
ANNALS OF PHYSICS: 49, 232-243 (1968) 

Some Results on Many-Body Scattering Theory 

PAUL FEDERBUSH * 

Department of Mathematics, University of Michigan, Ann Arbor, Michigan 

Several problems are considered related to the study of the T-matrix in the many- 
body scattering situation. Expanding previous results, the T-matrix is studied outside the 
realm of perturbation theory, with relation to establishing its analytic properties under 
the rotation of the final momenta from real to complex values, k + (1 + 8)k. The 
geometry of the contour distortion is expressed so as to involve nonperturbative T- 
matrix element subblocks with incoming and outgoing momenta uniformly rotated. 
An unrelated elementary Hilbert space argument is given to bound the contributions 
of high-energy intermediate states to the resolvent identity. 

INTRODUCTION 

The present paper considers question arising in studying the T-matrix in many- 
body scattering theory. One goal is to develop a proof of the asymptotic 
completeness property, for certain types of potentials; and it is hoped that the 
results of this paper will be useful to this end. Asymptotic completeness has been 
established by Faddeev for scattering with three or less bodies (I), by studying 
the resolvent identity. The difficult proof he developed employed many spaces of 
Holder continuous function, the establishment of compactness for certain operators 
on these spaces being the crux of the proof. The questions studied in this work 
relate to a procedure slightly different from that of Faddeev. K. Hepp, has recently 
announced a proof of asymptotic completeness in the general situation, by a still 
different method (4). 

It is natural from the experience in much of recent physics to try to exploit 
analyticity properties wherever possible. Asymptotic completeness has been 
established by studying the resolvent identity in the limit E + 0. Basically then one 
must know properties of the T-matrix in the limit E -+ 0. In this limit equations 
for the T-matrix, such as Weinberg’s equations (2) become singular in Hilbert 
space. However if the momenta were all to be rotated the equations are perfectly 
regular as E + 0. The natural idea is to try to solve the equations for the T-matrix 
at a rotated angle and then to rotate back to the real axis. In a previous paper 
[Reference (.3), henceforth referred to as SAN] it was shown that such a rotation 
is possible for suitable potentials in perturbation theory. (In fact, the behavior at 
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infinity of the integrals was not studied.) The present paper extends the results of 
SAN in several directions. 

By iterating the equations for the T-matrix, the T-matrix may be expressed, in 
many ways, as a sum of perturbation-like terms. Each term is canonically associated 
to a diagram differing from a perturbation theory diagram only in that it may 
contain blocks representing nonperturbative quantities. To the diagram corre- 
sponds an integral, the integration over internal momenta, in which distortions of 
the integration contour will be considered. Remaining this vague for the moment, 
we will study the question in this paper of rotating the final momenta in such a 
generalized diagram keeping the initial momenta real. For each subblock of the 
diagram its incoming and outgoing momenta will be at a constant angle, the same 
for all subblocks. (As seen in Section I, the momenta are actually on a surface 
that for small momenta corresponds to a rotation, but for which the imaginary 
part of the momenta remains bounded.) Thus the T-matrix with initial momenta 
real and final momenta rotated is expressed in terms of nonperturbative 
quantities-all evaluated on rotated contours where life should be relatively 
easy. The angle of rotation can be picked non zero at threshholds, a fact not 
established in SAN even in perturbation theory. The integration contour can be 
kept constant as the energy approaches the real axis, for small intervals. In (5) 
a special case of the present program is generalized to the relativistic situation. 

In Section I the idea of a rotated contour is generalized so that the imaginary 
parts of the momenta all remain bounded. Basically the momenta are rotated for 
small k but flattened back for large k. However it is not quite that simple. 

Section II describes the required expression of the T-matrix as a sum of pertur- 
bation-like terms. 

Section III establishes the integration contour over internal momenta for the 
situation described above, including a brief consideration of its smoothness. 

Section IV contains a Hilbert space estimate bounding high-energy contributions 
to the resolvent identity, valid as E + 0. This appears to a useful theoretical result. 

