THE EFFECTS OF INDUSTRIAL WASTES FROM CHARMIN PAPER PRODUCTS COMPANY ON FISH OF THE CHEBOYGAN RIVER DRAINAGE SYSTEM

PAUL M. THOMAS and ROMÉO O. LEGAULT

University of Michigan Biological Station and University of Ottawa

(Received 16 July 1966)

Abstract—This study investigated effects of industrial wastes of a paper mill on fish. Chemical analyses were made of the effluent and of the river water before it entered the mill and at the effluent entry point. Static bioassay techniques were used to determine tolerances to the effluent of ten fish species which were abundant in the paper mill area. Fish were collected from the effluent entry point into the river. An abundant fish fauna was found. Charmin Paper Products Company, Cheboygan, Michigan, treats its waste products thoroughly and is an example of what an industry can do to reduce water pollution. The common shiner, *Notropis cornutus*, was found to be intolerant to even low concentrations of the effluent. Thus, its presence in an area would indicate a very low level of pollution of this type.

INTRODUCTION

As THE population of this country and the world increases, more and more waste products from cities and towns and from industry will be discarded. Most enter streams, lakes, and the oceans. Much of the waste receives some treatment prior to disposal. Frequently these same waters serve as domestic and industrial sources and support recreation. As needs for waste disposal and water supply increase, care must be taken that the former does not eliminate the latter.

This study investigated effects of pollution on fish. Fish are important to commercial and sport fishermen, to aquarium-keepers, and to biologists. Since so many people encounter fishes, any significant changes in populations are readily evident. Some changes may reflect pollution of the natural habitats. In such cases fish might indicate various types of pollution. A rapid change in population size might result from a change in water chemistry. Intolerance to the particular pollutants might decrease the population density, increase the density of species with high tolerance, or both changes might occur.

Population density of fish could also change for reasons other than pollution. To evaluate this, our study included laboratory tests where different fish species were exposed to various concentrations of industrial wastes as well as field studies and collections ascertaining species present where wastes were being discharged to a river.

It is also important to know the distributions of fish in various habitats, including those receiving industrial or municipal wastes. Fishermen, collectors, and researchers find such information valuable. In dollar values paper manufacturing is among the uppermost half dozen industries that discharge wastes into bodies of water (ROUNSE-FELL and EVERHART, 1953). Charmin Paper Products Company, Cheboygan, Michigan, treats its waste products thoroughly (FIG. 1). This outline resulted from touring the paper company, from several interviews with Ralph J. Van Deuren, manager of the paper mill, and from company files (unpublished).

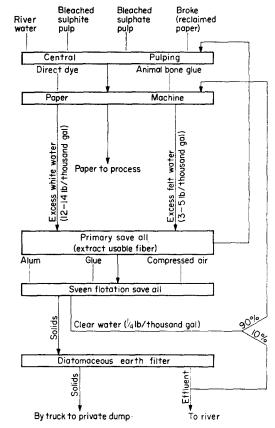


FIG. 1. Process for treatment of wastes. Charmin Paper Products Company, Cheboygan, Michigan.

This study analysed effects of the effluent from Charmin Paper Products Company on ten fish species. It also investigated the Cheboygan River from 100 ft upstream to about 200 ft downstream from the effluent entry point, collecting fish in this area. Finally, the laboratory tolerances were compared with the list of fish found in the river.

MATERIALS, METHODS AND RESULTS

Ten species of fish were exposed to various effluent concentrations: Catostomus commersoni (Lacépède), white sucker; Cottus bairdi Girard, mottled sculpin; Ictalurus nebulosus (LeSueur), brown bullhead; Lepomis gibbosus (Linnaeus), pumpkinseed; Micropterus salmoides (Lacépède), largemouth bass; Notropis cornutus (Mitchill), common shiner; Perca flavescens (Mitchill), yellow perch; Percina caprodes (Rafinesque), logperch; Petromyzon marinus Linnaeus, sea lamprey*, and; Salmo gairdneri

* Ammocetes.

