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Enumeration of Finite Automata 1 

FRANK HARARY AND ED PALMER 

Department of Mathematics, University of Michigan, A n n  Arbor, Michigan 

Harary ( 1960, 1964), in a survey of 27 unsolved problems in graphical 
enumeration, asked for the number of different finite automata. Re- 
cently, Harrison (1965) solved this problem, but without considering 
automata with initial and final states. With the aid of the Power Group 
Enumeration Theorem (Harary and Palmer, 1965, 1966) the entire 
problem can be handled routinely. The method involves a confrontation 
of several different operations on permutation groups. 

To set the stage, we enumerate ordered pairs of functions with respect 
to the product of two power groups. Finite automata are then concisely 
defined as certain ordered pah's of functions. We review the enumeration 
of automata in the natural setting of the power group, and then extend 
this result to enumerate automata with initial and terminal states. 

I. ENUMERATION THEOREM 

For completeness we require a number of definitions, which are now 
given. Let A be a permutation group of order m = ]A I and degree d 
acting on the set X = Ix1, x~, - . .  , xa}. The cycle index of A,  denoted 
Z ( A ) ,  is defined as follows. Let jk(a) be the number of cycles of length 
k in the disjoint cycle decomposition of any permutation a in A. Let 
a l ,  a2, . . .  , aa be variables. Then the cycle index, which is a poly- 
nomial in the variables a~, is given by 

d 
Z ( A )  = 1_ ~ H ~,~(°~ . (1) 

~$ a E A k=l 

We sometimes write Z ( A ;  al ,  as, . . .  , aa) to indicate the variables 
in Z ( A ) .  

The following formula for the number of orbits determined by a 
permutation group can be found in Burnside (1911). 
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TttEOREM 1. The number oJ orbits determined by the permutation group 
A is 

1 ~ j l (a )  • (2) 
N ( A )  - I A I ,cA 

We will use several well known operations (see Harary, 1959) on 
permutation groups which produce other permutation groups. As above, 
let A be a permutation group of order m = I A I and degree d, acting 
on the set X. Let B be another permutation group of order n = I B l 
and degree e, acting on the set Y. 

The sum of A and B, denoted A + B, is a permutation group which 
acts on the disjoint union X ~_, Y. Its permutations are all the ordered 
pairs, written a 8, of permutations a in A and fl in B. Any element z 
of X ~j Y is permuted by a ~ according to 

f~ z, z C X 
~(z) ) 

o~ 

~ z, z C Y. 

Thus the order of A + B is mn and the degree is d -~ e. 
The next operation was introduced by Harary (1958). The product 

of A and  B, denoted A X B, acts on the cartesian product X X Y. 
The permutations in A X B consist of all ordered pah's, written (a, ~), 
of permutations a in A and ~ in B. Any element (x, y) in X X Y is 
permuted by (a, f~) according to the equation 

(a, 8) (x, y) = (a x, ~ y).  

Then the order of A X B is mn and the degree is d + e. 
The power group was defined by Harary and Palmer (1965). This 

permutation group, denoted by B ~, acts on yX, the set of all functions 
from X into Y. Here we assume [ Y [ > 1 so that  there are at least two 
functions. The permutations in B A are the ordered pairs, written (a;  ~), 
of permutations a in A and ~ in B. Any function f in yX is permuted 
by (a ; 8) according to 

(a ;f~) f ( x )  = ~ f ( a  x) 

for all x in X. I t  is clear that  the order of B ~ is mn and the degree is e ~. 
Following the terminology of Carmich~el (1937), we write A ~ B 

to mean only that  A and B are isomorphic as abstract groups. But  
A ~ B means more, namely that  A and B are identical, i.e., equivalent 
as permutation groups. 

Our enumeration methods depend on formulas which give the cycle 
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index of the sum, the product and the power group in terms of the 
constituent groups. It  is well known (P61ya, 1937) that 

Z(A + B) = Z ( A ) Z ( B ) .  (3) 

Harary (1958) has shown that for any permutation ( a ,  3) in A X B, 

j~(~, ~) = ~ j~(a)j~(~) (p, q), (4) 
:a,q 

where (p, q) is the gcd of p and q, and the sum is over al] p and q such 
that k = [p, q], the lcm of p and q. 