Not studied in this paper is the behavior of the nonperturbative subblocks on 
the rotated contours. We assume they are integral operators behaving well enough 
at infinity to allow the contour distortions at infinity, and are sufficiently analytic 
to allow the analytic continuation. Such properties are expected ones; bound states 
are allowed for, including bound states at positive energy, a possibility so far only 
excluded in the two body case. For the momenta rotated by a suitably small angle, 
the energy must be continuable onto part of the second sheet, up to some angle 
less than twice the contour rotation. The specific study of these subblock properties 
is not here undertaken. In actuality the results of the present paper are in some 
sense elementary, the results of the first three sections are trivial for the two body 
system. The fact that they are not long in the literature is a reflection of past lack 
of attention to many-body scattering theory. 
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I. CORRECTING ROTATED CONTOURS AT INFINITY 

In the two-body problem the problem of this section is trivial. One selects a 
contour with Im k = c Re k for small k and smoothly curved down to Im k = 0 
for large k. In defining a contour in general we will do so by finding a map from 
EN to EN, the map from the real part of k to the imaginary part of k. We will 
use the notation of SAN, involving preferred directions. We are faced with a 
purely geometrical problem. In this problem, whose precise statement will follow, 
the second condition is the condition that is both trivial and unnecessary in the 
two-body case. It is very important to be consistent with the work of Section III, 
and the here untreated problem of solving integral equations for the T-matrix 
(our nonperturbative blocks) on rotated contours. 

GEOMETRICAL PROBLEM 

There are given n, ,.,., n, , s distinct unit vectors in EN, the preferred directions. 
It is desired to construct a map p, from EN to itself with the following three 
properties: 

(1) f is the identity map on the unit ball in EN. 

(2) If J is any subset of the integers I,..., s, and 

r = V + C aini with 1 VI < 1 
iCJ 

(each point in EN is identified in the standard way with a vector connecting it to 
the origin) then 

.f(r) = V + 1 bini 
iEJ 

for some set of bi’s. 

(3) f is coo, bounded, and each derivative is uniformly bounded. That is f is 
bounded and uniformly smooth over all space. 

SOLUTION 

The solution we give is quite explicit. We introduce the notation, HJ, for the 
subspace in EN (containing the origin) spanned by the subset {ni 1 i E J}, one 
subspace for each subset J of the integers I,..., s. For each point x E EN we 
distinguish two possibilities: 

(a) if the Euclidean distance from all the HJ’s is greater than 5, we associate 
to x the sphere of radius 3 about x, U, . On U, we define the map, fx , carrying all 
of u, to the origin in EN. 
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(b) Let the set 

H Jq...Y HJmt 

consist of exactly the HJ’s whose distance from x is less than or equal to 5. Let W, 
be the subspace given by the intersection of these H,‘s. To such an x we associate 
the sphere of radius 5 centered at x, u, , and the map f, carrying each point in u, 
onto the perpendicular subspace to W, passing through the origin, by perpendicular 
projection. 

Now we pick a rectangular mesh in EN with mesh size in each direction of length 
1/4N. To each point p of the mesh we associate a point x(p) with the property 
that the sphere of radius 5/4 about p is contained in u,(,) . Let 41(x), $,(x) be 
cm functions on EN with 

Finally we can write a choice forf(x): 

f(y) = CD d&KU - X(P)).h(Y) 
CD hJ)(V - X(P)) 

a(p) = 1 or 2 according to whether u,(,) is a sphere of radius 3 or 5. (The functions 
fz are naturally extended, it matters not how, to all of EN. The additions and 
and multiplications take place as vector operations in EN.) 

II. M-NICE DECOMPOSITIONS OF THE RESOLVENT 

In this section we propose to describe expressions of the resolvent l/(E - H) 
as finite sums of terms, Ri , the partial resolvents, with certain useful properties. 

l/(E - H) = 1 Ri 

A given decomposition such as we consider will be M-nice for some integer M if 
each Ri in its decomposition is M-nice. A decomposition M-nice will also be N-nice 
for any N -C A4, and in particular the decompositions are not unique. 

First, to get some notation settled we consider 

H = H,, + C vij i, j < n. 
id 

595/49/2-s 
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To every partition Z, of the first n integers we define V, the subsum of the sum 
xi<? Vij consisting only of interactions between pairs of particles that lie in the 
same subset of the partition. Corresponding to HI = Ho + V, we can expand 
l/(E - HI) in perturbation theory (treating V, as a perturbation) each term 
corresponding to a diagram. A diagram is called Z-laced if any two particles in the 
same subset of the partition Z are connected by a sequence of interactions, and no 
two particles in different subsets. A diagram is S-connected Z-laced if it can be 
realized as a sequence of S Z-laced diagrams. 

The decompositions are obtained by a finite sequence of applications of three 
types of operations, 

(1) Use of the two identities 

1 1 1 
E - Ho - VI = E-H&$+ E - Ho - V, v-1 - v,> ’ E - Ho - VI 

1 
E - Ho - V, + E-& v,(“- vJ))7-;o- V, 

with J a refinement of I. 