Richardson, rainbow trout. These names are according to the AMERICAN FISHERIES SOCIETY (1960). All species were found in the Cheboygan River Drainage System by Legault (unpublished). The effluent used was a representative sample collected over a 24 hr period. The effluent was diluted with Lake Huron water to the following ppm concentrations: 25, 50, 75, 100, 250, 500, 750, 1000, 2500, 5000, 7500 and 10,000. Three or four specimens of each species were immersed in 6 1. of each concentration in a 10 1. glass battery jar. Temperature was 65° F, $\pm 1^{\circ}$, using constant temperature equipment of APPLEGATE *et al.* (1957). Compressed air provided aeration through stone airbreakers. Static bioassay techniques were used and the exposure period was 24 hr. Tests were carried out at Hammond Bay Biological Station (TABLES 1–10).

Mineral analyses with a Baush and Lomb Spectronic colorimeter were made of the effluent, the Lake Huron water, the 10,000 ppm concentration, the Cheboygan River water just above where it enters the paper mill and of the Cheboygan River water just below the effluent entry point (TABLE 11).

	individuals and th range (mm)	Concentration (ppm)	No. dead and length of exposure at death (hr)						
4	(89-115)	25	1 (21)						
4	(104-113)	50	1 (21)						
3	(105-125)	75	0						
4	(106-121)	100	0						
4	gth range (mm) 4 (89-115) 4 (104-113) 3 (105-125) 4 (106-121) 4 (105-123) 4 (110-120) 4 (104-108) 4 (112-122) 4 (47-112) 4 (110-115) 4 (99-132)	250	0						
4		500	0						
4	(104-108)	750	0						
4	(112-122)	1000	0						
4	(47-112)	2500	0						
4	(110-115)	5000	0						
4	4 (105–123) 4 (110–120) 4 (104–108) 4 (112–122) 4 (47–112) 4 (110–115) 4 (99–132)	7500	0						
4	(97-124)	10,000	0						

Table 1. Tolerance of the white sucker to various concentrations of effluent in Lake Huron water at $65^\circ F$

Table 2. Tolerance of the mottled sculpin to various concentrations of effluent in Lake Huron water at $65^\circ F$

		Concentration (ppm)	No. dead and length of exposure at death					
4	(47–65)	25	0					
4	(51-76)	50	0					
4	(38–57)	75	0					
4	4 (47-65) 4 (51-76) 4 (38-57)	100	0					
4	(46-67)	250	0					
4	(58-87)	500	0					
4	(53-62)	750	0					
4	(49-62)	1000	0					
4	(53-64)	2500	0					
4	(49-62)	5000	0					
4	(52-55)	7500	0					
• (,		10,000	0					

	individuals and ngth range (mm)	Concentration (ppm)	No. dead and length of exposure at death						
4	(30-34)	25	0						
4	(33-37)	50	0						
4	(31–35)	75	0						
4	(3338)	100	0						
4	(32-37)	250	0						
4	(30-36)	500	0						
4	(35-37)	750	0						
4	(33-36)	1000	0						
4	(30–37)	2500	0						
4	(30–36)	5000	0						
4	(34-37)	7500	0						
4	(35-38)	10,000	0						

Table 3. Tolerance of the brown bullhead to various concentrations of effluent in Lake Huron water at $65^\circ F$

Table 4. Tolerance of the pumpkinseed to various concentrations of effluent in Lake Huron water at $65^\circ\,F$

	individuals and ngth range (mm)	Concentration (ppm)	No. dead and length of exposure at death
4	(55-63)	25	0
4	(53-58)	50	0
4	(57-69)	75	0
4	(54-62)	100	0
4	(5468)	250	0
4	(54-62)	500	0
4	(59-65)	750	0
4	(49-58)	1000	0
4	(56-63)	2500	0
4	(51-70)	5000	0
4	(56-61)	7500	0
4	(54-65)	10,000	0

Table 5. Tolerance of the largemouth bass to various concentrations of effluent in Lake Huron water at $65^\circ\,F$

	individuals and ngth range (mm)	Concentration (ppm)	No. dead and length of exposure at death
4	(43-49)	25	0
4	(42–45)	50	0
4	(45-53)	75	0
4	(47-60)	100	0
4	(46–60)	250	0
4	(51-68)	500	0
4	(41-50)	750	0
4	(47-59)	1000	0
4	(49-53)	2500	0
4	(4964)	5000	0
4	(50-67)	7500	0
4	(50-57)	10,000	0

