
\4
where, above, we made use of (3.29). Notice now that the part of the integral

=(1) (e)

over S' involving the regular parts of Em and N'  will vanish in the limit. We

then write
v gt 4w R—R'I
- (ﬁxa V! <‘ ""—-_]i—_‘.—> ds + ﬁ‘ Rﬁxa V'N(e) ds -
47 R—R'l S
- isz Rehvin® av (3. 40)
v

The evaluation of the surface integral over the singularity proceeds in the same
manner as the corresponding one of (1. 16) of Chapter I and for this reason we

omit it. The form of (3. 40) with the integral over S' evaluated then is

f l_—VX(ﬁxé)]‘ Eg av=-Rixe(R)+ ﬁ-Eﬁxav'N(ejds_ikz f R O

v S v (3.41)
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Substituting this expression in (3. 33) we have that

| _(]') 1] A ° g (e)
1kZh(R )= —k (e +ZRxh) dV+k ZV'JR*hN "dV +
v

Vv
A
+ik f R-[-_G‘mé)vq\r(e> S+ f (hxe) * Vx E(l) (3. 42)
S S
According to (3. 11) the last integral above can be written
f (Nx3) « Vx Eg)ds = —f A.vxd) vn©as (3. 43)
S S

and by (3. 29)
f (Bxd) - vxE ds= -ili[ A (zh-Rxd) v' Nas = -ikz | G+ B) v ©as -
S S 'S

_ik | Re [(ﬁxé) v N(e)_]ds (3. 44)
S

Substituting this last expression in (3. 42) we have that

> A K = AN &~ s
h(RY) =ili[ (Y&+Rxh)* E&) dv-ikvvf R an@av - vrf A Hn®as
" S

A% A%
(3. 45)

This is the first integral equation for ﬁ and € .
We now proceed in the same manner as above to modify the second

volume integral of (3. 34) The result is
f [Vx(Rxh)] dV- R'xh(R')+ f n‘[(Rxh)xH(l) (Rxh) V¢(O)]ds+

S A © \
+HKY V f R- ) v (3. 46)
\4
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where ng)) is defined in (2. 46). Substituting this expression in (3. 34) we have

-ikYé(ﬁ')=-k2f (B-vh=d) - FVav-k2y v! f & é)wg)) av -

e
\% \4

—ikv'f 3 (ﬁxﬂ)ng»ds—ikY f @Axe)- fxg) ds . (3.47)
S S

But on the surface S xpg)): —De(i’:') so that

A A~ (0) -~ A A2 Y A s
fno (Rxh) (,[/e dS=—De(R')fn‘ (RXh)dS=—De(R') fV‘ (Rxh)dV =
S S v

A A - Y A o
= De(R') Re¢ VxhdV = -ikY De(R') Re e dVv .(3.48)
Vv A\'A

Substituting this result in (3. 47) we have

SRY =ik f (zh-Rocd) » HOav-ik v:[ e 3[4\ +p Jav + f () + L) s

\% A% S
(3.49)

This is the second integral equation for & and }-; .
Employing then the relations in (3. 25) we can state the following theorem:

Theorem E

The scattered fields ﬁs and ES defined in (3. 1)-(3. 4) satisfy the integral
equations

1o (R)=ikye f IRER) - B (R|RNav+

A%
+ikeika IR { @) E @] -[R- 1 @) v v @Ropav
v

- SkRg L L N
+ o B g f e S[ﬁ-Hl(RS)—JN(e)(Ris') ds, (3.50)
s
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and
E (R')——lkZelkR f 2 (R)- H(D(Rlﬁ') av +
kelER f R RS ()] H(l)(RIR' [R-E (R)]V'F_p(o)(R'R') +
+De(ﬁﬂ } dv
_eikR'f o ' Fs [AxE'®g]- B @R as, (3.51)
where Egl) is defined by (2.93), ﬁg’ by (2. 64), N'® by (2. 84)-(2. 86), (//(eo) b

(2. 46) and De by (2. 43).

Though these equations give directly the scattered fields it may prove
more convenient to work with Egs. (3. 45) and (3. 46) for the vectors l-; and
& rather than the above. These equations may be solved in either of two ways
for small values of k. We can either iterate the equations to form two
sequences of functions which, hopefully, converge to the actual functions & and

KN
h or we can expand these fields in powers of k of the form

& = ;(ik)n 8, h = ; (ik)nﬁn (3. 52)

n=o n=o0

and then substitute them in (3. 45) and (3. 46) to find a recursion formula for
the coefficients. That & and ﬁ can be written in the form (3. 52) follows from
(3.25) and a result by Werner (1963), who showed that the scattered electric
field E° tends, as k - 0, analytically to a corresponding electrostatic field.

When we use iteration to find € and ﬁ we let

b vl Ao @as. 3
h(o)-- f(n h)N (0) f(nxa) H dS (3.53)
S S
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&~

be the first approximation to h and e , respectively. The first correction

to this solution is

b=kl (vs, +hxh ) EQ av-ikv | B-B, N®av (3. 54)
(1) (0) (0) "m (0) (0)’ )
Vv v

s () A ro
e 1kf(Zh( Rcd )1, av- ﬂ{Vf(R &l [ +D;] avid ),

v v (3. 55)
and the second
h (Y8 +Rxt, ) E ()dV kv | Ri Ny (3. 56)
(2) (1) ()] (1 (0) )
v v -

a0 . g _A >\ =(1) . t . (0)
6(2)——11{ j'( Zh(l) Rxe (1)) He dv-ik Vv f (R (1)) [d/ +D;|dV+e ()’
v v (3.57)

and so on. In this way we generate two sequences of functions,{ﬁ(m} and
{ (N) } , which, we hope, for a certain range of values of k, converge to
h and € respectively as N-> o .

On the other hand, when we use the low frequency expansions (3. 52) we
proceed as follows; First we expand the known surface integrals in power

series of k
A~ - A =
- v'f @ mn®as- § (" f (nxa'ﬁil) ds- f(m) (3.58)
S n=0 S n=o0

and then substitute (3. 52) in (3. 45) and (3. 46) and collect coefficients of equal
powers of k to obtain the result
S S L)
N =
hO(R ) fO , (3.59)

b (RY= (Ye +Rxh ) E () av-v'| Reh N%vif | n=0,1
+1 n n+1, E Biad B B
' % (3. 60)
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(3. 61)

& L (B’)= - f (Zhn—Rxen)’H(e dv-v f &3[0S +D ] avig .,

A% v

n=0,1,... - (3.62)



Chapter IV

AN EXAMPLEy THE SPHERE

In this chapter we apply our results to the problem of scattering of a
plane electromagnetic wave by a perfectly conducting sphere. First we will
employ the results of Chapter II to determine the dyadics I?IS) and Eg)

then the results of Chapter III to determine the first two terms in the low

and

frequency expansion of the scattered fields.

