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Abstract-A theoretical solution is given for the laminar flow of a non-Newtonian fluid between two circular 
parallel disks. The fluid under consideration is assumed to obey a model recently proposed by Sisko [l] which 
has been checked experimentally to fit accurately the viscosity data of greases over a very wide range of shear 
rates. By equating to zero one of the constants in the model, the model equation reduces to the power law equation 
which is known to represent the behavior of a large number of non-Newtonian fluids. 

NOTATION 
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empirical constants in the Sisko model 
clearance between disks 
two functions defined in equations (26) and (27) 
pressure 
flow rate 
radial coordinate 
velocity 
coordinate direction perpendicular to the disk 
shearing stress tensor 
circumferential coordinate 
a velocity function defined in equation (16) 
the rate of strain tensor 

Subscripts 
e property at the outer radius 
i property at the inner radius 
r property in the r-direction 

; 
property in the z-direction 
property in the 0direction 

W property on the surface of the disk 

1. INTBODUCIION 

RECENTLY there has been increased interest in the flow behavior of fluids which do not 
obey Newton’s law of viscosity. A number of empirical models for the relation between 
stress and rate of strain for various non-Newtonian fluids have been proposed. Each model 
is usually adequate for describing fluid properties in a certain restricted range. In the 
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present paper, a theoretical solution is given for the laminar flow of a non-Newtonian 
fluid between parallel circular disks where the ‘fluid under consideration is assumed to 
obey a recently proposed model of Sisko [l]. Mathematically Sisko’s model can be written 
as 

= 
7 = - {LI + b ~,/+@=:ii)~‘“-‘I} d (1) 

where 5 and d’ are the stress tensor and the rate of deformation tensor respectively; and 
a, b and n are constants defined differently for different fluids. 

There are two reasons for solving a flow problem for fluids based on Sisko’s model in 
a geometrical configuration of this type. First, Sisko’s model has been checked experi- 
mentally to tit accurately the viscosity data of various commercial greases made from 
petroleum oils with one of the standard thickening agents such as calcium fatty acid, lithium 
hydroxy stearate, sodium tallow or hydrophobic silica over a wide range of shear rate 
(0*04-22,000 set- ‘) [l]. Later measurements by Sisko [2] of lithium-soap greases check 
the model over even a wider range of shear rate (0~0140,ooO set- ‘). Other models proposed 
in the literature prior to the introduction of Sisko’s model cover only narrow ranges of 
shear rate. For example, the Powell-Eyring’s model was seen to check the experimental 
viscosity data over the range of 10-10’ set- ’ for the three types of greases studied by 
Brunstrum and Leet [3]. They also conclude that the power law model fits their data 
only over the limited range of 10-500 set - ‘. The deviations from experimental data on 
the other two models proposed, namely, the Bingham plastics and the three parameter 
Ree-Eyring models are also shown in [l]. A solution for the Sisko model wilI therefore 
yield ‘the important relation between the flow rate and the pressure drop for radial flows 
between two circular disks-a geometry often met with in bearing design. Secondly, the 
solutions for this model may be reduced to the power law model solutions upon substitut- 
ing a = 0. Since the power law model represents the flow behavior for a large class of 
fluids, even the special case itself would provide justification for an analysis. 

2. ANALYSIS 

‘The present analysis is concerned with the steady laminar flow of non-Newtonian fluids 
of Sisko’s model between two parallel circular disks (see Fig 1). It is assumed that the 
velocities in the fI- and z-direction are so small compared with the velocity in the radial 
directions, V, that they may be neglected to a first approximation. With these assumptions, 
the basic equations become 

Continuity 

(2) 

Momentum 

(3) 

0 = --- ap 
az 

; ; b-G*) 



Radial flow, of viscous non-Newlonian fluids between disks 

Q 

FIG. I 

The three non-vanishing component of the stress tensor are [4] 

TW = - 2(u + b I&d’ : &I”- ‘} 2 

7tM = - 2{a + b /J&d : ,=)I”-‘} T 

7 IS = 7w = - (u + blJ#:d=)I”-‘}2 

where 

2% ( > 0 0 30, 
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As would be expected, the mathematical complexity inherent in this formulation in- 
dicates the necessity for further simplification. Specifically, consider the case in which the 
viscous terms predominate and the inertia term may be neglected.* The above equations 
are then simplitied considerably. It is also assumed that the rate of change of velocity u, 
with respect to the radial direction is much smaller than its rate of change in the z-direction. 
As a result, the viscous terms can be simplified tot the forms 

(11) 

The second equal sign follows for any n under the assumption that the flow is symmetrical 
with respect to the plane z = 0 (see Fig. 1) so that only the upper half of the flow is con- 
sidered. Under these assumptions, the basic equations become : 

Continuity 

Momentum 

ap 85, 5+x=0 

lap o 
-- = 

r ae 

ap - 0 z- 
with the boundary conditions : 

z = 0: 3-O 
aZ - 

h 
z = -_: 

2 
v, = 0 

The pressure at the inner and outer radii are assumed to be pi and pe respectively. 

