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1. 

This paper is concerned with a topology on the collection of 
invariant subspaces for a given operator on Hilbert space. Let 2 
be a complex Hilbert space, and let 2?(Z) denote the algebra of all 
(bounded, linear) operators on 2. For every fixed element T of P’(X), 
we denote by & the collection of all invariant subspaces of T; i.e., 
A’ is an element of J!~ if JZ is a (closed) subspace of A? for which 
TM C A. The set Yr is never empty since (0) and Z are in it. 
Consider the metric 8 defined on ~6~ by the equation Q(A’, JV) = 
(1 PdH - PN 11, where Px denotes the (orthogonal) projection onto a 
subspace A? of X. This metric, defined on the collection of all 
subspaces of Z, has been studied previously. In particular, it has 
been shown [9] that if ~2’ and JV are subspaces of 2’ such that 
O(A, A’) < 1, then dim ~8%’ = dim Jlr and dim A’J- = dim M-L. 
(4n alternate proof of this fact appears in the proof of Theorem 3.) 
Several properties of the metric space 9r = ($r , Q) are immediately 
clear. First, since jl P - Q 11 < 1 for any projections P and Q, 8 is 
bounded by 1. Second, if {A%‘~> is a Cauchy sequence in J?~ , then the 
sequence {PM,} is Cauchy in 2?(X) and hence converges uniformly 
to a projection P. Since Puti TP, = TP-, for all n, it follows that 
PTP = TP and hence that 2 = *PX is an”invariant subspace for T. 
Clearly the sequence {An} converges to ~2’ in 4,., and thus 9T is a 
complete metric space. Finally, if 37,” is defined (for every pair of 
cardinal numbers m and n satisfying m + n = dim 2) to be the 
collection of all subspaces A E #r such that dim A’ = m and 
dim Al = n, then each component of J$ is contained in some 
one SFan . 
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324 DOUGLAS AND PEARCY 

Before proceeding to consideration of the topology induced on s?~ 
by 8, we prove the following rather technical lemma: 

LEMMA 1.1. For i = 1, 2, let Ai be a subspace of A? and let 
Ci E 9(X) satisfy /I Cp I/ 3 ~~11 x // (Q > 0) for all x E d&i . 
If tit> = Cidi , i = 1, 2, then A; is closed and 

II PM, - P,v,ll < ($ + $) II Cl - C,ll 

+ (+ II c, II + + II c1 II) II p”H, - Pd,ll. 

Proof. It is clear that JVr and J$ are closed. If we denote the 
identity operator on SF by 1, then 

Thus, by symmetry, it suffices to prove that 

l/(1 - PNJ PA-, II < a II G - G II + ; II c, II II p”& - cwa II, 

and this goes as follows: Let x be a unit vector in A?, and write 
x = yi + z1 where yi E JV~ and zi E J<l. Let wr be the unique 
vector in .A1 satisfying Crw, = yr , let ws = PbIy,wl , and let yz = C,w, . 
Then yz E .A: , and we have 

IN1 - PMJ &“p II = IIU - PNJY, II 

G IIU - cP”,)Y,II + IIU - EvJYl -Yz)ll 

= IIU - &,)(Gw, - G%)ll 

G II CP, - CP, II + II Gw, - c&J, II 

-G II Cl - G II II Wl II + II c, II lI(PdrI - P”M,) WI II 

G II G - G II $ II YI II + II G II II PM, -P,.II~IIYIII 

~~I!~,-c,lI+~II~,llII~, - p.u, IL 

as desired. 
Our interest in the topology of the metric space XT was generated 

by its connection with the following idea: If T E Z(S), denote by %r 
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the weakly-closed algebra generated by T and 1, and denote by 2I; 
the algebra of all operators that commute with 9lr . It is clear that 2Ir 
consists of the weak closure of the set of all polynomials p(T), and 
that ‘$ consists of exactly those operators that commute with T. 
A subspace & of Z is said to be hyperinvariant for T if it is invariant 
under the algebra ‘?I; ; i.e., if T’.&? C JZ? for every operator T’ such 
that T’T = TT’. Clearly the hyperinvariant subspaces for T form 
a closed subset of .J$ . We also say that ,4? E 9r is inaccessible if the 
only continuous mapping 4 of the interval [0, l] into .Yr with 4(O) = ~2’ 
is the constant map c$(t) = &!. 

THEOREM 1. If T E Z(S) and J& is an inaccessible invariant 
subspace for T, then .X is hJ!perinvariant for T. 

Proof. Let S E 2Ik, and let d be the subset d = {h : 0 < X < l/Ii S 11) 
of the real line. Then for each X E d, the operator 1 - hS is invertible, 
and hence J& - (1 - hS)& is a subspace of 2. Moreover, J&‘~ E 9r 
for each X E L3, since TJ& = T(l - hS).& = (1 - XS)Tk’ C 
(1 - X5’)& = J& . It follows from Lemma 1.1 that the map X -+ J& 
from d into Yr is continuous, since 

II p”fQ. - cqjII < w - a-l II + Ml - BW II>1 01 - B I II s II, 

and the map A --t A-l is continuous in the uniform topology. Since 
&? = ,at, for X = 0 and JZ is inaccessible, we must have &! = J& = 
(1 - hS)& for each X E d, and it follows that SJH C 4, completing 
the argument. 