The sphere is of radius a and its center coincides with the origin of a
rectangular coordinate system (X, y, z) (see Fig. 2). Using the notation of
the previous chapters, V; denotes the volume of the sphere while V the rest
of space. The surface of the sphere is denoted by S and the unit normal, f s
on it is directed out of V and into Vi. The plane wave propagates along the
negative z-axis with its electric vector polarized along the positive x-axis.
We shall use both the above rectangular coordinate system and its related

spherical coordinate system (R, 6, §).

VA
4
B v
&
Vi >y
a

X

FIG.2: GEOMETRY FOR THE SPHERE PROBLEM.

47
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We start with some expressions we shall be using rather often; The
expansion of the free space static Green's function in spherical harmonics is

Rn

_ (n m) ' 1
- ;—1:1;—- 4r i' Z m (n+m)'P (cos@ )Pnzcose)cosm(qi ¢)B£+1 ’

n=o0 m=o
(4.1)
where R <=min (R,RY), R>=maX(R; R"), and em is the Neumann factor: €0=1,
em=2 for m=1,2,... . The functions P:fl are the associated Legendre functions

defined by

m m

(-1) (ntm)! 2 /2 1-x
-

2m T(n-m)' (1-x%) F_(1+m+n, m-n;1+m; — 5

oF; =)
-1 <x<1, (4.2)

| P:l (x)=

This definition is according to Magnus et al (1966) and all the contiguous
relations for these functions that we shall subsequently use can be found

there (p. 171). The regular part of the exterior static Dirichlet Green's function
for the sphere as defined in (2. 34) - (2. 36) is given by

(&) 1 [00) n (n-m)"! p ( P . ( 2n+1
G, =g Z m (o) cosg) P\ (cos ) cosm((f- ¢)W ,
n=o0 m=o
(4.3

while the regular part of the corresponding Neumann function as defined in

(2. 84)-(2. 86) is given by

() 1 (0] n: n (n-m)! 2n+1
Nr == Z € T T P (cose')P (cose)cosm(¢ ¢')W
n=0 m=o
(4. 4)

We are now ready to proceed with the determination of the two dyadics.
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The Explicit Form of ﬁfal)

First we determine the constant D (ﬁ') of (2.43). From (4. 3)

f 2 G9® |Rnas- f 2 o |8y as -

T 27

R

1 (00) n (n m)! n-l
=Z;T.Z' em( n+l) —— o) P ™ cosor 2 f f a2sind desd¢
n=0 m=o 0

0

m a
X Pn (coses)cosm(¢s—¢')=§; s

9 9 (e)=2 12>, _
f aT = f a8 =G R |R) = 47 a.
S Te s

Substituting these two results in (2. 43) we have that

1

D®)= 5

(0)

By (4. 5) the regular part of Y, as defined in (2. 46) is

_a
47R'R

2

(0) S (e)_s_;' _
wer(RIR) - &7 ®[Ry

()

where Gr is defined in (4. 3). By (2.57)

¢§i’) - (B V')[-G(e)(RIR') R,R] i=1,2,3,
r

AI\A

where 31, 32, a3 stand for the rectangular unit vectors x, y, z

N

(4.5)

(4.6)

(4.7

(4.98)

(4.9

In order to determine the particular solution (2. 62) of (2. 58) we need

to determine first the interior Neumann function defined in (2. 63) - (2. 65).
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By (2. 64)
A, (i)"‘__i(o) ~A.,l 2 2
By VNG (R = - 5rfei ‘ =@V & Z Zem(nﬂ) x
r R=a n=1 m=o0
(n-m)’ n—l
x (n+m)'P (cosG')P (cose)cosm(¢ ¢') rr i=1,23. (4. 10)

The interior Neumann function that satisfies this boundary condition is

e st ntl (n-m)! . R
(R)— (a v Z Z m (n+m)'P (cose)cosm(¢ /D) R'n+1+ Vs
e Rev,i=1,2,3, (4.11)

where Vei is an arbitrary constant. We now form the difference

O 230 D21 Aoy 2n+1 (n—m) m
¢eir(R sIR)'Nei(Rs)"‘ E(ai \4) Z Z o P (cosd") x

(n+m) !

n

X P (cosB)cosm(@-@") -v.,1i=1,2,3 . (4.12)

n+1 ei’
R'

Before proceeding to evaluate (2. 62) we note that the fact that Vei has not been

determined is not disturbing. Since, by Stokes' theorem,

ds dSVQ 1 >xns=0, (4.13)
& —RI R

we see that the part of (2. 62) involving the constant Vei vanishes. In writing
(2. 62), therefore, we shall omit V- From (4. 1), (4.12) and (2. 62) we have
that



7@, = 1 S 2n+l, (n-m)! (L-t)!.
Heir(i’j.R)- (47r) (a « V) Vx Z' Z Z €m€t( - )(n+m)! o *

X P (coser) (cose) +1R£+1 f f a sme do d¢ R Pn (cose ) x
0
X P; (coses) cosm(¢s—¢') cost (¢S-¢ ), i=1,2,3 . (4.14)

In order to evaluate the integral we write the radial unit vector on the surface

A
of the sphere, Rs’ in terms of its rectangular components,

A A A A
R_=xsinf_cosf_+ysind_sinf +zcos6_, (4. 15)
s s s s 's s

and then we employ the orthogonality properties of the trigonometric and
Legendre functions involved in the integration. The final result is rather

simple in form;

AP R Ry woyld 2 5T T m (e P (coso"
oi )—— (a ) 9 sme Z Z il meey cosf') x
r n=1 m=l
' 2n+1 A n 1 (n-m)! .m '
xP (cose)smm(¢ D) n+]Rn+1+¢ Zem 5 (o' Fa (cos6") x
n=l m=o
d 2n
de P (COSG)COSIII(¢ ¢')W , 1= 1, 2, 3. (4: 16)

We notice here that this vector is transverse to the radial direction. The
labor involved in obtaining this result is substantial and it is rather fortunate
that the operations in (4. 14) have to be performed only once and not three times
(one for each i).