Effects of Industrial Wastes on Fish of the Cheboygan River Drainage System

	individuals and ength range (mm)	Concentration (ppm)	No. dead and length of exposure at death (hr)							
3	(92-119)	25	2 (21) 1 (24)							
3	(102–115)	50	2 (21) 1 (24)							
3	(96–114)	75	$1(7\frac{1}{4})$ $1(21\frac{1}{4})$							
3	(80-111)	100	$3(21\frac{1}{4})$							
3	(83-102)	250	$1(7\frac{1}{4})$ $2(21\frac{1}{4})$							
3	(90–120)	500	$1(7\frac{1}{2}) 2(21\frac{1}{2})$							
3	(89–106)	750	1 (7) 1 (21) 1 (24 hr)							
3	(78–92)	1000	0							
3	(88–99)	2500	0							
3	(80-101)	5000	0							
3	(73-118)	7500	1 (21)							
3	(76-122)	10,000	2 (21) 1 (24)							

Table 6. Tolerance of the common shiner to various concentrations of effluent in Lake Huron water at $65^\circ\,F$

Table 7. Tolerance of the yellow perch to various concentrations of effluent in Lake Huron water at $65^\circ\,F$

	individuals and ngth range (mm)	Concentration (ppm)	No. dead and length of exposure at death
4	(51–114)	25	0
4	(47-123)	50	0
4	(47-123)	75	0
4	(48-110)	100	0
4	(46-106)	250	0
4	(45-112)	500	0
4	(51-108)	750	0
4	(53-115)	1000	0
4	(50-106)	2500	0
4	(51-126)	5000	0
4	(51-122)	7500	0
4	(47–112)	10,000	0

Table 8. Tolerance of the logperch to various concentrations of effluent in Lake Huron water at $65^\circ\,F$

-	individuals and ngth range (mm)	Concentration (ppm)	No. dead and length of exposure at death (hr)								
4	(52-100)	25	1 (21)								
4	(49–98)	50	0								
4	(51-93)	75	0								
3	(90-101)	100	0								
4	(51–95)	250	0								
4	(91–110)	500	0								
3	(59–102)	750	1 (21)								
4	(55-95)	1000	0								
4	(83-104)	2500	0								
4	(58-100)	5000	1 (21) 1 (24)								
4	(88–107)	7500	0								
4	(94-101)	10,000	0								

PAUL M. THOMAS and ROMÉO O. LEGAULT

	individuals and ngth range (mm)	Concentration (ppm)	No. dead and length of exposure at death					
4	(102–122)	25	0					
4	(100-126)	50	0					
4	(66–123)	75	0					
4	(69–120)	100	0					
4	(101–110)	250	0					
4	(80-126)	500	0					
4	(94-126)	750	0					
4	(86-122)	1000	0					
4	(92–112)	2500	0					
4	(81–114)	5000	0					
4	(85-130)	7500	0					
4	(69-142)	10,000	0					

Table 9. Tolerance of the sea lamprey to various concentrations of effluent in Lake Huron water at $65^\circ\,F$

Table 10. Tolerance of the rainbow trout to various concentrations of effluent in Lake Huron water at $65^\circ\,F$

		Concentration (ppm)	No. dead and length of exposure at death (hr)					
4	(88–95)	25	0					
4	(109-112)	50	0					
4	4 (88–95) 4 (109–112) 4 (102–115) 4 (101–117) 4 (102–121) 4 (93–111) 4 (87–102) 4 (84–111) 4 (91–107) 4 (98–111)	75	0					
4	(101–117)	100	0					
4	(102–121)	250	0					
4	(93–111)	500	0					
4	(87–102)	750	0					
4	(84–111)	1000	0					
4	(91–107)	2500	0					
4	(98–111)	5000	0					
4	(91–115)	7500	1 (24)					
4	(87-109)	10,000	4 (21)*					

* Air tube came out of this jar, cutting off the air supply.