From Harary and Palmer (1965) we have the following formulas for 
each permutation (a ; ~) in the power group: 

d 

j~(a ;~) = I I  (~_,sJ/~)) A(~), (5) 
k=l  slk 

where b ° = 1 even when b = 0, and for k > 1 

1 ~  (k) 
j , (a  ;~) = ~ ~ j l ( d  ;fl') (6) 

where ~ is the M6bius function. 
We find it convenient to use our formulation of the enumeration 

method discovered by deBruijn (1959, 1964). The constant form of the 
Power Group Enumeration Theorem (Harary and Palmer, 1965, 1966) 
which gives a formula for the number of equivalence classes (orbits) of 
functions determined by the power group, is stated as follows. 

THEOREM 2. (Power Group Enumeration Theorem, constant form). 
The number of equivalence classes of functions in yX determined by the 
power group B a is 

1 ~ Z[A ;ml(fl),m2(~), "",md(~)], (7) 
N(B a) - [ B l o c .  

where 

= ( s )  
s ik  

2. ORDERED PAIRS OF FUNCTIONS 

The purpose of this section is to develop formulas for the enumera- 
tion of ordered pairs of functions under equivalence determined by the 
product of two power groups. The main result of this paper is Theorem 
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3, Which has four corollaries that will serve by specialization to enumerate 
several types of automata. 

I t  is convenient to denote a permutation group by an ordered pair 
(A, X),  where A is the collection of permutations acting on the objects 
i n the set X. Let (A: ,  X1), (A2, X2), (B1, Y1), and (B2, Y2) be per- 
mutation groups. Now consider the product of two power groups 
B~ ~ X B~ 2 acting on Y~: X Y~'~, the collection of pairs (fl ,  f2) of func- 
tions. Let d~ = I x < l ,  for i = 1, 2. In accordance with our notation 
for both the power group and the product, each permutation in 
B~: X B~ ~ can be written in the form ((a:  ; 51), (a2 ; 82) ). 

::Let N(F) be the number of equivalence classes of pairs of functions 
determined by any subgroup F of B~: X B~ ~". From Eq. (2) and the 
formulas for the cycle indexes of the power group and the product, 
the following result is obtained. 

THEOREM 3. The number of equivalence classes of pairs of functions 
determined by any subgroup F of B~ ~ X B~ 2 is 

__ - j k ( a l )  1 E [ E  8gs(/31)] [E S2.[P2JI f ,  (9) 

where the sum is taken over all permutations [(a: ; ~1), (a2 ; ~2)] in F. 
In the special case when F ~ B~ ~ X B~ ~, we can express this result 

b.y using the constant form of the Power Group Enumeration Theorem. 
COROLLA~Y 1. The number N of equivalence classes of pairs of functions 

determined by B~ ~ X B~ ~ is 

N - 1 ~ Z[A~; m: (~ l ) , . . . ,  m~(~:)] 
[ B: I " I B21 (10) 

. . . .  • [ Z [ A ~  ; m : ( ~ 2 )  , . . . , m~,(~)], 
where the sum is over all f~l in B: and ~2 in B2, and m~(fl) is given by (8). 

, Now suppose each of the groups A: and A2 is a product of groups. 
Let A1 -= C: X D: and A~ ~ C2 X D2. For each i, let the degrees of 
Ci and Di be cl and dl, respectively. We write the permutations of 
Ci X D~ as (~'i, &). Using the formulas for the cycle indexes of the power 
group and the product, and applying Theorem 3, we can enumerate 
more complicated ordered pairs of ~unctions. 

COROLLARY 2. The number of equivalence classes of pairs of functions 
determined by any subgroup F of ( B~ ~×D~) X ( B~ ~×D~) is . 

: ' ::I I-I [ E sj,(/~,)]J'(~')Jq (''>(C'q) , (11) 
i=1  q = l  ~ [ [ p,q] 
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where the sum is over all permutations (((71, ~1); B1), (@2, ~2); ¢~)) 
i n F .  i 

These general results for ordered pairs of functions are easily applied 
to accomplish the enumeration of finite automata . . . .  

3. F I N I T E  A U T O M A T A  

There are a number of ways in which (finite) automata can be de: 
fined. One formulation most convenient for enumeration purposes may 
be expressed in terms of ordered pairs of functions. 