We now turn to the determination of the exterior Neumann functions defined
in (2. 67). From the nature of the boundary condition these functions have to be
found one at a time. We will show how to find the first one and will just give

the results for the other two. From (2. 67) we write
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B A o
nev (el)='f{. v <- : >x §]+R- 7P
s e | s 4:7r|R R “r
Y B ] 1 A A A -
=R Vs( 4—-———7rlﬁs Y >x (Rsmescos¢s+6 cos@scosgliS ¢s1n¢s)]_
[ ©® n-1
1 (n -m)! ' . 1
: gzz Z m (n+m)! P (COSG)P (coses)sm m(‘Ijs—?j )+¢s]
n=l1 m=o
n-1 @ n
a (n-m+l)! _m '
o Y. 2 m Ghmey T (00500 X
n=l m=o
-1
-1 i . a” 1
(cos@s)sm En(¢S-¢)_¢S]R,n+1 = - X
oo n-l
X Z gﬂmn;, P(cos6") P (cosd )sin En(¢ -1+ ¢;| o)
n=l m=o
® n n-1
s $ S o ot 19 ]
n=l m=1
(4.17)

(e)

From this boundary condition N o] C20 be determined everywhere in V either

by inspection or by formal use of Green's theorem:

NS)(R‘R') - - f N(® ®JR) NG as (4. 18)
S 8ns
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The result is
@2, 1] <& 1 (@m)! ,
No, (RIR!)— = Z Z 71 (@rm)! L ™ (coso )P "(cos)sin [m+1)¢ m¢]
n=l m=o
2n+ 1 Q0 n
1 (n-m+l)! .
n+]_Rn+1+ Z ntl (ntm _1),P ™ coso )P (cose) X.
n=l m=1
2n+1
xs1n[m—1)¢—m¢_] n+LRn+1 ) . 19)

In a similar manner we find that

@ n-1

(e) (RIR') - Z 1?1471 8;2;: P (cos6) P coso) x
n=l m=o
2n+1 1 (n-m-+l)!
x cosEm+1)¢—m¢] n+LRn+1 Z Znﬂ (n+m- 1)'P (coso”) x
n=l1 m=l
-1 a 2n+1
(COSG)COS [(:m-1)¢—m¢i| Wl ) (4. 20)
() (1'5; a1 @ n m (n-m)! P rp 2n+1
Ne3 (RIR)= o Z nt (ntm)? a (0080 P (cose)sinm(p-f) = Lo
n=l m=1 R
(4. 21)

Equations (4. 1), (4. 16) and (4. 19)-(4. 21) completely determine the dyadic

ﬁil) defined in (2. 66)
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The Explicit Form of E(l)

First we determine the interior Neumann functions defined in (2. 92) -

(2.94). By (2.93) and (2. 87) and (4. 4) we have

I'}s' Vs Ngzi(ﬁs) " 3R ¢(0) (Rg =) =

R=a
W n
A
= -Zlﬂ— (ai‘V') Z Zem gll_*_m;, P™(co S0P ™ coso )cosm(¢ -gn x
n=o0 ms=o
an—l
X W— R 1=1, 2, 3, (4:. 22)
from which we can write
W 1 A oy = . (@m! : ,
Nmi(R)=zE (ai-V) Z Zem (n+n)'P (cose)P (cosG)cosm(¢ gn x
n=0 m=o
Rn e
X +v ., ReV, i=1,2,3,
R'n+l mi i

(4. 23)
where Vi is an arbitrary constant. From Eqs. (2.87), (4. 4) and the above

result we form the difference

n
<O) (Ris') N(l) (Rs)= - Zl;z: (Qi'V') Z Z 22:1 ((1111+1r13)' P:l(cose')P:l(coses) x

n=o0 m=o

-v_., 1i=1 2, 3. (4.24)

x cosm(fs-@#" R'n 1" Vi

Substituting this result together with (4. 1) in (2. 91) we have that
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_ 2
2p a1, 1 AL = = & 2oty (n-m)! (£-1)!
E'mir(RlR')— ( 47r)2 (a\’i V) vx Z Z Z Emet Y ntl (n-lm)' @ *

n=0 m=o0 £=0 t=o

x P (coset)P (cose) +1 £+1 f f a sme do d¢ R P (cose )x
0

-(! - i=
X cosm(;?fS @M cos t(¢s M, i=1,2,3.
(4. 25)
In this expression we have omitted the constant Vi . of (4.24) since, as we

explained through (4. 13),it does not contribute to the integration. Equation

(4.25) is evaluated in the same manner as (4. 14) yielding the result

M

n
Z m (n—m)' Pm(cose') X
=i n

_s(]-)p (RIR') (a Vl) n+1 (n+m) :
1‘

sm6

2n+1 1
X P (COSG)Smm(¢ ¢') n+1 n+]_+¢ Z m ;l-'-l:i. X

@I B cosor) I B (cos6)cos mig-g .
@rm)! Fa a6 “n ntl_nt+l [ °

R" 'R
i=1,2,3 . (4.26)

Note the similarity between this expression and (4. 16).
We now turn to the determination of the exterior Dirichlet function
defined by (2. 96). These functions have tobe found one at a time. From the

boundary condition in (2. 96) and the preceding results we have that on the

surface of the sphere



o6

A A
ﬁsxVSGirel)f -rA1S X Vs <— _&l "y >x X _ﬁs X Egl)lp =
47rlRS—R T

1A 1 o (n-m)! _m m
=_4_7r - Z€ (n-m) —— P (cose')Pn (coses)sinEm+1)¢—m¢le

m (n+m)!
n=l m=o an'l
XR,n+1 B
® n n—l
1 (n"m)! [t -
-5 2. ;oem mP (cose)P (coso )sm[m 1)¢ m¢] n+1 -

ntl (n+m)' n+1

n n
2 A.w i m_(n-m): P (cos6") P (cosg)sin m( ) +
n=1 m= R!

A =l ! n-1
+ 1 Z’ € (_n____m)__p (co sGl)P:il (coso)cos Em+1)¢s'm¢j;T1

z . -
2 o e (n+m)!

nl

+- gz €, ELIHIII:).I)'P (cose')P (cos@s)cos[m-1)¢ m¢] n+1 -

(=]
i
[

1 (n-m)'

s m o+l (ntm)!