* Ordinarily, this would be a low Reynolds number flow. 
7 From continuity, we get 

(13) 

(14) 

(15) 
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From equation (12) we see that (r=u,) is independent of r. Therefore, a function, 4(z), can 
be defined as 

rt’, = 4(z) (16) 

Equations (14) and (15) imply that p is independent of 8 and z. Therefore, equation (13) 
becomes 

dp arrz 
z+z=O (17) 

For fluids obeying Sisko’s model, the rheological behavior can be expressed by equation 
(11). Employing this result in equation (17), and integrating the equation with respect to 
z and determining the constant of integration by the first boundary condition, we get 

In terms of 4 introduced in equation (16), equation (18) may be written 

$z + +#i) + $(-@r = 0 (19) 

where the prime represents differentiation with respect to z. 
Equation (19) has no non-trival solutions of I$‘, except in the case of the Newtonian or 

power-law fluids. Therefore, no solutions for the velocity can be found for the Sisko’s 
model. However, the relation between the flow rate, Q, and the pressure drop, pi - pe, 
can’ be obtained for the Sisko’s model in the following manner. Equation (19) can be 
integrated over r, thus 

l-n 

(pi - p,)Z = U In: (- 4’) + b(re 1 _ n ’ - +‘)(_jq 

I 

In order to express the flow rate as a function of pressure drop, it is necessary to solve 
equation (20) for C$ and substitute the result into the following equation : 

1 P 
Q = 2j27rrv;dz = 4rr$4dz. (21) 

0 0 

A closed form solution of equation (20) appears unlikely due to the power n in the second 
term of the right-hand side of this equation. This difficulty can be overcome by a change 
of variables in equation (21). Integrating by parts, 

Q = - 4x;wzd4 = - 4ndjuz@dz (22) 
0 0 

where $,,, is the value of 4 evaluated at the surface of the disk, i.e. at z k h/2. Equation (22) 
is then integrated by parts again, then 

(23) 

Again, c$L is the value of 4’ evaluated at z = h/2, i.e. the surface of the disk. 
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The form of equation (23) is more convenient to integrate than equation (21) since c is 
expressed implicitly as a function of 4’ in equation (20). 

Substituting equation (20) into the integral in equation (23) and carrying out the integra- 
tion, a closed form expression for Q is obtained as 

Q = 2x h2(-4:) _ k,2(-&,J3 _ 2klk2(-&.J”+2 _ k22(-&.)2n+1 
4 3 n+2 2n + 1 (24) 

where c#& is expressed implicitly as a function of the pressure drop in the equation 

(Pi - Pe)h !I@,‘_” - ril-y 
2 

= aln:(-4,) + 
l-n 

(-&v, 
1 

(25) 

(obtained by putting z = h/2 and 4’ = &,, in equation (20)). The two constants, k, and k,, 
in equation (24) are 

aln2 
k, =ri 

Pi - Pe 
(26) 

and 

k, = ;; 
r l-n 
e - ri’-“) 

- nNPi - PA 
(27) 

respectively. 
Equations (24) and (25) together give the relation between the flow rate, Q, and the 

pressure drop, pi - pC Their relations can be computed by putting into these equations 
different values of c#& and the corresponding pair of Q and Pi - P, can be obtained. 

Special cases 
(I) Power-law model (the Ostwald-de Waele model). By putting a = 0, the special case 

of the power law fluid is obtained which gives 

(pi - p,)(l - n) h 2n+ 1 ’ 

h(r,l-” - rite”) Z 0 I 
(28) 

The velocity profile can be solved by integrating equation (20) over z and substituting 
the result into equation (16). Thus, 

n+l 

h ” “‘=& 2 0 [ (1 - n)h - P,) ” j[l _(q] 
b(r,“_l - Tin--l) (29) 

(2) Newtonian fluids. This case can be obtained by either putting b = 0 or a = 0 and 
n = 1 simultaneously in equation (11). The flow rate, Q, and the velocity, u, for this case 
then become 

Q= 
4dPi - Pe) h 3 

3filn: 0 2 

‘ 

(30) 
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and 
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(31) 

3. NUMERICAL RESULTS AND DISCUSSIONS 

Numerical results based on the above equations have been computed and are present 
in Figs. 2-l 1. Figures 2-8 are solutions of equations (24) and (25) for “grease A” in Sisko’s 
original investigation [l] with a = 2.7 dyn-sec/cm2, b = 1940 dyn/cm2 and n = 0.139. 
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FIG. 4 

The inner radius of the disk is taken to be constant at O-2 in. Figures 24 show the variation 
of the flow rate;Q, with respect to the pressure drop, pi - pe, for different values of re. 