COROLLARY 1.2. If JZ is an isolated point of Yr , then Jl is hyper- 
invariant for T. 

We say that a subspace 4? E Sr commutes with Yr if PA commutes 
with PO+- for ‘every N E Xr , and that 4 is a pinch point of J$ if for 
every ,V E ,a;., either JV C 4 or ~2’ C N. 

COROLLARY 1.3. If& is an invariant subspace for T which commutes 
with Yr , then &Z is hyperinvariant for T. 

Proof. & is an isolated point of Y=. 
The following corollary is a recent result of P. Rosenthal [IO]: 

COROLLARY 1.4. If J&? E fir is a pinch point of ~7~) then Jl is 
hyperinvariant for T. 
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Proof. Such an invariant subspace & commutes with J$ . 
We next give some examples which illustrate various possible 

properties of spaces XT, and also furnish applications of our results. 

EXAMPLE 1.5. Let Z be an n-dimensional Hilbert space (rz < co), 
and let T be an operator on X having n distinct eigenvalues. It is 
easy to see that every invariant subspace of T is spanned by eigen- 
vectors, and hence corresponds to a subset of the set of eigenvalues 
for T. Thus 3; is a discrete metric space consisting of 2” points. 
If T is normal, then $T is commutative, and the distance between any 
two distinct points in Yr is 1. 

EXAMPLE 1.6. Let ,8 be a 2-dimensional Hilbert space with 
orthonormal basis {eO, e,, 1. Let Jr C ~6 be the l-dimensional subspace 
spanned by e, , and for h > 0, let J& C 2 be the l-dimensional 
subspace spanned by the unit vector 

A straightforward computation shows that for every h > 0, 

II p”fQ - pk- 11 = (1 +1p)l,2 * 

Let T, be the operator on 3 defined by Te, = e, , and Tfl = 2fA . 
Then the space 3TA is discrete and consists of the four points (0), M, 
JR?,, , and &?. Furthermore, as noted above, @(Jr, J&) = l/(1 + h*)r/-2. 
This example shows that a point (e.g. JJZJ in XT can be isolated without 
commuting with 4;) and it also shows that the distance between an 
isolated point and its complement can be any number in the half-open 
interval (0, I]. 

EXAMPLE 1.7. Let Z be the Hilbert space consisting of all 
functions f that are square integrable with respect to Lebesgue 
measure on the interval [0, 11, and let T be the Volterra operator on 3 
defined by (Tf)(x) = Jt f (t) dt. It is known [6] that the invariant 
subspaces of T are exactly the subspaces Jn(O < X < 1) defined by 
J& = {f 1 f(x) = 0 for 0 < x < h}. Since 3= is linearly ordered, 
the distance between any two distinct points of J$ is 1, so that 3r 
is a discrete space consisting of a continuum of points, and hence is 
nonseparable. Note that it follows from Corollary 1.4 that each d’A 
is hyperinvariant for T. (Sarason [11] has recently obtained the 
stronger result that ‘&- = %U;. .) 
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EXAMPLE 1.8. Let X and Y be separable, infinite-dimensional 
Hilbert spaces. We shall now construct an operator T E .P(P @ X) 
with the following property: 

(P) The subspace A? @ (0) is a pinch point of the space -@r, and 
the only other pinch points of & are (0) and Y? @ X. 

-4s far as we know, no example of an operator having property (P) 
has previously been given. The present construction employs 
Corollary 1.4 and Theorem 4 (Section 3). To begin the construction, 
let g be a fixed two-dimensional Hilbert space, and let A’? be the 
Hilbert space of all sequences (x,, , x1 ,...) where each xi E B’ and 
Z// xi Ijn < co. Consider the operator D on .P defined by the equation 

where for each n, CX, = l/2”. The following lemma concerning D 
seems interesting in its own right: 

LEMMA 1.9. There exists an injkite-dimensional subspace 9’” of 2 
with the property that every vector of the form w = Dx + y, where 
x E 2 and 0 # y E ?I+‘-, is cyclic for D (i.e., V{w, Dw, D2w ,... > = X). 