-()Ii\‘ V) P ( ose') P (cose )cosm(¢ gn x

n
% a
R,n+J

in V in a series

e
B
il

(4.27)

A theorem by Kellogg (1953, p. 143) allows us to expand Gfrel)l

of spherical harmonics of the form

W n P (cos@)

ire;)l = ZZ@m [A cos m¢+Bn msinm¢], (4.28)
n=0 ‘M=o ’
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from which we write

A (e) 1 A R d m
nSXVGml__Z;r_RX 6 2 né:oem d9 Pn (coso )—ﬁ+_2 [A cosm¢-|B smm¢;|+

sme }:1 ZlmP (cosfy) — +2 sinm¢S+Bn,mcos m¢;|

(4.29)

We now equate corresponding vector components in (4.27) and (4. 29), thus
obtaining two expressions for the unknown coefficients A m and B

Using the orthogonality properties of the trigonometric functions involved

there we obtain the following.

n, m 2n (n+m)' cos R S ¢
2 +1
1 (n-m+1)! m -1 . n ) . <
o m (cosg") & sm(m-1)¢ , n>1, 0< m<n, (4. 30
R
B =- 2 g}-_m)_ ( 0s0") 2 il cos (m+1)@* —
n,’m " 2n (n+m)' R n+l
2n+l
1
2];1 %%%;7 P 1( ose') cos(m—1)¢-', n>1, 1<m<n. (4. 31)
R
These expressions determine all the constants except A . In order to deter-

0,0
mine this constant we employ the condition (2. 98). Transforming the integral

over the surface to an integral over a spherical surface at infinity (by the

divergence theorem ) we have

lim ) (e) _ .
R>co f R Grmi dS=0, i=1,2,3. (4. 32)
S
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Substituting (4. 28) in this expression we find that if the integral is to vanish,
we must have

Koo 0 | (4.33)

From this result and (4. 30) and (4. 31), Eq. (4.28) can be put in the form

(e) A=, 1 =l 1 (n-m)!
Gml(RIR’)=_E g mZ: n- P (cosB')P (cose) X

= (ntm)?
2ntl
xs1n[(m+1)¢-—m¢] e
L, (n-m+1)! _m m-1
+ i Z = 7————P (cos6")P (cos0) X
e (n+m-1)! "n n
2nt+1
X sin Km—1)¢ m¢]—n+_1—n-rf . (4. 34)

R! R

In a similar manner we find

m(cosG')P (cos@) X

2n+1
X cos [m+1)¢ m¢] I:n-l-lR—m-T -

n 1
- ; Zili %E%;—;P (cosG')P (cose) X
2n+1
X cos [m—1)¢ m¢ ] ml 5 (4:. 35)
R

(e) (RlR') =

(e) 2> 1 2 & m n-m)! _m m .
GmS(RlR') T Z Z_: n (n+m)' P (cos0") P (cos6) sin m(f-§") x
n=l m=l ont1
a

X W (4. 36)
Notice the similarity between these three expressions and the corresponding

ones (4.19) - (4.21) .
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Equations (4. 1) , (4. 26) and (4. 34) - (4. 36) completely determine the dyadic
E(D
m

defined in (2. 95). We are now ready to proceed with the scattering problem.

Scattering of a Plane Wave by a Perfectly Conducting Sphere at Low Frequencies

As shown in Fig. 2, the incident plane wave propagates along the negative
z-axis with the electric field vector polarized along the positive x-axis. Taking

the amplitude of the electric field to be equal to one we write

E=X e-lkz s H = - 9 Ye_lkz s (4.37)

where Y is the free space characteristic admittance. We shall first determine
the zeroth order iterates given by (3.53). By (3.25) and the boundary conditions
(3. 3) we have that on the surface of the sphere

-7 K &N N - 2 S -
Bx & §8)= e ikag E®), f- B(R )=-e ikag, H@E), Ryes. (439

Substitution of these boundary conditions in (3. 53) leads to the following ex-

pressions for the zeroth order iterates

h( RY=Y e f (- H)N(e)(R |&nas (4. 39)

and

é(o)(ﬁ*)= o f (nx El) . ﬁi) (Rsl R ds. (4. 40)

By (4.1), (4. 4) and (4. 37), the integral of (4. 39) can be written

n+2

=i (e) == 1 < 20+l (n m)! ,
f@-H)N (1=&S|R)dS-—4:—7r Z Z €n — o (o) P ( se) —1 X

n=o0 m=o R!

T 2T -ika cos@
x sing _do _dg e s Pm(cose )sin6_cos m(§_-@")
s s 's n s s s '
0%0

(4. 41)
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The indicated integrations are performed by using the expansion (Magnus, et al,
1966, p. 108)

-ika cos@ T ) Am
e = /EE‘a Z (- @miDI | (ka)P_(coso), (4. 42)

m=o m+ =
2

and the orthogonality properties of the trigonometric and Legendre functions.

The function J 1 is a Bessel function of half order. The resulting expression
. m+ / 2
is
@. @ IR')dS— 2 Z (" == 2n+1 3 (ka)P! (cose") x
2ka n
S 2 0
n-+
xsin 2 (4. 43)
R'n+

Performing the remaining operation in (4. 39) we obtain

2 1Ye_ika n+2
gy ®)= = b Z (-0"(2n+)3  (ka) P (coso)sing-2
n+ é‘ R
(0] n+2
+é\ ;(--1)n 2ot J (ka) d P (cos@)sm¢ +
n+l 1 do n+2
n= n+s R"
2
nt2
n 2n+1 1 a
Sme Z( V" ST (@B (eostcosp 7 (4.449)

"y

We now turn to (4. 40) which, by (4. 37), can be written

. -ikz I
3(0) (R = e_lkal f e s (acosescos¢s+ 5 sin¢s)'ﬁ(el) (Rsl RY) dS. (4.45)

In order to perform this integration we split the vector integrand into its

rectangular components and integrate component by component. The dyadic

}?(1)
e

is defined in (2. 66) and, for the sphere problem, it can be written in
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terms of (4. 1), (4.16) and-(4.19) - (4.21). Performing the dot product in-
dicated in (4. 45) results in expressions similar to those in (4. 41) which can be
integrated readily. We omit all these operations because of their great length

and we only give the resulting expressions; thus,

n+l

1ka e (R)'X--—‘/-_l Z (- 1) nd )P (cos0) —+I +
n+ R

2

/ (-i) n(n—l)J (ka)P (cose) i +
2ka Z n——

nt+l

o)

