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Change in Na t uptake during amino acid transport 

In some of their early studies, CHRISTENSEN et al.  1,2 found that  a net efflux 
of K +, and a partial replacement of intracellular K + by Na +, accompanied uptake of 
amino acids by Ehrlich ascites cells and that  concentrative uptake was inhibited by 
the replacement of extracellular Na + by  K t or choline. Subsequently RIGGS, WALKER 
AND CHRISTENSEN 3 suggested that  uptake of amino acids by  Ehrlich ascites cells de- 
pended on intracellular K t levels. However, the results of HEMPLING AND HARE 4 did 
not fit this hypothesis and KROMPHARDT et al.  5 found that  glycine uptake depended 
on extracellular Nat ,  not intracellular K t.  WHEELER et al. ~ have reevaluated the 
work of RIGGS, W A L K E R  AND CHRISTENSEN 3 and now conclude that  the results 
actually gave evidence for a dependence of amino acid flux on the N a t  gradient. 
This reinterpretation agrees with the hypothesis of VIDAVER 7 who suggested that  
the Na t gradient is coupled to and energetically drives amino acid uptake in the 
pigeon red blood cell. 
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Fig. I. Correla t ion of  change  in Na  + u p t a k e  wi th  a - amino i sobu ty r i c  acid (AIB) u p t a k e  for I -min  
i ncuba t i ons  a t  37 °. U p t a k e s  were m e a s u r e d  for init ial  ex t race l lu la r  a - amino i sobu ty r i c  acid con-  
c en t r a t i ons  of  i ,  5, io  a n d  25 raM. Change  in  N a  + u p t a k e  {the cu rve  des igna t ed  b y  V~ a n d  & N a  +) 
is t he  difference be tween  Na  + u p t a k e  in t h e  presence  o f  a - amino i sobu ty r i c  acid and  t he  u p t a k e  
in t h e  absence  o f  a - ami no i sobu t y r i c  acid. The  cu rve  labeled SAT. is t he  s a tu r a t ab l e  c o m p o n e n t  
of  a - a m i n o i s o b u t y r i c  acid u p t a k e  ca l cu la t ed  by  s u b t r a c t i n g  t he  l inear c o m p o n e n t  f rom the  to ta l  
a - amino i sobu ty r i c  acid up take .  

Fig. 2. Correla t ion of  change  in Na  + u p t a k e  wi th  t he  s a t u r a t a b l e  c o m p o n e n t  o f  a - amino i sobu ty r i c  
acid (AIB) u p t a k e  a t  dif ferent  ex t race l lu la r  s o d i u m  concen t r a t ions  for I -m in  incuba t ions  a t  37 °. 
U p t a k e s  were m e a s u r e d  wi th  ini t ial  ex t race l lu la r  a - amino i sobu ty r i c  acid concen t r a t ions  of  i ,  5, 
io  a n d  25 m_M. The  change  in  N a  + u p t a k e  (V3--[[]) and  t he  s a t u r a t a b l e  a - amino i sobu ty r i c  acid 
u p t a k e  (plots w i th  no assoc ia ted  symbol)  were ca lcu la ted  as descr ibed for Fig. I. The  ex t race l lu la r  
and  in t race l lu la r  concen t r a t i ons  o f  Na+ are  in mequiv/1  of  ext race] lu lar  and  m e q u i v / k g  of  in t ra-  
cel lular  water .  
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The critical question now is whether Na + actually enters the cell along with 
the amino acid or whether it merely participates in some secondary reaction accom- 
panying transport. This same problem has been the focus of recent research on 
transport in the intestine. CSAKY 8 has shown that sodium is necessary for active 
intestinal transport of amino acids, and SCHULTZ AND ZALUSKY 9 have shown that 
the flux of Na+ from mucosal to serosal surface and the short-circuit current increase 
when alanine is transported and suggest a I : I  stoichiometry between the two on the 
basis of their finding of a Michaelis-Menten type of relation between the increase in 
short-circuit current and the alanine concentration on the mucosal side. They further 
suggest that a ternary complex, Na+-amino acid -carrier is involved in the intestinal 
transport of amino acids, and that the transport is driven by the Na + gradient. 
The same hypothesis had been proposed by CRANE, MILLER AND BIHLER 1° for sugar 
transport in the intestine. 