Proof. Since B is separable, there exists a countable set S = {bi}yz”=l 
of unit vectors that is dense in the unit sphere of A?‘. The desired 
subspace ,$’ will be constructed by exhibiting a suitable orthonormal 
basis for Y, and this basis is best understood by considering the 
following array: 

- 6, 0 0 0 -.- 
bb, 0 0 0 ..a 
0 b, 0 0 *a- 

+b, 0 0 0 me- 
0 +b, 0 0 a.- 
0 0 b, 0 --- 

:b, 0 0 0 --- 
0 +b, 0 0 .a- 

0 0 &b, 0 --- 
0 0 0 b, -.e 

I 
& . . , . . . . . . . 
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If the nth column of this array is regarded as a vector t, E X, 
0 < n < 00, then t, is orthogonal to t,,, for n # m and 11 t, II2 = G/6 
for all n. Define Y to be the subspace spanned by the orthogonal 
family {tn}zzo. Let w = Dx $- y, where x E 2, 0 # y E Y, and let 
J&’ C 2 be the subspace J# = V{w, Dw, D2w,...}. We wish to prove 
that JZ = 2, and this will be done as follows: Let .zO be an arbitrary 
unit vector in g. We show that the vector (z,, , 0, O;*.) lies in 4, and 
an induction argument shows that &? contains every vector of the 
form (zO , zi ,..., x, , 0, O,...) where the xi are arbitrary, and thus is 
equal to 2. (This is a standard sort of argument, the prototype of 
which is to be found in [7, p. 3031.) The vector y E 9’ can be written 
as y = CT=“=, yiti where Zj yi I2 < co, and if x is the vector x = 

( x0 9 x1 ,...) in Z, th en w = Dx + y is the vector 

w = (a!& ) a~~p )...) + (y b 0 11 2 0 2 7 Ylh 9 bob3 * h42 9 Yzbl v.1 ‘y b. 

Let E > 0 be given, and note that to prove that (z. , 0, O,...) E .,H, 
it suffices to show that &! contains a vector whose distance from the 
given vector is less than E. Since xE=, 1 y,,, I2 converges, we can choose 
j so that I yj I 3 1 Y,, 1 for all 0 < n < co, and since y # 0, I yi I > 0. 
Furthermore, since z. is a unit vector and 5 is dense in the unit 
sphere of 99, we can choose k > 3 so that II b, - x0 I/ < c/3 and also 
so that 

k II x II -- 
2’” 1 yj ( < r’3 

and ; < E/3. 

Examination shows that the vector y has for one of its components 
(say the mth component) the vector (l/K)yjb, , and since k > 3, it is 
clear that m > k. Now consider the vector 

k 1 
I Yi I a0 . . . a:,-1 

D”‘w - (z. , 0, O,...) 

k 1 Dm+lX + f ’ ’ =- 
I 3/j I a0 **- %I-1 1 InI ~o~~*%n-l 

D"Y - (~0, 0, %..)I 

%&%+1%+2 m+2 9 
~0%~2 

xm+3 ,... + (b, - x0 ,o, O,...) 

+ (0' $ j& 3 bk-, , 
%Pwl+1 k -~ 

aoal 
3/j+2 b,-, ,...). 

k - 2 I ~j I 

Easy arithmetic now shows that each of the three summands on the 
right-hand side of the last equation is a vector of norm less than ~13, 
and hence we have established that (z. , 0, O,...) E &‘. An induction 
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argument, whose details we leave to the interested reader, shows that 
A’ contains every vector of the form (a,, , ai ,..., z,, , 0,O ,...) where 
the zi are arbitrary in 57, and hence that A? = 2. This completes 
the proof of the lemma. 

To continue with the construction of the proposed operator T on 
.P @ X, let V be any bounded operator from X to A‘ having no 
null space and satisfying V’x C V. (Since 2 and -tr are infinite- 
dimensional, such operators exist in abundance.) The required 
operator T is then given matricially by 

,D b’ 
Ty, *> ( 1 

where this matrix is understood to act on .P @ X in the usual 
fashion. To see that T has the properties claimed for it, note first 
that Z @ (0) E &- . To show that 2 @ (0) is a pinch point of $r, 
it suffices to shoiv that if A’ C .Y? @ X is an invariant subspace for 
T and A contains a vector (x, y) E X @ 2” with y # 0, then 
2 @ (0) C .,k’. But this is clear, since ,aZ contains T(x, y) = 
(Dx + Vy, 0) = (w, 0), and h ence by Lemma 1.9, A! contains & @ (0). 
Suppose now that B E sr is some other pinch point of J$ . Since 
2 @ (0) is a pinch point, it must be that 9 C & @ (0) or A?@(O) C S. 
In the latter case, B = X @ A’” for some subspace ,I’” C X, and 
since every subspace of the form 2 @ F where 7 C % lies in 9=, 
it is clear that B cannot be a pinch point unless JV = X. On the 
other hand, if B C 2 @ (0), then B must be a pinch point of the 
space Y,, . Thus the proof will be completed by showing that -aD has 
no pinch points other than (0) and 2. To see this, note first that D 
is unitarily equivalent to the operator 

where D, is the operator on f. defined by 

Thus it suffices to show that -ab, has no pinch points other than (0) 
and f2 @ e, . Let 2? be a pinch point of YD, and observe that by 
Corollary 1.4, 22 is hyperinvariant for D, . Furthermore, by 
Theorem 4 (Section 3), d is of the form A? = Y @ 7 where 2J- is an 
invariant subspace for D, . Since every subspace Y @ (0) C r!, @ 8,) 
where Y is invariant for D2 , lies in 3& , and the invariant subspaces 
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for D, are known to be linearly ordered [6], it is clear that either 

=c?? = (0) 0 (0) or 9 = ta @ /a , completing the proof. 

