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Abstract—A. theoretical solution is given for the laminar flow of a non-Newtonian fluid between two circular
parallel disks. The fluid under consideration is assumed to obey a model recently proposed by Sisko [I] which
has been checked experimentally to fit accurately the viscosity data of greases over a very wide range of shear
rates. By equating to zero one of the constants in the model, the model equation reduces to the power law equation
which is known to represent the behavior of a large number of non-Newtonian fluids.

NOTATION

a,b,n empirical constants in the Sisko model
clearance between disks

1. k3, two functions defined in equations (26) and (27)

pressure

flow rate

radial coordinate

velocity

coordinate direction perpendicular to the disk

shearing stress tensor

circumferential coordinate

a velocity function defined in equation (16)

the rate of strain tensor

= =
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Subscripts

property at the outer radius
property at the inner radius
property in the r-direction
property in the z-direction
property in the 6-direction
property on the surface of the disk
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1. INTRODUCTION

RECENTLY there has been increased interest in the flow behavior of fluids which do not
obey Newton’s law of viscosity. A number of empirical models for the relation between
stress and rate of strain for various non-Newtonian fluids have been proposed. Each model
is usually adequate for describing fluid properties in a certain restricted range. In the
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present paper, a theoretical solution is given for the laminar flow of a non-Newtonian
fluid between parallel circular disks where the fluid under consideration is assumed to
obey a recently proposed model of Sisko [1]. Mathematically Sisko’s model can be written
as

T=—{a+b|lyHd: D"} 4 (1)

where 7 and 4 are the stress tensor and the rate of deformation tensor respectively; and
a, b and n are constants defined differently for different fluids.

There are two reasons for solving a flow problem for fluids based on Sisko’s model in
a geometrical configuration of this type. First, Sisko’s model has been checked experi-
mentally to fit accurately the viscosity data of various commercial greases made from
petroleum oils with one of the standard thickening agents such as calcium fatty acid, lithium
hydroxy stearate, sodium tallow or hydrophobic silica over a wide range of shear rate
(0-04-22,000 sec™ ') [1]. Later measurements by Sisko [2] of lithium-soap greases check
the model over even a wider range of shear rate (0-01-40,000 sec ™ !). Other models proposed
in the literature prior to the introduction of Sisko’s model cover only narrow ranges of
shear rate. For example, the Powell-Eyring’s model was seen to check the experimental
viscosity data over the range of 10-10° sec™! for the three types of greases studied by
Brunstrum and Leet [3]. They also conclude that the power law model fits their data
only over the limited range of 10-500 sec™!. The deviations from experimental data on
the other two models proposed, namely, the Bingham plastics and the three parameter
Ree-Eyring models are also shown in [1]. A solution for the Sisko model will therefore
yield the important relation between the flow rate and the pressure drop for radial flows
between two circular disks—a geometry often met with in bearing design. Secondly, the
solutions for this model may be reduced to the power law model solutions upon substitut-
ing a = 0. Since the power law model represents the flow behavior for a large class of
fluids, even the special case itself would provide justification for an analysis.

2. ANALYSIS

‘The present analysis is concerned with the steady laminar flow of non-Newtonian fluids
of Sisko’s model between two parallel circular disks (see Fig. 1). It is assumed that the
velocities in the - and z-direction are so small compared with the velocity in the radial
directions, v,, that they may be neglected to a first approximation. With these assumptions,
the basic equations become

Continuity
d
= () = 0 )
Momentum
v,  Op 10 Teg = OT,,
rﬁ— —E—I:rar(‘trr) Oz (3)
1dp
= - —— 4
0=~7% “)
op 10
0= —5;";5;(”':) 5)
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The three non-vanishing component of the stress tensor are [4]