1@ A1 ) a

" 5Y2ka Z (-1) owre] Jn+1(ka)Pn(cost9) cos 2§ o
2

n

1 j_w_' S .n 2 9 i
e B nz=;(—1) Jn_%(ka)Pn(cose)COS ¢Rn+1 +
o0} n+2

. , ) L1 1 a
+1i Ska Bx Z (-i) a J 1(ka)Pn(COSG)COS¢ Rn+1

n=1 n-3

[0} n+2

- kia ,§I7<r—a % Z (—1) J (ka)P (cose)cos¢
R

1 n+§

(4. 46)

n+1

[os)
1ka~ )(R) = ; 271r<a Z;(l)n L J (ka)P (cose)s1n2¢ -
n= 2 R

n+1

®
B QIEJ;T_‘ Z (-1)"3 (ka)P (cose)sm2¢ o +

n=2 n--2-

n+2
. [ 71 0 .l 1 a

+1 é‘k—'a (—1) I—i J l(ka) Pn(COSG)COS¢ R?"T

8

n+2
i T o N
- o 5 -)* g (ka)P (cose)cos¢ — (4.47)
n=1 Il+§ R
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) _‘ n+1
elka R F Z{ (-1) J (ka)P (cose)cos¢ )
n+— R"
2
n+1
- kl_é /2123. i (- 1) an_ _(ka)P (cose)cos¢
2
[00) n+1
+‘/2l1<ra PG (ka)P (cos6) cosp E—
n=1 n-é R
n+2
T 0 1 1 a
+i /Zka 5 (-1) Jn_ 1(ka) Pn(cose) cosf = T
2
i T 0 X, mg
"oV B Z( 1) J _(ka)P (cos6) cos¢ (4. 48)

n=1 n+ 5

Certain simplifications take place in the above three expressions, when the
indicated differentiations are performed, by employing the properties of the
Bessel functions involved. Nothing nearly as simple as (4. 44) results, however,
either in rectangular or spherical coordinates.

From the zeroth order iterates ﬂ( 0) and 3(0) we can obtain the zeroth order

coefficients _ITO and _50 ,respectively, of the low frequency expansions (3.52). By

(3.53) and (3. 58)

_li o
t (R) =h (R) {f;‘o h(o)(R) , (4. 49)
£ -t - 1 m S
go(R) (R) ! (0)(R) (4. 50)

In order to calculate these limits we expand the Bessel functions involved in
(4. 44) and (4. 46) - (4. 48) in a power series of ka of the form (Magnus, et al,
1966, p. 65)

! 1(ka) F (ka)" (1) (ka) . (4.51)
—o 21 2 I"( +z+-)
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Proceeding next to the limit we find that

.- A a3 A a3 a3
ho(R) = R—Ssinesi.n¢—0 —3 cos@sinf -8 —3 cos¢ (4. 52)
R 2R 2R
3 3 3
N A A A
$ (B)=R 2—a'—silz1t9cos¢—¢9 2 coso cosp+f 1 sin . (4.53)
o RS RS R3

By (3. 25) these are also the zeroth order terms in the low frequency expansions
of the scattered fields ﬁs and ES , respectively, and are in complete agreement

with Kleinman's (1965b) results as derived usingthe modified Stevenson method.
They can also be obtained from Rayleigh's (1897) theory.

We now turn to the calculation of the first order terms in the low frequency
expansions for h and & . From (3. 60).

e _s' N A o . -__—_(1) o A. - (e) > -A-'
hl(R ) (Yeo+Rx ho) Em dv - Vv (R ho)N dv+f£ l(R ) . (4. 54)
By (4. 52) and (4. 53)
*+ﬁ ﬁYﬁ2a3 . Aad 1 p ’Aa3(11 O)si
- — PRSI (e — -
Ye tRxhs 3 sinfcosp+o R3(2 cosf) cos+§ 3 5 cos6)sinfl
4.55)
By (2.59) the dyadic Egl) can be written
=(1) < 1 > = =(p é (e)
E7V=V[(- xI +E + VG . a, . (4. 56)
m P = B

We now define the vector K as follows

=~ " 3 A s 1 — -~ A KN X 1
A:(Ye+Rxh)-l:v<_ _~> x1-]=(Ye+Rxh)xV<- __‘__\),
° © 47rl f{-R'l ° ° 47 IR—R'I

(4.57)

and we proceed to integrate it over V as indicated in (4. 55). In doing so
we use the expansion (4.1). The integration is performed in a standard
manner; we split K into its rectangular components and we integrate using

the orthogonality properties of the trigonometric and Legendre functions. We
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will just give the results for the x and y components of K , While we show

part of the integration for the z component:

3 .
Y 1
&-Dav= - L& p%(cosonsinzgr B2 (4. 58)
12 2 3
y 3 3 3
- A —_
(A'y)dV=—¥-a— S P (cose')—l— X2 P_(cos6") Ra |
6 2 3 71 2 6 72 3
v R R R!
3 1
+ S—{32—132(cose')c:oszgll' Ra (4. 59)
122 e

After performing the angular integrations for the z component of A we are left

with (the Legendre functions are functions of cos6')

(0 0] (00} 2

3 R 3 R

2. va® 1 o f dR 8 [T<\ Ya' 1. [ drR o <
f(A z)dV= 3 Plsln¢f ® R <———R2>+ 30 stm¢f ® R (R )

3
Vv a > a >

! a

g3 10 R
a

+ ———-3P1 sin¢'f dR = + Y—aSP;‘sinyi' B g (4. 60)
The reason we present this expression is to show that it contains two terms that
behave in a very undesirable manner, namely log R'/ R'2 , and that these terms
cancel each other. This is an indication (farfetched, perhaps) that the volume
ED and 0

will converge for all n . Terms of the same kind also appeared in the integration

integrals of the equations (3. 60) and (3. 62) involving the dyadics
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of the y component of Z and they also cancelled out. Performing the indicated

integrations in (4. 60) we obtain

3 3 o1_
(K- 2)dV=Y—a- Pl(cose')sinyi'—1 +YiPl(cos9') sin¢' R-a . (4. 61)
3 "1 276 "2 3

v R R!

Collecting our results from (4. 58), (4. 59) and (4. 61) we have that

s A . i 1 = _ _Y ' ' ___a A
f(YeO+RXh) [V (W)Xﬂdv— 19 (0089 )sm2¢ 3 X +
v 47| R-R! , R!

3
A
+¥2— - 2—+4P (cose')-—E +2P (cos9')—-—+P (cose')cosz¢' a y+
12 | o2 R RS R,3
3
Ya A
2P (cose')sm¢'—- +P (cos9')s1n¢' zZ . (4. 62)
6 2 3
R! Rl
We now turn to the second term of (4.56). By (4. 26) we have that
/\.\.=(]_)p‘ '[*A.\.__s
(Y'éo+Rxho) Emr =V (Yeo+Rxho) & | (4. 63)
—
where ¢ is the vector of (4. 26), i.e
Q® n 2n+1
= _1)A 2 m (n-m)! . n 2
& = 47 6sine Z Z_ n+l ( n+m)' P (cose)P (cose)smm(¢ ¢) Ntlon+l *
n=1 m=]1 R' R
"N -
P 2 2lem i1 vy B (0059 g By (cos0lcosm (-
n=1 m=o
(4. 64)

From this expression and (4. 55) we form the dot product indicated in (4. 63)
and then we integrate over V to find

4

f (Ye ik ) (—_"; av= 22 12 1(cose')smglﬁ' R'z . (4. 65)
A%
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Employing now (4. 63) we have that

4
A - : 1q4 ! >
(Y& +Rxh ) EWPqy- - Y& ,fsind'sing") a2 (4. 66)
o o Tm 12 R'2 6 0
v

where ﬁo is given by (4. 52).
We now turn to the last terms of the dyadic (4. 56). The exterior Dirichlet

functions G( e) are given by (4. 34) - (4. 36). W1th relatively little labor we find

that 3 3 3
s A s A
Z 2. | (Ye +Rxh )e VG( )dV—z——Ya P (c 9'}—— A+2Ya Pl(cose')singl——-1 zZ .
- i o o 3 3 1 2
i=1 v R' R!