This concludes our list of examples. We end this section with the 
following theorem: 

THEOREM 2. If Tl and Tz are similar operators, then 3Tl and 9,, 
are homeomorphic topological spaces. 

Proof. Let S be an invertible operator such that ST,S-’ = T2 . 
The mapping J&? ---+ SJZ is clearly a 1-l mapping of 4r1 onto 9r2 , 
and from Lemma 1.1 we know that 

II PSA! - p&v II G 2 II s II II S-l II II p"M - PN /I> 

and similarly that 

IIp~-p.II ~211~IIII~-11111ps.d- P MIL 
whence the result. 

2. ISOLATED INVARIANT SUBSPACES OF NORMAL OPERATORS 

A natural problem that arises is that of characterizing the isolated 
invariant subspaces and the hyperinvariant subspaces of a given 
operator or a given class of operators. In this section we consider and 
completely solve this problem for the class of normal operators. 
We begin by reminding the reader that if T E 9(Z), then the 
van Neumann algebra generated by T, denoted hereafter by VT, is 
the smallest selfadjoint, weakly-closed operator algebra that contains T 
and lP. The commutant of a given von Neumann algebra VT will be 
denoted, as usual, by -Yi . If T is a normal operator, then a projection 
E E L?(&?) is a spectral projection for T if E E VT. (It is well known 
that if X is separable, then the spectral projections for T are exactly 
the values of the unique spectral measure associated with T. On 
nonseparable spaces, this need not be the case.) 

THEOREM 3. If T is a normal operator, the following statements are 
equivalent for a subspace A%’ E =& : 

(a) @(A, JV) = 1 for all JV E & such that JV # A%‘, 
(b) J/I is an isolated point of J$ , 
(c) ~4’ is hyperinvariant for T, 
(d) P& is a spectral projection for T. 
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Proof. We shall prove (a) 3 (b) * (c) 3 (d) 5 (a). That (a) 
implies (b) is trivial, and that (b) implies (c) is Corollary 1.3. To 
prove that (c) implies (d) it suffices, in view of the well-known fact 
that Vg = “t> [.5], to show that P.# commutes with every element 
of 9; ; or, what is the same thing, that J&’ is reducing for every 
operator S E -Y;r . Since -Y; is selfadjoint, it suffices to prove that & 
is invariant under every operator S E Vi . But this is immediate, since 
by Fuglede’s theorem, 9’;r = \9lk, and ~2’ is given to be hyper- 
invariant. 

We turn now to the proof that (d) implies (a). We first establish 
the following fact: if &? and Jk” are subspaces of 2 such that 
I! PvK - P,,. 11 = x < 1, then Jr and .IJ- are complementary (i.e., 
JV n OH1 = (0) and it’ + J&‘-L = Z). Note first that if f E J’, then 

so that 

II p&fl12 = llfll” - ll(1 - ~d)fllZ > (1 - ~“)llfll”. 

Thus P.@ is bounded below on JV” and it follows that PAA’ is a closed 
subspace of ,K. To show that PdJr = A, suppose that x E ~2? is 
such that x 1 P,,JI’. Then for every y E A’, 0 = (x, P&y) = 
(9&x, y) = thy, y), and th us x E Jlrl. It follows that lj(Pd - Php)x 11 = 
Ij x iI, which implies that x = 0, and hence that PAN = J&‘. (This 
proves that if 11 Pd - PM IJ < 1, then dim & = dim JV.) We note 
next that JV n dl = (0), for otherwise 11 Pult - PN II = 1. Also, 
for every x E ti, Pdtix E ..M = P,N, and thus there is a unique 
vector y E JY such that PDK.y = Pdly. Hence z = x - y E &‘I, and 
we have written .w = y + z with y E JV and x E 41. Thus 
JV + &J- = X, and we have shown that J!I and J” are com- 
plementary. 

We complete the proof that (d) implies (a) as follows: If PdH is 
a spectral projection for T, and A’” E Xr is such that 11 PA - PdtF II < 1, 
then .,j’ and ~82’1 are complementary invariant subspaces for T. Let 
Q be the bounded idempotent on & having range JV and null space 
JH~. Since JV, J#YI E 9r, we have QT = TQ and, by Fuglede’s 
theorem, QT* = T*Q. It follows that JV = range Q is invariant for 
T*, and hence that JV is reducing for T. Thus PN E Vi so that 
PAPN = PxPM, and since I] Px - PA 11 < 1, we have &? = M. 
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3. TENSORPRODUCTSANDUNILATERALSHIFTS 

In this section we consider the problem of determining the isolated 
invariant subspaces and the hyperinvariant subspaces for certain 
tensor products and also for unilaterial shifts. For information 
concerning tensor products of operators, the reader is referred to 

(PI* P* 22). 

THEOREM 4. Let X and X be Hilbert spaces. A subspace 
ok’ C Z @ 3” is hyperinvariant for the operator T @ lx E 9(X 0,X) 
if and only if M is of the jbrm JV = ~2’ @ Y, where ./l is a hyper- 
invariant subspace for T. 