= = 2a+ blyad: B 2
= = 2a+ blyHA: D) 2

fe= = o+ b|VHE D

where
ov, ov,
(3 o (3
= 0 2<1’£> 0
r
dv,
(%) :
and
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As would be expected, the mathematical complexity inherent in this formulation in-
dicates the necessity for further simplification. Specifically, consider the case in which the
viscous terms predominate and the inertia term may be neglected.* The above equations
are then simplified considerably. It is also assumed that the rate of change of velocity v,
with respect to the radial direction is much smaller than its rate of change in the z-direction.
As a result, the viscous terms can be simplified tot the forms

Trr = Tgp = 0

e = Jatb v \2|*~ 1) ov,
e = e = { \/a %
av, v \"
={“("a‘;>+”(‘z>} an

The second equai sign follows for any n under the assumption that the flow is symmetrical

with respect to the plane z = 0 (see Fig. 1) so that only the upper half of the flow is con-
sidered. Under these assumptions, the basic equations become :

Continuity
0
= (rv) =0 (12)
or
Momentum
op Or,,
o oz 0 (13)
1dp
S==0 14
r oo (14)
op
L= 1
3 0 (15)
with the boundary conditions:
dv,
z=0: Fr 0
z= g: v, =0

The pressure at the inner and outer radii are assumed to be p; and p, respectively.

* Ordinarily, this would be a low Reynolds number flow.
t From continuity, we get

ov, v,

ar r
. oo, ov, v,| _|0v,
therefore the assumption of | — | €| — | means also that| —| <{—
or 0z r 0z
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From equation (12) we see that (rv,) is independent of r. Therefore, a function, ¢(z), can
be defined as

o, = ¢(z) (16)

Equations (14) and (15) imply that p is independent of 6 and z. Therefore, equation (13)
becomes

dp 01,

dr 0z

=0 17)

For fluids obeying Sisko’s model, the rheological behavior can be expressed by equation
(11). Employing this result in equation (17), and integrating the equation with respect to
z and determining the constant of integration by the first boundary condition, we get

dp ov, ov, \'
a;Z'{"a(—E)'l'b(—aZ)—O (18)

In terms of ¢ introduced in equation (16), equation (18) may be written

dp a
_z+..
dr r

where the prime represents differentiation with respect to z.

Equation (19) has no non-trival solutions of ¢’, except in the case of the Newtonian or
power-law fluids. Therefore, no solutions for the velocity can be found for the Sisko’s
model. However, the relation between the flow rate, Q, and the pressure drop, p; — p..
can be obtained for the Sisko’s model in the following manner. Equation (19) can be
integrated over r, thus

! b nn __
(=¢)+ (=97 =0 (19)

bi i-n __ ,1-n
(b — pJz=aln’e(—g) + e =)
r; 1—-n

(=or (20)

In order to express the flow rate as a function of pressure drop, it is necessary to solve

equation (20) for ¢ and substitute the result into the following equation:
h h
7

3
Q=2f2nrv;dz=4n [ dz. (21)
4] 0

A closed form solution of equation (20) appears unlikely due to the power n in the second
term of the right-hand side of this equation. This difficulty can be overcome by a change
of variables in equation (21). Integrating by parts,

¢W ¢W
Q=—4n [ zd¢p = —4n § z¢' dz (22)
[+ 0

where ¢, is the value of ¢ evaluated at the surface of the disk, i.e. at z = h/2. Equation (22)
is then integrated by parts again, then

(4%

2 4
= — Zn[h fw _ J 22 d¢':| (23)

[4]
Again, ¢,, is the value of ¢’ evaluated at z = h/2, i.e. the surface of the disk.
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The form of equation (23) is more convenient to integrate than equation (21) since z is
expressed impilicitly as a function of ¢’ in equation (20).

Substituting equation (20) into the integral in equation (23) and carrying out the integra-
tion, a closed form expression for Q is obtained as

R (=¢L) k(=)  2kiky(=0)"2 k(=g )Tt
= 2 _ w = w _ w
Q “{ 4 3 n+t2 I+ 1 } @4
where ¢,, is expressed implicitly as a function of the pressure drop in the equation
i~ eh Te ’ brel—n'—ril_" ’
BoPR o (- gy + )~ gty 29)
r; 1—n

(obtained by putting z = h/2 and ¢’ = ¢,, in equation (20)). The two constants, k, and k,,
in equation (24) are

re
aln-=
k. = i (26)
Y b~ pe
and
b(r 1-n r.l—n)
ky = —°6 L 7 27
(T @D
respectively.