We have attacked this problem directly by measuring the simultaneous up- 
takes of 3H-labeled a-aminoisobutyric acid and of 22Na+ for incubation times of I min 
at 37 ° for a series of different extracellular concentrations of Na + and a-aminoisobu- 
tyric acid. The methods and procedures used have been described previously 1L~2. 
For this study the Ehrlich ascites cells were not subjected to osmotic shock. We have 
found a I : I  relationship between the increase in Na + uptake and the saturatable 
component of a-aminoisobutyric acid uptake. Fig. i shows that when the linear com- 
ponent of the a-aminoisobutyric acid uptake (referred to as the Na+-insensitive com- 
ponent by INUI AND CHRISTENSEN 13) is subtracted the remaining, saturatable and 
Na+-sensitive, uptake of a-aminoisobutyric acid is approximately the same as the 
increase in Na ÷ uptake. As is shown in Fig. 2, this i : i relationship holds over a wide 
range of extracellular concentrations of Na + and a-aminoisobutyric acid, for both 
inwardly and outwardly directed Na + gradients. The intracellular and extracellular 
Na+ levels are given in Fig. 2 for each set of curves. In the experiment in which the 
extracellular Na + was 32 mM and intracellular Na ÷ was in the range 41-44 mM the 
a-aminoisobutyric acid uptake in I min was not concentrative at the higher levels 
of a-aminoisobutyric acid but at I mM a-aminoisobutyric acid the intracellular con- 
concentration reached was 2 raM. Thus these experiments provide direct evidence 
for a I : I  stoichiometry between a-aminoisobutyric acid and Na ÷ uptake as well as 
evidence against the hypothesis that the Na + gradient is the sole source of the 
energy for the transport of a-aminoisobutyric acid. 

We have run similar experiments with L-phenylalanine which is taken up 
almost entirely by the Na+-insensitive L system and have found no increase in up- 
take of Na + accompanying uptake of L-phenylalanine. 

We interpret our results as indicating that one Na + is bound to the carrier of 
the Na+-sensitive A system but that no Na + is bound to the carrier of the Na+-insen - 
sitive L system. It  is unlikely that the Na + is moving independently as a counter-ion 
of a-aminoisobutyric acid because both a-aminoisobutyric acid and phenylalanine are 
neutral amino acids and one would then expect it to move with phenylalanine as 
well as with a-aminoisobutyric acid. Hence if it is moving as a counter-ion it must 
be as a counter-ion for the carrier for a-aminoisobutyric acid. Although our experi- 
ments do not exclude this possibility it seems to us that by far the most likely ex- 
planation of the I : I  stoichiometry and the Michaelis-Menten type of relationship 
between the a-aminoisobutvric acid flux and the extracellular concentration of 

Biochim. Biophys. Acta, 135 (1967) lO81-1o83 



PRELIMINARY NOTES 1 0 8 3  

sodium la is that the sodium and the a-aminoisobutyric acid are bound to the same 
carrier. 
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An electron spin resonance signal in brain microsomes 

Microsomal preparations from liver and adrenal cortex have been examined 
by ESR spectroscopy 1-5. Studies on brain microsomes with this technique have not 
been reported. 

Active cation transport and ATPase activity have been studied extensively, in 
brain as well as in other tissues 6. A connection between microsomal electron transport 
and the active transpolt of  ions has been suggested (e.g. refs. 6-8), but experimental 
evidence has been lacking. Previous workg, 1° using frog skin suggested that un- 
paired electrons participate in active cation transport. We report here preliminary 
findings showing that a free radical is in some way connected with microsomal ATPase. 

Rats were killed by decapitation after light ether anesthesia. (One preparation 
from rats that received no ether was also examined; we observed no difference in the 
signal.) The brains were quickly removed and chilled. The microsomal pellet was 

Abbreviation: ESR, electron spin resonance. 
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