Proof. If we choose a basis [a~,},~~ for X, then &+ @ X can be 
regarded as the direct sum 2 Q X = xaeA @ Xti, where each Xti 
is a copy of 3. The operators on Z? @ X can then be regarded as 
those n x n matrices with entries from 9(&) that act on A? @ X 
as bounded operators, where n = card A = dim X. In particular, 
the operator T @ 1 becomes the n ;y n diagonal matrix with T in 
every position on the diagonal. From this vantage point it is easy to 
verify that (21,,&’ consists exactly of all those n x n matrices (that 
act as bounded operators on C& @ X*) with entries from ‘21; ; i.e., 
(rU,,,> = 2l; Q 9(X-). Th’ 1s enables us to decide exactly which 
subspaces Jt’ of 9 @ X are invariant under 21; @ Y(X) (i.e., 
hyperinvariant for T @ lX) as follows: Every diagonal n x n matrix 
having one I# on the diagonal and all other diagonal entries equal 
to zero lies in (2&,,)‘, and ,$’ must be reducing for such an operator. 
Thus -+‘” = CuEA @ A& where J& C 2: . Furthermore, every par- 
tially-isometric matrix having a I& in one off-diagonal position and 
O’s elsewhere, lies in (2&,,) and it follows that there is a fixed sub- 
space A’ of 2 such that for each 3 E A, J& = A?. Finally, since 
every operator T’ @ 1 with T’ E 2l; also lies in (211T01)‘, it is clear 
that A! must be invariant under 21;. Thus A’” must be of the form 
A@’ Q X, where .A’ is hyperinvariant for T. Since every subspace 
N = A’ @ Z of this form is obviously invariant under (2&J’, 
the proof is complete. 

COROLLARY 3.1. If Jtr is an inaccessible [isolated] invariant 
subspace for the operator T @ lx on ~‘6 @I S, then M = &’ @ X, 
where ~2 is an inaccessible [isolated] invariant subspace for T. 

Proof. Since JV is inaccessible, it follows from Theorems 1 and 4 
that JV = A! @ Z where A%? is a hyperinvariant subspace for T. 
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The result now follows easily from the fact that if B is any invariant 
subspace for T, then 

II p9gx - P”H@X II = II PP - PA II- 

These results on tensor products enable us to describe the hyper- 
invariant and isolated invariant subspaces of all unilateral shift 
operators. We remind the reader that a unilateral shift of multiplicity 
1 is an operator U defined on a separable Hilbert space H with 
orthonormal basis {x~}:=~ by the equation 

u&z = x,+1, n = 0, 1, 2 ,... . 

A unilateral shift of multiplicity n (where n is any cardinal number) 
is an operator of the form U @ lxx, where U is a unilateral shift of 
multiplicity 1 and X, is an n-dimensional Hilbert space. 

THEOREM 5. Let U be a unilateral shift of multiplicity 1 on the 
Hilbert space &. Then every subspace ~2’ E 4: is hyperinvariant for U 
and the only inaccessible points of Su are (0) and S. Furthermore, if n 
is any cardinal number and XI, is an n-dimensional Hilbert space, then 
the hyperinvariant subspaces of U Q lx-, are exactly the subspaces 
A @ X, where A E Yo , and the only inaccessible invariant subspaces 
of U @ lx-, are (0) and A@ @ Xm . 

Proof. It is known [3] that every operator on Z’ that commutes 
with U is a weak limit of polynomials in U; it follows that the hyper- 
invariant subspaces of U are exactly the invariant subspaces of U. 
Now let &! E XU be such that (0) # &’ f Z. It is known [I] that 
there exists an isometry I’ E Yip(S) that commutes with U such that 
JZ! = VX. For 0 < h < 1, the operator I’ - Xl is bounded below 
onSandthusAA= (V-~l)~isclosedandin~U.ByLemmal.l, 

so that &! is accessible provided only that J& # JX for every 
0 < h < 1. To see that this is indeed the case, suppose that for some 
0 <h, < 1, (V-&l)&?=&,= .4X. Then for every XE&‘, 
Vx-AX,x=yEd, and hence x = (l/&)( VX - y) E M. Thus 
J&? = X, which is a contradiction. 

The results for U @I lxm follow immediately from the above 
theorem and Corollary 3.1. 
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4. DIRECT SUMS AND FINITE-DIMENSIONAL OPERATORS 

Let S and T be operators on Hilbert spaces & and X, respectively, 
and consider the operator S @ T on X @ X. In general there is 
no simple relationship between the invariant subspaces of S and T 
and those of S @ T. However, it was recently shown by Crimmins 
and Rosenthal [4] that if the spectra a(S) and u(T) of S and T are 
related in a certain way, then every invariant subspace of S @ T is 
a direct sum of an invariant subspace of S with one of T. To be 
specific, if o is any compact subset of the plane, let ~[u] denote the 
complement of the unbounded component of the complement of 0. 
The above-mentioned result of Crimmins and Rosenthal can be 
stated thus: If ~$cr(S)] and 7[u(T)] are disjoint, then every 9 E 9sGr 
is of the form 9 = A’ @ Jlr, where A E Ys and N ~9~ . This leads 
easily to the following theorem: 

THEOREM 6. Let SE Z(Z) and T E 9(.X) be such that q[a(S)] 
and ~[u( T)] are disjoint. Then the topological space 9sOT is homeomorphic 
to the space JJ~ x XT with the product topology. 