Fish were collected from the effluent entry point into the Cheboygan River by two teams of five members each, for an hour, using Common Sense Minnow Seines of various lengths and electrofishing equipment. Species, with number collected in parentheses, were: *Ambloplites rupestris* (Rafinesque), rockbass (30); *Catostomus commersoni* (Lacépède), white sucker (1); *Chrosomus eos* Cope, northern redbelly dace (3); *Cottus bairdi* Girard, mottled sculpin (2); *Etheostoma nigrum* Rafinesque, Johnny darter (26); *Lepomis megalotis* (Rafinesque), longear sunfish (7); *Micropterus dolomieui* Lacépède, smallmouth bass (3); *Micropterus salmoides* (Lacépède), largemouth bass (5); *Notropis atherinoides* Rafinesque, emerald shiner (62); *Notropis cornutus* (Mitchill), common shiner (1); *Notropis hudsonius* (Clinton), spottail shiner (20); *Notropis stramineus* (Cope), sand shiner (29); *Notropis volucellus* (Cope), mimic

	Effluent	Lake Huron	10,000 ppm	Cheboygan River above Mill	Cheboygan River below Mill
Conductivity (µMhos)	349.7	168.7	173.3	263.9	263.5
pH	7.4	7.9	7.9	8.3	8.3
Methyl orange alkalinity	87.0	89.0	87.0	147.0	146.0
Phenolphthalein alkalinity	0.0	0.0	0.0	Trace	Trace
Turbidity (in Jackson units)	172.0	12.0		—	
Calcium hardness as calcium carbonate	120.0	64.0	60.0	88.0	92.0
Total hardness as calcium carbonate	176.0	94.0	104.0	146.0	146.0
Chloride	11.5	6.0	7.5	4.5	4.5
Sodium chloride	19.0	9.9	12.4	7.4	7.4
Chlorine	0.022	0.018	0.022	0.022	0.018
Copper	0.20	0.13	0.20	0.11	0.13
Ferric iron	0.08	0.06	0.01	0.10	0.08
Ferrous iron	0.02	0.02	0.02	0.02	0.02
Total iron	0.10	0.08	0.03	0.21	0.10
Ammonium nitrogen	1.54	0.15	0.15	0.48	0.56
Nitrate nitrogen	0.092	0.189	0.89	0.097	0.097
Nitrite nitrogen	0.008	0.011	0.01	0.003	0.003
Sulphate	141.0	21.0	12.5	15.0	19.0
Silica	4.56	1.0	0.88	0.61	5.28
Tannin and lignin	0.90	0.10	0.1	0.20	0.20
Meta phosphate	0.38	0.63	0.06	0.82	0.65
Ortho phosphate	0.04	0.21	0.11	0.02	0.11
Total phosphate	0.42	0.84	0.17	0.84	0.75

TABLE 11. ANALYSES OF EFFLUENT AND WATER SAMPLES

In ppm unless otherwise stated.

shiner (11); Perca flavescens (Mitchill), yellow perch (1); Percopsis omiscomaycus (Walbaum), trout-perch (1) and Cyprinidae, very small (227). Collection was limited to a strip from 5 to 15 ft wide on the east side of the river and a strip from 5 to about 35 ft wide on the west side. The center of the river was too deep for seining or electric shocking. Heavy boat traffic precluded use of gill nets and fyke nets in the deeper areas. In this portion of the river current was swift, clarity good, water temperature was 22°C and air temperature 20.5°C. (1300–1400 hr, 9 August 1956). The bottom consisted of sand, pebbles and rocks, with very small amounts of submergent vegetation. The banks were steep with low vegetation and some trees were present on the west side at the north end of the area.

Records (Legault, unpublished) were checked for fish collected in this area in previous years. Species caught in previous years that were not obtained in this study included: *Cyprinus carpio* Linnaeus, carp; *Lepomis gibbosus* (Linnaeus), pumpkinseed; and *Pimephales notatus* (Rafinesque), bluntnose minnow.

DISCUSSION

Our experiments exposed 456 fish to various effluent concentrations. Only 35 of these died. Elimination of four rainbow trout, perishing by accidental air shut-off, leaves a total of 461 with 31 dead, or a mortality rate of 6.7 per cent. This is low by

comparison with certain other industrial pollution studies on fish (KELLING, 1961). In Kelling's study, minnow populations abandoned the upper region of Grimes Creek, Iowa, a few days after a canning factory discharged wastes into the stream.