(4. 67)

This calculation completes the evaluation of the first integral of (4.54). To
evaluate the second integral we employ the definition of N(e) in (2. 84) - (2. 86)

and the expansions (4. 1) and (4. 4). The resulting expression is

3 4
A (e, Ya 1 nesgy L Ya© 1 Moy L
f(R hO)N dv= —2—P1(COSG )s1n¢ E-TPI(COSQ )s1n¢ —R;'-z . (4. 68)
Vv

Taking the gradient of this expression we obtain

A 3 ‘
Y (e) ‘_Ya A . . A . A as>
Vf(R- ho)N dv= —§(R's1n6'sm¢'—6'cose'sm¢'-¢'cos g - 5 hO(R') .

1
v 2R (4. 69)

To conclude the evaluation of ﬁ in (4. 54) we need fL From (3.58) and

1 1°
(4. 44) we have that
4 4
524 (cose)sm¢ ="
3de R

R5 J (ka)P (cose)smgi
2

I s [T —i_
1kf1(R)— 1kaho(R)+ka 2k

A
-¢

wi o

a_
R4
1 a
(ka) P (cose) cosf _Z} (4. 70)

\V]
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From (4.51)
_|ka 2] _8 2.2
3, (ka) = E (‘-‘22) E— +0 (K%a ):] . (4. 71)
5 5

Substituting this expression in (4. 70) we find that

5
f (R)—-ah (R)+ —

A A
2 (—R 3 sin2esm¢+9cos20sin¢+$cosecos¢) . (4.72)
3R

2

Before collecting our results, we write (4. 62) and (4. 67) in spherical

coordinates:
3
A A
(Y& +Rxh )e [v([- —2 T [av+ Za (Yé +Rxh )» vG @ av =
o o |-* A'I - 1 o o mi
v 47|R-R n=1
Ya3 A A A as =
= -R'sin6'sin@'+0'2sin@'+@'2cosH'cosP' 4+ = h (R') . (4.173)
2R'2 3 o ~

Collecting our results from (4. 66), (4. 69), (4. 71) and (4. 73) and substituting them
in (4. 54) we obtain the following expression for fll :

3 A A
h (R)— — { —stinesin¢+9(2+cose)sin¢+a(200s6+l)cos¢ } +

2R 5 A
Ya A3 . g A .
+ =, 1-R 5 sin26sinf+fcos20sinf+fcosocosp | . (4.74)
3R
Our next step is to determine 81 . From (3. 62)
3. (®= - | (zb -Rxd ) EPav-v (R- &) ¢(0)+D:]dv+g (R") . (4.75)
1 o o) e o 1
v A\
'he procedure for finding é‘l is analogous to that followed for ﬁl of (4.54). For
1is reason we will be brief. From (4.52) and (4. 53)
A . a3 A Al A
Rxéo— Zh0= =3 -Rsinosing+6 ( 5 cosf-1)sinf+§ (2- -cos6)cosf ) . (4. 76)
R
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=(1)

The dyadic ﬁe is given by (2. 66):

50 _
e

3
1 =(p
=V (— >XI+H + Z VN 'a. . (4.7
41r' ﬁ- 'I er i=1 et 1

Proceeding as in (4. 57) - (4. 61) we find that

A .
f (Rxéo-Zh )e |:v<- ) xI] dv= IE P (cose')—— +
° 47r R-R' 3R

Vv
3 - 3 1 A
+2p (cose')M -2 Pz(cose')coszgai'B——E x +
32 3 6 3
R! R!
a3 2
+ |-=P (cos9')sm2¢' P (cose')cos¢' +
6 "2 R
' -a A
+ —P (cos6)cos¢' Z . (4. 78)
3 R'3

We mention that in deriving this expression undesirable terms (log R' / R'2)
arose but cancelled out.
The dyadic I?Iil)p is given by (4. 16)and if we define

r
W n 2n—il
__L1)A_2 m (n-m)! 1 '
ﬂ' = 47r{ ey nZ=; ya n (mFm ),P "coso P (cos9)s1nm(¢ ¢) p+].Rn+1
A n 1 (n-m)! ' m 2n+1
+J ; I;oemﬁ (). P (cose) 5P, (cosp) cosm(f-§" m
(4. 79)
we readily find that
A, 1 1
f (Rxeo—Zho)' }? dv = --a-‘gPl(cose')cosgé' —5 > (4. 80)
v R!
from which
A 4 10'eosd!
v'f(Rxéo-zﬁo)- Fav -2 v (sﬂf’-iclsﬂ)= -2 @y . (4. 81)
3 R 3 o

\%
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g?, of (4.77) are given by (4. 19) -

(4.21). Performing the integration we find that

The exterior Neumann functions, N

3 3
A
Z A (Rxe Zh) VN( )dV—— (cose')—l- X -
4 6 1 2
i=1 R!
Vv
aSPl(cose')cosyi' Az (4. 82)
61 2 : '

Rl
From (4. 78) and (4. 82) we find that in spherical coordinates

A, A (e)
f(Rxe -Zh )‘I:V( ———-——) Xﬂdv+ Z f(Rxe Zh )' dV
(o) [0} S A
v 47IR- R'

A
=-R'a3sin9'cos¢' 1 g
Rl
Proceeding to the next volume integral in (4. 75) we have from (4. 7), (4. 8)

and (4. 53)

[R-3 )[¢(O)+D dv=2a f _‘M’Q (@ gy- 22 f Smeiosjdv N
AV4 47R' v R

P
3
2a sinfcosf
+47rR'f 23 av. (4.84)
A%
Clearly, the last integral vanishes due to the cos¢ term. Employing (4. 1) and

(4. 3) for G( e) we readily find

f (Re eo) E0(0)+D ]dV- 3P](cose')cos¢' — -2 Pi(cose')cosy!' iz
v R (4.89)
from which

+2 1
§ (R ). (4. 83)

2

3
f (R* eo) [w(o) ] dv = — (R'sme'cos¢'—e'cose'cos¢'+¢'sm¢') -ae (R')
Rl
v (4. 86)
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We are now left with the determination of §1. From (3. 58) and (4. 46) -