Proof. If 9’ is an invariant subspace of S @ T, then B = A? @ A’, 
where AG! E $s and .A’ E Yr , and it follows that the map 3’ -+ (A, A’) 
is a l-l map of &, onto the Cartesian product Ys x 9r. That this 
map is a homeomorphism when 9s x Yr is given the product 
topology is immediate from the equation 

This theorem can be used to reduce the study of the space 9r for 
an operator T on a finite-dimensional space to the case that T is 
nilpotent. In particular, if T E Z(P) where 3cp is finite-dimensional, 
then T is similar to an operator TI on X with the property that there 
is an orthonormal basis for Z relative to which the matrix for Tr is 
in Jordan canonical form. By Theorem 2, the spaces Y= and 9$, are 
homeomorphic. Furthermore, TI is a direct sum of operators each 
having singleton spectrum, and by Theorem 6, &, is homeomorphic 
to the corresponding product space. Finally, a finite-dimensional 
operator S with singleton spectrum {A} has exactly the same invariant 
subspaces as the operator S - A, and S - h is nilpotent. This proves 
the following theorem: 

THEOREM 7. If T is an operator on a finite-dimensional Hilbert 
space, then there exists an integer h 3 1 and nilpotent operators NI ,..., iVk 
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on jnite-dimensional spaces such that J?~ is homeomorphic to the product 
space 

The nest step in our program is to describe a somewhat novel way 
of looking at nilpotent operators on finite-dimensional spaces. This 
approach will then be used to prove the following theorems: 

THEOREM 8. 1f TEL?‘(X) h w ere 3 is n-dimensional (1 < ?z < CO) 
and the spectrum of T cqnsists of a single point, then the components of 
J7 are arcwise connectedarid%re exactly the sets @*n-k, k = 0, l,..., n. 

THEOREM 9. If T E .2?(Z) h w ere X is n-dimensional (1 < n < OO), 
then 9= contains isolated points diflerent from (0) and X if and only if 
U(T) contains more than one point, or .& is linearly ordered (by inclusion). 
Furthermore, if T is not a scalar, then T always has hyperinvariant 
subspaces diflerent from (0) and 3y;‘. 

Let N be a positive integer and let 62’i (1 < i < N) be finite- 
dimensional Hilbert spaces such that 

Let .X be the Hilbert space .@ = gN @ QN-i @ *** @ g2 @ 3+i , 
and note that an arbitrary vector x in 2 can be written as an N-tuple 

x = (SN , XN-1 ). . .) x,), XiEsfi. 

Consider the operator T on .X defined by 

T(XN , x&L1 ,..., xl) = (0, x,,T , .~f,L.~ ,..., x2). 

It is clear that T is a nilpotent operator (of index N). What is more 
important is that T is a universal model (up to similarity) for nilpotent 
operators on a finite-dimensional space. 

LEMMA 4.1. If N is any nilpotent operator on a $nite-dimensional 
Hilbert space, then N is similar to a nilpotent operator T of the type 
described above. 

This lemma is more or less obvious, and instead of giving its proof 
we content ourselves with treating an example. Suppose that N is 
a nilpotent operator on an g-dimensional Hilbert space X. Then N 
is similar to an operator N1 whose matrix relative to an orthonormal 
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basis {wi , ws , f%9~1~~29Yl~Y2, x1> for X is in Jordan canonical 
form, say 

Let J% = V (wl , x1 , y1 , 4 g2 = V (w2 , x2 , y2}, and =% = V h}. 
Identify ~23~ with a subspace of g1 via the mapping w2 + w1 , x2 4 x1 , 
y2 + yr , and identify 23s with a subspace of a2 via the mapping 
ws -+ w2 . Then 9s C a2 C Z&i, and # = 9s @ g2 @ g1 . Further- 
more, the operator T that Ni becomes under these identifications 
satisfies 

qts , t2 , t > = (0, ts , t2> 

for an arbitrary vector (ts , t, , ti) E .9a @ B2 @ 9i = Z. 
The proof of Theorem 8 depends upon Lemma 4.1 and the 

following additional lemmas: 

LEMMA 4.2. Let A? be a Hilbert space and suppose that A$ is a 
function from the interval [0, I] to subspaces of X that is continuous in 
the metric 8 (defked on all subspaces of X). Suppose also that f(A) 
is a strongly-continuous function from [0, l] to S such that for every A, 
f(A) $ A, . Then Ju^, = V {f(A), A&} is continuous on [0, l] in the 
metric 0. 