Let X, Y, and S be three sets with cardina]ities k, m, and n, respec: 
tively. The e]ements of S will be called states; the sets X and Y the  
input and output alphabets, respectively. An automaton is an ordered 
pair of functions ( f l ,  f2) with fl : S X X ---> S and f2 : S X X --+ Y. 
The map fl  is called the input function and f~, the output function. In 
conventional terminology, fl  tells the next state and f2 the output symbol 
when the automaton is in any given state and is presented with some 
input symbol. 

Three types of equivalence for automata are described by Harrison' 
(1965). We will discuss just one of these types here; the others may be 
handled similarly. Let Sk, S~ ,  and S~ be the symmetric groups of 
degrees/~, m, and n acting on X, Y, and S, respectively. Thus there are 
n states, k input letters, and m output  letters. Two automata ( f l ,  f2) 
and (g~, g2) are simply called isomorphic if there are permutations a in 
S. , ¢~ in S~o, and ~ in S~ such that  for all s in S and x in X 

f~(s, x) = ~-~g~(~s, ~x) (12) 

and 

Y2(s, x) = ~-lg2(~s, ~x) .  (13) 

As we will illustrate in Fig. 2, Eq. (12) allows for changing the names 
of the states and input letters for the input function, while (13) admits 
permuting them for the output function. 

In order to have an appropriate graph theoretic setting, we require 
the next concept. In a net, both loops and multiple directed lines are 
permitted; see Harary et al. (1965). If the outdegree of every point is 
/c, and each of the k lines from a point is given a different label from the 
input alphabet X, then such a net represents the input function of an 
automaton. We also label the points of the net as the states of the autom- 
aton at hand. Figure 1 shows two such diagrams, which represent the 
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same input function under the equivalence relation of isomorphism 
defined above. The symbols 0 and 1 are used for the input alphabet. 
Both the two state labels and the two input letters have been inter- 
changed. 

To further clarify the definition of isomorphic automata given above, 
consider Eq. (12), which defines equivalence for input functions fa 
and ga • In the labeled net of fa, there is a directed line with input label 
x from each state s to the state fa(s, x). Similarly, in the net of ga there 
is a directed line with input label fix from each state as to the state 
ga(as, fix). Thus the permutation [(~, ~) ;a  -i] in the power group 
S] "×s~ sends the input function gl to fl and simply changes the names 
of the states along with appropriate changes in the input labels on the 
directed fines. The behavior of this permutation is described schemati- 
cally in Fig. 2. 

4. ENUMERATION OF AUTOMATA 

For the enumeration of automata, we now let Ha be the permutation 
group: 

which acts on 

H1 -= Ss2 x~'' X S.~ ''x'~'~ 

S s×x X ySxx. 

Let a(n, k, m) be the number of nonisomorphic automata with n 

0 0 
s a ~  0 

0 I 
F~G. 1 

f l (s ,x J - - - I~"  g l ( a s , / ~ x  ) 

F I G .  2 
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states, k input symbols, and m output symbols. If F is the subgroup of 
H1 which consists of all permutations of the particular form {[(a, fl) ; a-l], 
[(a, ¢~) ;7]}, then the number of different automata is N ( F ) ,  given by 
formula (11) of Corollary 2, when the groups in (11) are taken as 
B1 - C1 --~ C2 -- Sn , B2 =- S,~ , and D1 --= D2 =- Sk. Now the order 
of F is n! k ! m !, and so the formula for a(n,  k, m)  can be given as follows. 

COROLLARY 3. The number of finite automata with n states, k input  
symbols, and m output symbols is 

1 ~I(~,~,a)I(~,~,v), (14) a(n,  k, m) - n! k! m~.T 

where the sum is over all permutations in H1 of the form {[(a, fl) ; a-~], 
[(a, ¢~) ;~,]} and where 

= f I f i l  X 
p = I  q=l  sl[p,q] 

Similar results for the two other types of equivalence are easily ob- 
rained from Corollary 2. Obviously (14) can be modified further by 
using the well-known formula for the number of permutations in the 
symmetric group Sp with a given partition. These numbers are precisely 
the coefficients in the cycle index 

1 Pt 
Z ( S , ; a l , a ~ , . . . , a , )  = ~  (~J)ii.~.~ 3 i ! ~  a{~' .  (16) 

i 

where (j) is any vector (jl, j2, "'" , jp) such that 

lj~ q- 2j~ q- . . .  q- p j ,  = p. (17) 

As an illustration we give some of the details for finding a(2, 2, 1), 
the number of automata with 2 states, 2 input symbols, and just one 
output symbol. Since there is only one output function, formula (14) 
is somewhat simplified: 

2 2 

a(2, 2, 1) = ~ Y', I I  I I  [ ~ sJ~(a)] j*(")j~(~) <v.q> 
p=l q=l  sl[p,q] 

= ~(2 ~ + 2  2 + 2  ~ + 2  ~) = 7. 