Equations (24) and (25) together give the relation between the flow rate, Q, and the
pressure drop, p; — p.. Their relations can be computed by putting into these equations
different values of ¢,, and the corresponding pair of Q and P, — P, can be obtained.

Special cases
(1) Power-law model (the Ostwald-de Waele model). By putting a = 0, the special case
of the power law fluid is obtained which gives

1
_ dnm ((p = p)(L = m) R\
C=%x l{b(re"" - Mm\2 (28)
The velocity profile can be solved by integrating equation (20) over z and substituting
the result into equation (16). Thus,

ntl L ntl
_n (N TA=me=p)T T, (22"
iy e -G @

(2) Newtonian fluids. This case can be obtained by either putting b =0 or a = 0 and
n = 1 simultaneously in equation (11). The flow rate, Q, and the velocity, v,, for this case

then become
4 i e) h\?
%JL§@ (30)
3u lnr—"

t
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v (5] o

2urn Te

and

3. NUMERICAL RESULTS AND DISCUSSIONS

Numerical results based on the above equations have been computed and are present
in Figs. 2-11. Figures 2-8 are solutions of equations (24) and (25) for ““grease A” in Sisko’s
original investigation [1] with @ = 27 dyn-sec/cm?, b = 1940 dyn/cm? and n = 0-139.
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The inner radius of the disk is taken to be constant at 0-2 in. Figures 2—4 show the variation
of the flow rate, Q, with respect to the pressure drop, p; — p,, for different values of r..
The clearance between the disks is kept at 01 in,, 0-05 in. and 0-025 in. in the three figures
respectively. It is seen that as the flow rate increases from zero the pressure drop needed
to force it through the disks increases rapidly. However, this trend does not continue.

000
r, =1in.
o008
h=01 in,
€ 0006
£
M=
- h=005 in.
& 0004
h=0-025 in,
0002 }—
) h=0-0125 in.
I """
0 2 r 6 8 10



Radial flow of viscous non-Newtonian fluids between disks 269

0-0i0
e = 2in.
0-008
h=0-l in,
£ 00061~
E
o
oo
h=0-05 in.
& 0004
h=0-025 in.
0002
h=0-0125 in,
o] 4 8 12 6 20
P,=Pes PSi
FiG. 6
0-010
0-008|—
€ 0-006
=
>
(<] 04004r—
0002
o] 8 20
P;=P,: psi
FiG.7

Ultimately the phenomena is reversed. A large increase in the flow rate is then accompanied
by a small increase in the pressure drop. This is typical of grease flow since greases have
high viscosity at low shear rate and low viscosity at high shear rate. Thus one expects
large resistance to flow when the flow rate, Q, is small. Figures 5-7 give Q vs. p; — p, with
constant clearances. Each figure is plotted for a different size of disk. The same feature
characterizing the rate of change of Q with (p, — p,) again shows in the figures. Figure 8
shows the pressure drop, (p; — p.), plotted against the radial location. It shows that the
pressure drop is almost linearly proportional to the radial distance.
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Equation (28) is plotted in Fig. 9 for different values of n. For n < 1, the curve is qualita-
tively the same as in Figs. 2-7. In fact, the power law model with n < 1 has been successful
in predicting the flow of greases in certain ranges of shear rate [3] Forn > 1, the phenomena
is completely reversed and the flow offers less resistance at low shear rate but increases
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at higher shear rates. The special case of Newtonian fluids gives a linear relation between
@ and (p; — p.). The dimensionless flow rate, Q’, in Fig. 9 is defined from equation (28) as