Proof. The function h(h) = PAA f(h) is clearly strongly continuous, 
so that g(h) = f(h) - h(h) is also. Since g(h) never vanishes, the 
function k(A) = g(h)/]1 g(h)// is also strongly continuous on [0, 11. 
Since k(h) is always a unit vector orthogonal to AA , an easy com- 
putation shows that for every x E X, PMAx = PAAx + (x, h(X)) h(X). 
Thus, 

II p,l,x - PM,x II < II &r,x - 4r,x II + II@9 W) 44 - (4 44 WI 

G II P”4rA - p,rp II II x II + 2 II x II II w  - 44ll9 

which proves that PxA is continuous in the metric 0. 
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COROLLARY 4.3. Let (fi(X))~~l b e a collection of strung~~-cuntinuuus 
functions from [O, I] to a Hilbert space .X such that fur every A, the 

set ~f&%..9 fnG91 is linearly independent. Then the function A$ = 

” {fmY*~fn.N~ is continuous on [0, l] in the metric 8. 

Proof. This follows immediately by induction from Lemma 4.2. 

Proof of Theorem 8. We may suppose that T is nilpotent, and 
by Lemma 4.1 we may assume that .X is a Hilbert space of the form 
,X = 9i,@~~~@Q, where V,b,C...C91, and that T is the 
operator on X defined by 

The proof now proceeds by induction on the dimension of &. If 2 
is either one or two dimensional, then it is obvious that the theorem 
is true. Thus we may suppose that .%6 is n-dimensional and that the 
theorem has been proved for all nilpotent operators on Hilbert spaces 
of dimension less than n. We know that each component of 9;. is 
contained in some A:+]‘, so our task is to show that each of the 
sets 9:-n-k (0 < I2 < n) . 1s arcwise connected. For brevity we shall 
denote the subspace (0) @ ... @ (0) @ 9r of X by .GI , and we 
define &?(2 ,..., GN similarly. The crux of what is to be proved is 
contained in the following lemma: 

LEMMA 4.4. If A! E J$ is such thar A? n SL?$ + A! and 
JA! n Gl f Gl, then A’ can be joined by an arc in 9II to a subspace 
A’ E XT such that dim(,,f’ n G$) > dim(A! n &). 

Proof. Since &I n Gl # & , there exists a vector x,, E Gr such 
that x0 6 A’ n & . Let j be the largest integer such that P&,&X f 0, 
and note that since .A? n a, f A, j > 1. Let yr ,..., yr be a basis 
for Pg+jA’, and choose xl ,..., 
Let .9 denote the subspace 

x’, E .A’ SO that PGjxi = yi (1 < i < Y). 

B =(xEJij PG.” =O}, 
, 

and observe that A! n gr C 9 and that A is the disjoint sum 
A! = v (x1 )..., x,}+~.ForO~X~l,letx(h)=(l-A)x,+hx,, 
and let AA be the subspace 

It is clear that for 0 ,< h < 1, x(X) is linearly independent of the 
subspace V {x2 ,..., x,) + 8, since x(0) = x1 and for h > 0 the 
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contrary would imply that x,, E A@‘. Furthermore, since TAA C .Y C A$‘~ , 
we have A$ E YT (0 < X < 1). Thus by Lemma 4.2, AA is a con- 
tinuous function from [O, 1] into XT, and of course A%?‘, = .X. Since 
x0 E &‘i n g-i , x,, $ A! n $i and A1 3 B 3 A! n 8, , it follows that 
dim(&i n gl) > dim(& n G,), so that the proof is complete with 
<xv = J.fi?l . 

Returning to the proof of the theorem, it is clear that the sets 
3”;” = (0) and .YF” = {X> are arcwise connected, so that it suffices 
to consider .Y$n-k where 0 < k < n. The proof now splits into 
cases depending on whether k < dim 6, or k 3 dim Gr . Suppose 
first that k < dim 8, . Then every k-dimensional subspace of G1 
lies in _(tkT,nwk, and if we define $ to be the collection of all such 
subspaces, then $ is arcwise connected by [8, Theorem 71. Thus 
it suffices to show that any point &K E La>n-k such that A%’ $ a, can 
be joined to f by an arc lying in &*n-k. Since A’Z n $i f .A? and 
A! n 8, # a1 (k < dim Gi), we can apply Lemma 4.4 a finite 
number of times to obtain a subspace N E .Y$n-k such that A’ is 
joined to N by an arc in Yi*n-k and such that dim(- 1,’ n aI) is 
maximal. Since -l,* n G2;, = 8, is impossible, it must be that 
N n Q1 = A’, so that A’ E x, and the proof of this case is completed. 

Turning now to the case that k > dim 9, , we can apply Lemma 4.4 
again to see that every &%? E .Y$T’+~ can be joined by an arc lying 
in .YFVnBk to a subspace A’- such that ,V 3 G1 . Thus it suffices to 
show that the collection 2 of all subspaces in X:+’ that contain gi 
is arcwise connected. This is done via the induction hypothesis on 
the dimension of 2. Consider the operator Tl given by the product 
(Pz+,) T restricted to the Hilbert space X 0 G5, . This operator 
is nilpotent, and hence by the induction hypothesis, the set YT;” is 
arcwise connected, where m = k - (dim ai) and p = n - (dim ai + m). 
It is easy to see that a subspace .A’ C A? @ G1 lies in .YT;” if and 
only if A? @ G?i lies in 2, and since 

this proves that the set 2’ is arcwise connected, completing the proof. 
We proceed immediately to the proof of Theorem 9. 