(4. 48) we have that
= T')3 2 4
lkgl(R)=_1kan+1/§k—a 5 J (ka)Pl(cose) 5 k J (ka)P (cose) 3 -
= R R
2 4 2 4
1 2 a

- 2—kaJ5(ka)P3(cose)cosz¢E‘1} T / J§(ka)P (cose)sm2¢ 4y +
2 2

7')3 1 a2 2 1 a4 ‘A
+1/2—k—a =J (ka)P (cose)cos¢ R—2+ 5J§(ka)P3(cose)cos¢fEl zZ +
2
4 ey
+1FV'[: (ka)P (cose)cos¢ -
i T 1 314:.q
— —— ' — —
o /2ka v [Jé(ka)PS(cosG)cosgliR3 . (4. 87)

5 .
By (4.51)

J(ka)-F( [ +O(k22] (4. 88)

Substitution of (4. 71) together with (4. 88) in (4. 87) and a transformation from

rectangular to spherical coordinates results in

A = N 3 A A 5 A
g,(R)=-ae,t 2 (9cos@- fcososing)+ 2 (R §sin.‘zecosgl
2 4 2
2R 2R
A A
+fcos20cosP-Peososing ) . (4. 89)

Collecting our results from (4. 81), (4. 83), (4. 86) and (4. 89) and substituting

them in (4. 75) we obtain

a4 a3 A Al A1 .
el(R =§ [—R281necos¢+6 ( §+cose)cos¢—¢(l+ icose)sm;t} +
5

+2 ) &3 im0 costh cos2  cososi 4.9
pe3 -R; sin 6 cos@+0 cos26 cos@-@ coso sin } . (4. 90)
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>

In order to check the correctness of our expressions for h1 and ‘él we go

back to (3. 25) and expand the scattered fields in power series of ik. The first

order terms are given by

7°-Rrh +h E-Rs +8 (4.91)
1 7o T1° 1" 7% "1 ° :

Substitution of (4. 52), (4.53), (4.75) and (4. 90) in these two expressions leads

to
o5 s Yad A a +Ya5 £ 3 5in26 sind+ 6 cos20 sind -+
H, (R)= —Izé-(es1n¢+ cos6 cosf) é-l-iz-(— 5 sin sing+ 6 cos20 sin
+$cose cosfl ) , (4. 92)
a a3 4 A 2% A3 A
PR =25 (0 cosff- § cos@ sinff)+ — (-R 5 sin26 cos@+ 6 cos26 cos@ -
1 2R? 27t 2 '

—é\ cos sinff) . (4.93)

Both expressions agree with Kleinman's (1965b ) results as derived

using the modified Stevenson method.

We will conclude the example by finding the terms of ﬁz and '52
that behave as 1/R. From these terms we can find the first term
in the low frequency expansion of the far field for both the electric

and the magnetic scattered vectors. By (3. 60)

> 2 AN -~ =(1) A > (e) - -
1) = o - V! . 1
hZ(R) f(Yel+RXh1) Ede v fR th dV+f2(R) . (4.94)
A% v

Employing (4. 74) and (4. 90) we have that
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3 5
A A 2Y A
Y8 +Rxh = -R —— sinfcosf+ —- Ya { g3 sin26cos @+
1 1 2 4 2
R R
A 1 Al .
+6(cos26- 3 cosf)cos g+ ( 3 cos20-cosf)sinf ) . (4. 95)

Performing the first volume integration in (4. 94) as we did in the previous cases

we find that

3 3
A A
f (Ye +Bxh )° ()dV- Y% P_(cos6") =z SLRT-P (cose')sm¢'+0(—)
v (4. 96)
Similarly,
-\ Ya 3 Ya.5
Red =- —2 sing sinf - —- sinf cosf sinf , (4.97)
and 3 R
A
f Rei N av = - 2 P (cosansingr+0 (&) (4. 98)
A%
from which we have that
A ( ) 3
V' | Reh N™dv= 2 — V! (sing'sing"+0 (——) =
Vv
3
2R' (6' cose's1n¢'+¢'cos gn +o0 ( . (4.99)

From Eq.(4.44) it is clear that none of the f. o 'S contributea 1 /R term.
Transforming then (4. 96) into spherical coordinates and substituting the
result together with (4. 99) in (4. 94) we have that

3 3
h (R) =— (9sm¢+¢cos9cos ¢)— (6 cosf sm¢+¢cos¢)+ o (

3
= —%—- 6 (1+= cos9)s1n¢+¢ ( +cosp) cosf)+ O (——) (4. 100)
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In order to determine the corresponding terms of &, we substitute (3. 52)

2
in (3. 30) to obtain
-~ - A -
vx hn+1= -Y en—Rxhn ,n=0,1,2,... (4.101)
But, by (4. 100),
~ 1
vVx hz =0 (—R—z . (4:. 102)
Substituting then (4. 100) in (4. 101) we have that
é(ﬁ)—-?f 3 (141 coso)sing - B (L +coso) o (%) (4. 103)
o(R)= 1@ (1+5 cos6)sinf -6 (5+cos6) cosfl = - .
To check the results we obtained for é'z and ﬁz we substitute themin (3. 25);
g & ikR @
H (R)=e {(ik)zhz(R)+O(k3)}=
ikR
_Ye 3IA. 1 . 1 1.,
iy (ka) [29(1+§cos6)sm¢-la( §+cos6)cos;;‘l +0 (k%) }m(i_z) 3
(4. 104)
similarly,
B ®)=e g(ik)z 8,®) +0 (k3)} =
ikR
2o lae3[ A 31 +2 cospysi } L
=% {(ka) [9(2+cos6)cos¢ g1 +5 cos)sinf oY i+o( R2) .

(4. 105)
These two results for the scattered fields are in complete agreement with

Lord Rayleigh's (1897) results.
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CONCLUSIONS

In this work we have developed a technique for determining the electro-
magnetic fields scattered by a perfectly conducting surface in three space when
the characteristic dimension of the scatterer is small compared with the
wavelength of the excitation fields. Though the method appears to work well
there are two significant questions that were left unanswered:; first the
identification of the dyadic kernels of Chapter I with the dyadic dipole fields
of Chapter II; second, the convergence of the volume integrals in the higher
order approximations and in the higher order terms of the low frequency
expansions for € and ﬁ of Chapter III. These two questions will be part
of the work we plan to do in the near futuré. This work will also involve the
question of convergence of the sequence of the iterates when we solve the
integral equations for e and 1-; by the method of successive approximations
as well as an example more complicated than the sphere. The most probable
candidate is the prolate spheroid which has only two degrees of symmetry.
From the results for the prolate spheroid one can also obtain the corres-
ponding results for the sphere, the oblate spheroid and the disc by simple

transformations.
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APPENDIX A

THE BEHAVIOR AT INFINITY OF THE DYADICS ?IS) AND E&)

In this appendix we prove that the dyadics }=(I_)(1)and E&)

(2. 66) and (2. 95), respectively, satisfy the regularity conditions

as defined by Egs.