(2) Writing I’, - V, as a sum of individual potentials to obtain a sum of 
terms. 

(3) Recombination of terms obtained. 
It is understood that the identities in (1) may be used for any denominator 
appearing anywhere in a given expression. 

A partial resolvent is thus a finite sum of terms of the type 

1 
E - Ho - Vr,, 

V 
1 

alvl E - H,, - V,a 
V f&Y2 -*I 

* 
(2.1) 

It is now necessary to define a perturbation-like diagram. A perturbation diagram 
is defined by a finite sequence of pairs of elements, (/$n), (&yJ,..., the pairs 
corresponding to the sequence of interactions Vslyl, V,+, ,..., and the perturbation 
term itself 

1 
E - H,, 

l v vh’l E - Ho f&n ..* 

A perturbation-like diagram is a finite sequence each element of which is either a 
partition of the integers, 1, 2 ,..., n, or a pair of these integers. For example for 
n = 3 a perturbation-like diagram of length 4 is 

[cl, 31 . [cl, 2, 3)i . w, 2)(3x . u, 3)i 
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A perturbation diagram is a perturbation-like diagram in which only pairs appear. 
A perturbation-like diagram of length s is representable as a product 

GIG, ,..., G, 

each Gi pair or a partition. The partial resolvent R will be said to be associated 
to this diagram provided 

R = L,L, ... L, . & 
0 

with L, = [l/(E - H,,)] Vij if GI, = (i,,j) and if G, is the partition Z, Lk is a sum 
of terms of the form (2.1), with last denominator term omitted, such that the 
perturbation expansion of L, generates only Z-laced diagrams. 

The perturbation-like diagram represented as GIG2 ,..., G,? is M-nice if the 
following property holds: 

Property. If G, is the partition I there is an Y 3 1 and a t < s such that in the 
perturbation-like diagram 

G,. - G ,.+I t..., GI: ,..., Gt-,G, 

(1) each Gi is either a pair of particles in the same subset of Z, or a partition 
that is a refinement if i # k. 

(2) Any perturbation diagram dominated by G,. . G,,, ,..., Glc-r or by 
G k+l . G,., ,..., Gt is M-connected Z-laced, where here a perturbation diagram 
is dominated by a perturbation-like diagram provided it is expressible as a sequence 
of diagrams, each associated to one of the G’s in proper sequence, the diagram 
corresponding to Gi being (j, r) if Gi is (j, r) and being J-laced if Gi is the partition .Z. 

THEOREM. For any integer M, there is a set of partial resohents R, , R, ,..., R,$ 
such that 

(1) l/(E - H) = C Ri 
(2) Each Ri is associated to an M-nice perturbation-like diagram. (Ri is 

M-nice.) 

A proof of this is easily developed by ensuring this property for partitions of 
increasing refinement successively. 

III. THE GEOMETRY OF CONTOUR ROTATION 

In this section, the heart of the paper, the purpose is to define a contour of 
integration for each of the partial resolvents, corresponding to a suitable M-niceness 
to be specified, described in the last section. If the overall connectivity is great 
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enough the final momenta are rotated into the complex plane, if not both initial 
and final momenta are real, in both cases all nonperturbative subblocks are 
uniformly rotated. The contour of integration will be specified by assigning to 
each set of real momenta values, a specification of imaginary values of the 
momenta. Thus the contour projects one to one onto its real values. As in SAN, 
upon which this section heavily relies, we begin with a geometrical problem. 

BASIC GEOMETRICAL PROBLEM 

There is in EN a finite set of unit vectors (the preferred directions) given. There 
is also given a finite set of spheres centered at the origin in EN. The basic result 
is then that there is a 6 and an integer M such that if x1 , x2 ,.,., x, is a sequence 
of vectors in EN with xi+1 - xi parallel to one of the preferred directions for 
every i, and if this set of vectors is M-connected, then there is a second set of 
vectors y1 ,..., ys with 

(1) Yl = 0 

(2) Y.9 = x.3 

(3) Yi+1 - Yi/Xi+1 - xi 

(4) yi * xi 3 0 if / xi 1 is within 6 of the radius of any one of the prescribed 
spheres. 