Proof of Theorem 9. It suffices to prove the theorem for any 
operator similar to T, so we may assume that there is an orthonormal 
basis for 2 relative to which the matrix for T is in Jordan canonical 
form. If 3T is linearly ordered, then by Corollary 1.4 every point of 
XT is isolated. Furthermore, if u(T) contains more than one point, 
then by Theorem 7, T can be written as T = Tl @ T, corresponding 
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to a decomposition of H as X = Z1 @ yi”2 , and 3r = Yr, x YZZ, . 
It is clear in this case that the subspaces (0) @ tiz and Z1 @ (0) are 
isolated points of .Y?r . Turning to the proof of the implication going 
the other way, it suffices to show (in view of Theorem 8) that if u(T) 
consists of a single point and .X= is not linearly ordered, then every 
set Y$+li, where 0 < k < n, contains at least two distinct points. We 
may suppose that T is nilpotent, and by an application of Lemma 4.1 
we may assume that Z = gN @ .** @ 9, where gIN C 0’. C =@I , and 
that T is defined by the equation 

W.v (..., Xl) = (0, XpJ ,..., x2). 

We may also suppose, by induction, that if S is any nilpotent 
operator on an n - 1 dimensional space and $s is not linearly ordered, 
then there exist at least two distinct points in Yign-l-k for every 
0 < k < n -- 1. To see that Y7l.r contains at least two distinct 
n - 1 dimensional subspaces A? and J1/‘, note that otherwise T* 
has only one l-dimensional invariant subspace, and thus the Jordan 
matrix for T* contains only one Jordan block. This says that the 
invariant subspaces for T* are linearly ordered, which implies that 
those for T are linearly ordered also, which is a contradiction. To 
show that 3$+k contains more than one point for 0 < k < n - 1, 
consider T j .A’, the restriction of T to the n - 1 dimensional in- 
variant subspace A%‘. By induction the argument is complete unless 
the invariant subspaces of T / A%’ are linearly ordered. If this is the 
case, note that J&8 contains a vector x such that Tn-2x # 0. This 
implies that in the decomposition 2 = QN @ *** @ s1 , we must have 

N = n - 1, dima,+, = dimg,+, = *se = dimg, = 1, 

and dim 53r = 2. (Since 3r is not linearly ordered, dim gr > 1.) 
That .Y$*n-k contains at least two distinct points for 0 < k < n - 1 
now follows by applying induction to the operator T 1 .$Bnp2 @*a*@ $2, . 
To prove the final statement of the theorem, note that if T is not a 
scalar operator, then T has an eigenspace different from (0) and X, 
and any such eigenspace is hyperinvariant for T. 

COROLLARY 4.5. If T is any operator on afinite-dimensional Hilbert 
space, then the isolated points of Y= can be specified exactly. 

Proof. By Theorem 7 there exists an integer k > 1 and nilpotent 
operators N1 ,..., Nk on finite-dimensional spaces such that Yr is home- 
omorphic to the product space 3& x *e* x Y,,, . By Theorem 9 the 
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isolated invariant subspaces of the operators N, (1 < i < k) are 
completely determined, and clearly a subspace A+’ = (.Mi ,..., A$) E J$ 
will be isolated if and only if each of the subspaces A$ E JN, is an 
isolated point in SNt. 

We close this section by remarking that Brickman and Fillmore [2] 
recently described the invariant subspace lattice of an arbitrary 
operator T on a finite-dimensional space. Their results, however, 
seem inapplicable to the study of the metric properties of $- . 

5. CONCLUDING REMARKS 

(1) The problem of specifying exactly the hyperinvariant 
subspaces of a finite-dimensional operator T does not seem to have 
a simple solution. 

(2) In a metric space an isolated point is necessarily inaccessible. 
On the other hand, if T is a normal operator or a finite-dimensional 
operator, then a point in Y= is inaccessible if and only if it is isolated. 
Is this true for every operator T? 

(3) Is 9Zz always locally connected ? .\re the components of J$. 
always arcwise connected ? 

(4) The reader will have noted that every nonscalar operator 
discussed in this paper has hyperinvariant subspaces different from (0) 
and X. Whether this is true for every nonscalar operator is a very 
difficult open question. An affirmative answer would solve the 
invariant subspace problem, and a negative answer would settle 
a long-standing question as to whether every irreducible operator 
algebra is strongly dense in 5?(C@). 

(5) The question of whether every nonzero compact operator 
has a hyperinvariant subspace is also open. An affirmative answer 
to this question would solve several hard open questions in the 
theory of compact operators. 

(6) If T is an operator that satisfies 21, = 2&, then every 
invariant subspace for T is hyperinvariant for T. If T is either a normal 
or a finite-dimensional operator, then the converse is true. Is the 
converse always true ? Note that even if T is a normal operator, it is 
not necessarily true that PI, = 2lk. 
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