The clearance between the disks is kept at O-1 in., O-05 in. and 0.025 in. in the three figures 
respectively. It is seen that as the flow rate increases from zero the pressure drop needed 
to force it through the disks increases rapidly. However, this trend does not continue. 
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FIG. 5 
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FIG. 7 

Ultimately the phenomena is reversed. A large increase in the flow rate is then accompanied 
by a small increase in the pressure drop. This is typical of grease flow since greases have 
high viscosity at low shear rate and low viscosity at high shear rate. Thus one expects 
large resistance to flow when the flow rate, Q, is small. Figures S-7 give Q vs. pi - pe with 
constant clearances. Each figure is plotted for a different size of disk. The same feature 
characterizing the rate of change of Q with (pi - p,) again shows in the figures. Figure 8 
shows the pressure drop, (pi - p,), plotted against the radial location. It shows that the 
pressure drop is almost linearly proportional to the radial distance. 
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Equation (28) is plotted in Fig. 9 for different values of n. For n < 1, the curve is qualita- 
tively the same as in Figs. 2-7. In fact, the power law model with n < 1 has been successful 
in predicting the flow of greases in certain ranges of shear rate [3]. For n > 1, the phenomena 

is completely reversed and the flow offers less resistance at low shear rate but increases 

0 = 0.004 fP/min 

r, in. 

FIG. 8 

FIG. 9 
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at higher shear rates. The special case of Newtonian fluids gives a linear relation between 
Q and @i - p,). The dimensionless flow rate, Q’, in Fig. 9 is defined from equation (28) as 

Q, = (h + UQ 
4nx 

The pressure distribution in a 
pressure drop (of equation (28)) 

FIG. 10 

(32) 

given disk are shown in Fig, 10 with the dimensionless 

(33) 

and the dimensionless radius, );/ri, as coordinates. The relation between Ap’ and re/ri 
can be found from equation (28) as 

*p’ = (1 - n) 
‘[(y - 11 

From the special case of n = I 

and equation (34) can be reduced to 

(35) 

(36) Ap’ = In: 
I 

Q 
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This result may also be obtained from equation (30) directly. From the figure, it is seen that 
the pressure drop is larger for fluids with smaller II Again, for low values of n, the curves 
show the same large increase in the pressure drop as in Fig. 8. 

(r us 
FIG. 11 

Finally, the velocity profiles for power law fluids are plotted for different values of n 
in Fig. 11. As in the case of pipe flow, small values of n give flatter velocity profiles. The 
dimensionless form of ru, in the figure is defined as 

Consequently, equation (29) can be written as 

(rVJ= [l -(;)“I 

(37) 

(38) 
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R&sum- donne une solution thiorique pour le flux laminaire d’un fluide non Newtonien entre deux disques 
circulaires paralleles. Le fluide considbt est suppose obeir a un modele ricemment propose par Sisko [I] que 
l’experience a v&rifiC conforme avec precision aux domt&es de la viscosite des graisses sur une tr&s grande &endue 
de contraintes. En igalant a zero une des constantes du modtle, l’equation se r&tit a une fonction puissance 
qui, on le sait, repr&nte le comportement d’un grand nombre de fluides non Newtoniens. 

&wmmcnfasasmg-Eine theoretische JAsung l3ir die laminare StrBmung einer nicht-Newton’schen Fltissigkeit 
xwischen xwei kreisfiirmigen, parallelen Scheiben wird angegeben. Es wird angenommen, dam die betrachtete 
Fliissigkeit einem Model1 foglt, das kiirxlich von Sisko [l] vorgeschlagen wurde und das im Experiment fXhig 
gewesen war, die Viskosititswerke von Schmiermitteln tiber einen sehr w&en Sohubraten berich recht genau 
w=iederxugeben. Wird in dem Model] tine der Konstanten gleich null gesetxt, do wird die Modellgleichtmg xu 
der Potenxgesetxgleichung reduxiert, welche bekanntlich das verhalten ciner grossen Zahl von nicht-Newton’schen 
Fliissigkeiten beschreibt. 

A6cTpauT-~pnno~uTCn TeOpeTuYecHOe pelueHKe npo6nembr namuaapeoro TeSeHm He- 

HbIOTOHOBCKOfh ?fWAKOCTM MeifUQ' ABJ’MF4 KpJ’WlblMll IIapaaJIeJlbHbIMU AHCKaMM. rlpeAJIOnOPKeH0, 

'ITOpaCCMaTpUBaeMafi KiHAKOCTb llOA%iHReTCR 3aKOHJ'CIIpaBeAJlMBOMy A.nfI MOReJIM IlpeAJIOHteHHOfi 

B IIOCJleAHee BpeMR CHCKO[1]R IlO 3KCnepHMeHTaM 06naJ$aromet TO'IHO AaHHbIMIl HWpOBblX CMPBOK 

B OYeHb LUUpOKOM AUalla3OHe CKOpOCTeti CABUra. npMpaBHeHHe HJVIIO OAHOfi ki3 KOHCTaHT MOAeJlU, 

IlpUBO~LiT YpaBHeHUe MOAeJlU K BUJQ' J'paBHeHAR CTeneHHOl'O 3aKOHa, 0 KOTOpOM IIPBeCTHO, ST0 

OH0 OllHCbZBaeT IIOBeAeHBe MHOI'UX He-HbIOTOHOBCKHX ?KklAKOCTet. 