@n+ 1)Qf (1 —np, AR
‘o 2 2
2 dnm | b(r,” " ~ 1,17\ 2 (2)
0
- n=1/4
nei/2 1
Sor
n=|
nz2
1 | |
o] 5 10 15 20
e /t;
Fic. 10

The pressure distribution in a given disk are shown in Fig. 10 with the dimensionless
pressure drop (of equation (28))

. 4”7('. " (pi"-:pe) k 1
4 "'Jl(zn+1>g} { bri= (5) } 33

and the dimensionless radius, r./r, as coordinates. The relation between Ap' and r/r,
can be found from equation (28) as

1 re\! "
v -a(() ] 0

From the special case of n = 1

. 4n (Y}
4p' = Sé—b(—i) (p; — po) (35

and equation (34) can be reduced to

4y =l (36)

T;
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This result may also be obtained from equation (30) directly. From the figure, it is seen that
the pressure drop is larger for fluids with smaller n. Again, for low values of n, the curves
show the same large increase in the pressure drop as in Fig. 8.

z/(0-5h}

| |
o] [+X.] -0
(rv)

Fic. 11

Finally, the velocity profiles for power law fluids are piotted for different values of n
in Fig. 11. As in the case of pipe flow, small values of n give flatter velocity profiles. The
dimensionless form of rv, in the figure is defined as

(rv,y = (rv,) n+ 1[(ﬁ>n+ ' Q;_Q)(P._“_R_Q]— H 37

n 2 br "t —rm Y

Consequently, equation (29) can be written as

nt 1

=[5
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Résumé—On donne une solution théorique pour le flux laminaire d’un fluide non Newtonien entre deux disques
circulaires paralléles. Le fluide considéré est supposé obéir 4 un modele récemment proposé par Sisko [1] que
I’expérience a vérifié conforme avec précision aux données de la viscosité des graisses sur une trés grande étendue
de contraintes. En égalant a zéro une des constantes du modele, ’équation se réduit & une fonction puissance
qui, on le sait, représente le comportement d’un grand nombre de fluides non Newtoniens.

Zusammenfassumg—FEine theoretische Losung fiir die laminare Stromung einer nicht-Newton’schen Flissigkeit
zwischen zwei kreisférmigen, paraliclen Scheiben wird angegeben. Es wird angenommen, dass die betrachtete
Flissigkeit einem Modell foglt, das kiirzlich von Sisko [1] vorgeschlagen wurde und das im Experiment fihig
gewesen war, die Viskosititswerke von Schmiermitteln Gber einen sehr weiten Schubraten berich recht genau
wiederzugeben. Wird in dem Modell eine der Konstanten gleich null gesetzt, do wird die Modeligleichung zu
der Potenzgesetzgleichung reduziert, weiche bekanntlich das verhalten ciner grossen Zah! von nicht-Newton’schen
Fliissigkeiten beschreibt.

AGerpagr—IIpuBonuTcAa TeopeTMueckOe pelieHne npobJjieMB JAMMHAPDHOTO TeYEHHMA He-
HBIOTOHOBCKOM »UAKOCTH MEMAY HBYMA KDYIVIMMM NapajliesbHRIMHK Juckamu. Ilpeasonoxkeno,
YTO PACCMATPMBAEMan WHUAKOCTb NONYNHAECTCH 3aKOHY CIPABelJIMBOMY JJIA MOJENH IPeJIOReHHON
B nociegnee Bpemsa Cucko [1] u no akcnepumerTam o6aafaiowmel TOUHO NaHHKIMH KUPOBLIX CMA30K
B OYeHb LIMPOKOM [UanasoHe ckopocreld caBura. [IpupasHenne Hynio OOHON M3 KOHCTAHT MOJENH,
TIPUBOMUT ypaBHEHHe MOJeENM K BULY YPABHEHHMA CTENeHHOrO 3aKOHA, O KOTOPOM M3BECTHO, YTO
OHO ONHCHBAET II0BeZieHNe MHOTMX He-HPIOTOHOBCKHMX JKMAKOCTES.