These seven automata are represented by the labeled nets in Fig. 3. 
The symbols 0 and 1 are used for the inputs. 
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S I I ~ t  S 2 

I 

o, o 

0 0 

0 

0 

I ~ 0  

o o 

S ~ ~ l  

FIG. 3 

5. AUTOMATA WITH AN INITIAL STATE AND TERMINAL STATES 

A rooted graph is a graph in which one of the points is a distinguished 
point. In an automaton one usually distinguishes one of the states, 
calling it the initial state or source. Further,  one may distinguish several 
other states called terminal states. Thus to enumerate these automata,  
we must enumerate appropriately rooted nets. More specifically we 
enumerate nets with one initial state and t terminal states by applying 
the power g roup  to the original enumeration of rooted graphs given 
by Harary  (1955). 

The operations on permutat ion groups of forming the power group, 
product, and sum provide the means for an explicit description of the 
permutat ion group which accomplishes the enumeration. Let  H2 be 
the permutat ion group: 

H2 ~-{(E, 4-S.-t-1 + S~+~-'-~+s')xsk)} X {S(~ ~+s"-'-t+s')xz~} 
~cting on S ~xx X y~xX. 

Let a(n, k, m ,  t) be the i~umber of automata with n = t q- 1 states, 
including one initial state and t terminal states, k input symbols, and 
m output  symbols. Let  F be the subgroup of H2 which consists of all 
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permutations of the previously encountered form 

{[(~,~) ; -1], [(~,~) ;~]}. 

Then  the order of F is (n - t - 1) ! t! k! m[ As before, the number of 
such automata is N(F) ,  which is given by formula (11) of Corollary 2. 

COROLLARY 4. The number of automata with one initial state and t 
terminal states is 

1 ~ I ( a , ~ , a ) I ( a , ~ , ' y ) ,  (18) 
a ( n , k , m , t )  = ( n - - t - -  1) ! t l k !m!  • 

where the sum is over all permutations in H2 of the form 

{[(~, ~) ; ~-~], [(~, ~) ;~]} 

and I(c~, ~, .y) is given by (15). 
Similar results are obtained when the other two types of equivalence 

are considered. 
For a simple example, we take the case in which the number m of 

output  symbols and the number t of terminal states are both 1, and the 
number of input symbols is 2. Then we have 

1 n--2 2 

a(n,  2 , 1 , 1 )  - (n -- 2)!2 E pI~--1 q--~ [~lt,,qlE sj~(a)] y/")j~(~) (''q) (19) 

I t  is now easy to calculate that  for n = 2, a(2,2,1,1) = 10 (see Table 
D. The ten rooted labeled nets which correspond to these automata 
may be obtained by observing that  exactly three of the seven nets in 
Fig. 3 can be rooted in two ways. 

We note that  the enumeration given by Corollary 4 entails t terminal 
states different from the initial state. To admit the situation where the 

T A B L E  I 

VALUES OF a ( n ,  2, 1, t) ~ 

I t 
n I 

] 1 2 3 4 

2 10 
3 378 198 
4 16,576 16,576 5614 
5 819,420 1,226,900 819,420 206,495 

I n  t h e  t a b l e  t h e  v a l u e s  of a ( n ,  2, 1, t) a re  s h o w n  for  sma l l  n a n d  t = 1 to n - - 1 .  
T h e  i den t i c a l  e n t r i e s  occur  because  a ( n ,  2, 1, t) = a ( n ,  2, 1, n - -  t - -  1) for  t = 1 
t o n - -  2. 
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initial state is itself one of the terminal states, one replaces each oc- 

currence of t in (16) by t - I. It is also easy to count automata with 
any number r of initial states and t terminal states, as well as any speci- 
fied number of states which are both initial and terminal. 

RECEIVED: March 10, 1966 
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