SKETCH OF SOLUTION 

For a single sphere this problem has been solved in SAN. We use this solution 
to inductively solve the generalized problem. Arranging the spheres in order of 
decreasing radius, 

rl , r2 ,.-, rt , 

we proceed as follows. If the problem can be solved for the single sphere of 
radius r, for the problem x, , x2 ,..,, x, , w  < t with 1 xi 1 2 r2 + 6,) i < w  then 
the present problem is solved by using this solution and yi = Xi , i > w (the & is 
associated to ri as the 6 of SAN, and 6i can be picked so that & = hri for some h 
and all ri .) By induction, if the problem can be solved for rl ,..., rk and x1 , x2 ,..., x, 
with I Xi I 3 rk+l + a,,, 3 i < w  then the present problem is solved by using 
this solution and setting yi = xi , i > w. If this is not possible so that 
1 xw+l I < Ik+l + 6k+l try to solve using Lemma 7 and Lemma 5 of SAN. This 
induction process solves the problem, it is easy to see that some M suffices as each 
procedure utilized is ended after some connectivity sequence. In fact M can be 
picked dependent only on the number of spheres and the preferred directions. 
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MODIFICATIONS 

Although we solved the basic problem above, we find it necessary to modify 
the geometrical solution above, to insure that the rotation angle can be picked 
finite at threshholds, that the final contour we get is smooth, that the imaginary 
parts of the momenta be bounded, and that the nonperturbative blocks have their 
external momenta uniformly rotated. We describe the modifications with varying 
degrees of completeness. 

(1) We first treat the special case when the solution above proceeds via 
lemma 4 of SAN, i.e., the problem can be solved before any xi gets inside any of 
the spheres. Rather than use the procedure of lemma 4 we modify Lemma 4 of 
SAN as follows. 

Let x, , x2 ,..., x, have differences that pass through a spanning set. We choose 
y, , yz ,..., yw as follows. 

Assume xei - x, .-1 is a basis i = 1,. . . , 
minimal length, 1 ~‘1. Expand 

N. Now let x, 1 < r < w  be the x with 

XT = c Ck(X,k - XL& 

The solution for yi now is displayed. 

Y, = 0, 

yi = B(i, r>(xi - x,) - 1 ck& - x,,-I) e(i, ak), 
k 

This modification guarantees in the perturbation theory case of SAN that the 
rotation can be picked finite at threshhold. The remaining modifications are more 
technical. 

(2) The second modification is concerned with the innermost sphere. We 
imagine a sphere l/s (s a fixed integer) way between the intermost sphere and the 
next largest one. The procedure above is unmodified if the problem is solved (xi =yJ 
before xi has magnitude less than the intermediate sphere radius we have imagined. 
If this is not the case, yi is kept zero until xi falls inside this sphere and thereafter 
lemmas 5 and 7 of SAN, or modification (1) is followed according to remaining 
possibilities. (The outer spheres are now irrelevant.) s is picked to insure the dot- 
product condition, this is no problem. 

(3) For some large number h we consider the following possibility, three 
vectors x,, x,, , x, appear in the same order, not necessarily consecutively, x, and x, 
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are both less than h, times the imaginated radius of (2) (hl a small number) 
and I xb I > h Max(l x, 1, I x, I). If h is picked large enough one can modify the 
solution of (2) such that for every such triple of x’s, 1 yb - xb / < h, Min(l x, 1, / x, I). 
X and X, must be chosen to satisfy certain simple conditions, to maintain the dot 
product condition. This modification is easily carried out, leaving y,, and ~~~ 
unaffected, leaving all yi corresponding to small xi alone and favoring small 
I xi - Yi I* 

(4) As in SAN, one can modify the procedure to keep the imaginary part 
of the momenta bounded. For this adjustment we put the diagrams external 
momenta on the type of contour established in Section I, if the external momenta 
are rotated. This modification described in SAN can be performed without 
changing the imaginary parts of the momenta, the y’s corresponding to x’s inside 
some fixed sphere. 

ESTABLISHMENT OF THE CONTOUR 

The N-dimensional space we have been dealing with is associated to the 
3(n - I)-dimensional space of normalized momenta, with H,, = C k2. The spheres 
of this section are at radii E, - CIEJ Eei , where EB, are bound state energies 
of proper subsets of the particles (excepted to be negaiive) and the index set J run 
through possible scattering channels. E, is the total c.m. energy at which one is 
interested in approaching the real axis. We remember that the integration contour 
can be picked independent of E for small variations in E. 