IRZ(RXK)l < and|R3VxA_—l<oo, as R —> o, (A.1)

=0 50

where A stands for either H or E

The Regularity of H( D

The expression for ﬁ; ) is given by (2. 66) which we repeat here for con-

3
ﬁSL v( —_1—T> xI+H(1)p + 2 VNg;)Qi : (A.2)
an| R-R|

1=

venience

We will now examine the behavior of each of the three terms for large R.

First we expand the distance function 1/ If{'-ﬁ'i in spherical harmonics for

R>R': ,
1 X c 1
—T = Z € §E$)' P (cosO)P (cose') —7i°08 m(@-@") ,
IR—R'l n= = R
(A.3)
where € is the Neumann factor; € =1, for m=1, € =2 for m =2, 3,
m m m

The gradient of this expression is
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A O
V< = R 2 em(n+1) §n+m;, Pm(cose)Pm(cose' R 5 cos m(g-g" -
R- R] e R™
3 ino o Z (n-m)! d dgm Pm( 9,) (f-g" -
-9 sin zem (o) 36 (cosO)P (cos 5 COS M g
n= ms=
‘3i i im (n-m): P (cose)P (coso") nsmm(gii -g" .
sind (n+m)!
- - R
n=l m=] (A. 4)
At large distances (R->» o) this expression becomes
1 f 1
er>=-%+0(—3) , R . (A. 5)
R-R" R R

We now turn to the second term in (A. 2) and write it in terms of its

vector components;

3
=(1)p _ 2(1p A
He ' Z He ', - (A.6)

i=1

By (2. 62)
005057
.I.(l)p(RlR') Vx ds r —— IAI -
4 R -R S
S s
= i— ds |:¢(0) (R )- N(l)(R] <"_._1:'> X ﬁs' (A.7)
S RyR

For R large we can employ (A. 5) in this expression to get

smp. 1 & a0 @ 1
Hei =-— RxfnsEei (RS)—Nei(RSﬂdS +0 (R3 ), R > . (A. 8)
r 47R S T
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In order to evaluate the last term in (A, 2) for large R we employ a
theorem by Kellogg (1953, p. 143) which says that if a function satisfies

Laplace's equation then it can be written in a series of spherical harmonics

of the form
(e) (0'0) Yin(e, ¢)
Nei = i (A.9)
R
n=o
where Yin is a nth order spherical harmonic:
= m img
Y. = 2 A, P (cosHe . (A. 10)
i i n
n mn

m=-n

The series (A.9) is uniformly and absolutely convergent outside a sphere

enclosing all sources. Clearly,

(e) A Ai 1
VN'7"=-R—2. +0(—), R>o. (A.11)
ei R2 R3

Collecting our results we have that

3

=1 1 A= 1 A 1A (O ,>. _@G),~ A

H = — (Rx)- 5 Z Rx f ng ¢ei (Rg)-N_, (RSZ] ds) a, -
47R 47R S T

o] >

3 A
z Aj 2, R»w . (A. 12)
00

B =
From this last expression we conclude that

A =
IRZ(Rng))|<oo , asR>o . (A.13)

In order to prove the second statement in (A. 1) we turn to Eq. (2.23) and

write
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Vx ﬁ(el)= vV <- —1;-T-> +Vx ﬁg) , R#R' . (A.14)
47rlR-R'| r

Splitting the dyadics into their vector components and employing (2. 58) we
have that

A
vx ﬁg-)= -(a; V) Vv < i e >+ V¢(9) , i=1,2,3. (A. 15)
1 ei
47|R-R!

We now examine (A. 4) and we see that the n=0 term of the ﬁ—component
(which is the only term that behaves as 1/R2) is independent of the primed
coordinates. The rest of the terms in (A. 4) behave at least as 1/ R3. We
then conclude that

1

A 1
2V V|- =0 (— R . A.16

To show that the second term of (A. 15) behaves similarly we employ (2. 41);

Aoy 69 & |Rnas -
fns v, ¢eir (RSIR)dS-O. @.17)
S

This condition together with the divergence theorem imply that

lim A o0 3] _
R_m)f R vy @R as=o (A. 18)
T
S
0
or a¢(0)
lim 2 elr A
R>00 dQR BR_O . (A.19)
S

()
But ¢f§l can be written in the form (A.9). If condition (A. 19) is to hold, how-

ever, the constant Aio o in (A. 10) must be zero. We therefore have

0 _ (o8] an(9,¢)
¢eir h 2 a7 (A.20)

n=1
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which implies that

vg® - o(L

), asR>mo . (A. 21)
R3

r

From (A. 16) and (A. 21) we can readily conclude that

| B3 vxil| <o, awsRvo. (A. 22)

The Regularity of Egrll)

To prove thathz(RxE(l) )I <o, as R ¥ o, we start with (2. 95), which

. 3
=(1) ( 1 =(Dp (e) A
Ey =V -_I-__i* — ’ I+E + VG a,, (A. 23)
m 47| R-R' z mi

i=1
=)

reads

and we proceed in exactly the same manner as we did above for H The

behavior of the functions involved being the same as those for ﬁ , we omit

the proof.
To prove that I R3Vx Eg) I <, as R 9o, we start with (2. 68);
Vx E(D = vv<- . )+ vx Eg,)r , R#R. (A.24)
47rIR- 'l

Employing (2. 88) in this expression we get

vxE - - v 1 v ®[REn, R 4R A.2
xE=- TT - N.” (R[R"), R #R', (A. 25)
4n] R-Rr

or, in terms of the vector component of the dyadics,

1

=1 _ A ( ) A (e) =213
v ED - - devyw (- —— ) - G @Ry,
i ’ R t

i=1,2,3. (A. 26)

(e)

The function Nr , however, is the regular part of the exterior Neumann

Green's function for the surface and it, therefore, has the property that
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fﬁs vSNie)ds =0. | (A.27)
S

Transforming this integral by the divergence theorem to an integral over a
(e) .

surface at infinity and writing Nr in a series of spherical harmonics we

conclude that

(e)

e_~ 1
N '0(32)’ VN,

1 -,
r -0(53), asR -»mw. (A. 28)

This result together with (A. 16) leads us to the conclusion that
|R3Vxl=*3g)| <o, asR->w . (A.29)
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