First we find a decomposition of the resolvent M-nice where A4 is greater than 
the connectivity required to solve any geometrical problem faced. This depends 
only on the numbers of bound states in different channels and the masses of all 
the particles. To a given partial resolvent we associate a perturbation diagram as 
follows. Pick an arbitrary perturbation-like diagram to which the partial resolvent 
is associated. To this diagram associate a perturbation diagram by a associating 
to each pair in the perturbation diagram, and to each Z-laced nonperturbative 
block in one diagram an arbitrary 2-connected I-laced perturbation diagram, 
with minimal number of interactions, The middle intermediate state in each 
block is picked to have real and imaginary parts of its momentum vector of 
minimum length allowed by the external momenta. The contour of this perturbation 
diagram yields the contour of the perturbation-like diagram, or partial resolvent, 
by omitting the behavior of the artifically introduced momenta in each block. 
We omit consideration of modifying the contour to guarantee that the external 
momenta in each subblock lie on a contour established in Section I. The procedure 
is relatively clear. 

To establish a full contour one must mold the various programs for solving the 
geometrical problem together using a coD partition of unity as in SAN. One observes 
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that each individual program that works over some range of internal momenta 
can be expressed by a linear relation between the x’s and y’s. Some of the programs 
must be applied outside their initial realm, for example, in modification (1) the 
“smallest momentum” selected may not be the smallest. There are always overlaps 
of acceptable programs except at threshholds. It is relatively easy to show there is 
a contour coo except at threshholds. We claim in fact it can be constructed Holder 
continuous for some index. If this fact or more detailed properties are used in the 
future, a fuller discussion may be presented. 

IV. A BOUND ON HIGH-ENERGY CONTRIBUTIONS TO THE RESOLVENT IDENTITY 

We put ourselves in a very general perturbation theory setting, H, is a positive 
self adjoint operator in Hilbert space. V is a self adjoint bounded operator. 

IV/<c 

We let H = Ho + V. We write the spectral resolution of Ho , 

Ho = x dE, 
i 

and define 

PA, = I a, dE, 
‘43 

Starting with the resolvent identity. 

1 I 
= (-29 * 

1 
E-H-+k-E--H-k E-HH+ie’E-H-ie (4.1) 

with E real and 1 > E > 0. We integrate E from a to b. 

b 

S[ 1 

’ ]dE=j~(-2i&)E-~+i..E-I:-ii.d~ a E-H+ic-E-H-h 
(4.2) 

This equation is of prime importance in the study of the asymptotic completeness 
relation, particularly in the limit E + 0. 

We insert P,,, in the right-side of (4.2), making the definition 

i 
b (-2ie) ’ P ’ 

E-H+ie “OE-H-ie 
dE = O(a, b, E, A,). (4.3) 

(1 

letting A = A, - b > 0, the result we are after is the following: 
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THEOREM. I W, b, e, Ao> I < WA2 with k dependent only on a, b, V, and H,, , 
not on E. 

Proof. Using well known identities we write 

W, b, E, ho) = 1: dE(--2ie) [ E _ k. + ie- + E _ L + iE V ’ E - H,, + ie ] 

’ “0 . [ E - k. _ iE + 
1 1 

E - H,, - ie 
V 1 E-H-k’ (4.4) 

We estimate each of the three types of terms (two of the four terms are related by 
symmetry) in expanding this equation with easy estimates. 

IS b dE(-2ie) 
1 

E - H,, + ie PA 
1 

o a E - Ho - is 

< 1 (b - a)(--2ie) -& 1 d 3 (4.5) 

b dE(--2ie) 
1 

PA 
1 

o 
v l 

a E - Ho + ic E - Ho - ie E-H-k 

< 1 (b - a)(--2ie) $- c i 1 < -$- (4.6) 

Is 
b 

dE(-2ie) l 

1 

a E-H+ie ’ E _ A + ie “0 E _ Ho _ ie ’ E - b - ,ie 1 
0 

< IS b dE(--2ie) ’ 
1 1 

a E-H+6 ‘TVE-HH-ie 

~ /(2’)~C2jbd’E- ~+ is’E- ~- i 
a E I 

~ I (2’) ~ C2 j m  dE E _ ~ + in ’ E _ ~ _ 
-co 

i e / 

(4.7) 

This completes the proof. 

V. OUTLOOK 

The key remaining problem is the study of the nonperturbative blocks on the 
rotated contours of Section I. If these can be established as well behaved operators 
in certain spaces of functions then their insertion in the full expressions for the 



SCATTERING THEORY 243 

T-matrix in Section III should not be difficult. Our present prejudice is to work 
with functions uniformly Holder continuous in all variables, and uniformly 
bounded. 
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