Analysis of TABLES 1-10 shows that 24 of the 31 dead fish were one species, the common shiner. Two-thirds of the common shiners exposed were killed. Only one common shiner was obtained from the Cheboygan River where the effluent from the paper mill enters it. Legault's records (unpublished) showed that only one of these shiners was collected when this area was studied in 1963. The area was not studied in 1964.

Of the other nine species, 425 animals were exposed and seven died for a mortality of 1.6 per cent. The distribution of deaths over the species and concentrations involved presented no recognizable pattern.

TABLE 11 shows that the mill effluent did not greatly alter the chemical condition of the river. Much of this was due to the excellent treatment of the waste products by the paper mill. Part of this treatment involved transportation of much of the solid wastes by truck to a private dump. Another consideration is the dilution achieved. The flow of the Cheboygan River just above the paper mill for 18 August 1964 was 306 ft³/sec (U.S. DEPARTMENT OF INTERIOR, 1965). This is the sum of daily discharge of 250 ft³/sec of the Cheboygan River above the mouth of the Black River and daily discharge of 56 ft³/sec of the Black River (Appendices A and B). This is the volume that flows past the paper mill. Volume flow of this river is taken each month. However, complete analysis and adjustment were completed only through February 1965. Data for August 1965 will not be available until May 1966. Since our study was made in August 1965, the data from the previous August were more applicable because of seasonal variations. Only a rough estimation, however, of dilution was desired. The paper mill utilized 948,600 gal of river water during the 24 hr in which the effluent sample was collected. Using the figure of volume flow for August 1964, the effluent from the mill was only 0.48 per cent of the volume of the river.* The effluent was 1 per cent of the 10,000 ppm concentration of this study. Thus, the highest concentrations used in these experiments were more than two times that of the effluent in the river. As can be seen from Appendices A and B, volume flow was at its lowest for the year during the middle of August. A 22 year average discharge is 1182 ft³/sec just above the paper mill (767 ft³/sec for the Cheboygan River above the mouth of the Black River and 415 ft³/sec for the Black River). The greater the volume flow, the lower the effluent concentration in the river would be.

High turbidity of the effluent was mainly due to short fibers. In addition to measuring turbidity in Jackson units, a 5 g sample of the effluent was evaporated to determine the residue, mainly fiber. It was 0.032 per cent by weight. Comparison of the Cheboygan River water above the mill with that below the mill (TABLE 11), indicates that of the chemicals analysed, those added to the river in greatest quantities were silica, sulphates, ammonium nitrogen, copper and the calcium hardness was increased. Reduction in certain chemicals below the mill indicated that some chemical reactivity took place between the effluent and the river water.

^{*} The conversion figure for changing ft^3/sec to gal/day is 1 $ft^3/sec = 646,317$ gal/day (U.S. DEPART-MENT OF INTERIOR, 1953).

CONCLUSIONS

After a tour of the Charmin Paper Products Company plant, several talks with Mr. Ralph J. Van Deuren and a review of certain information from company files, the writers believed the company was making a substantial effort towards control of its industrial wastes. This belief was sustained by analyses of the effluent and the Cheboygan River water above and below the mill. It was further substantiated by the very low mortality rate in bioassay experiments. One fish species, the common shiner, was quite susceptible to the wastes in the experiment and was rare in river collections from this area. It was noted, however, that this species was also somewhat more vulnerable to ordinary retention in aquaria and tanks in the Hammond Bay Laboratory for the four or more days they were held prior to the tests.

The most abundant fish species in the area of the river where effluent was received were not bioassayed. The presence of a particular species, therefore, cannot be taken as an indicator of pollution, which was low in this case. However, the most abundant species in the study area were the emeral shiner, the rock bass, the sand shiner, the Johnny darter, and the spottail shiner.

Since the common shiner was extremely intolerant to the effluent, its presence in an area would indicate a very low level of pollution of this type.

The degree of pollution is as low as possibly could be expected from such an industry. Other industries, as well as other paper companies, could give attention to the treatment of waste products by Charmin Paper Products Company, Cheboygan, as an example of what an industry can do to reduce water pollution.

Acknowledgements—The cooperation, assistance and the effluent sample given by Mr. RALPH J. VAN DEUREN are gratefully acknowledged. The assistance of the Biology of Fishes Class, University of Michigan Biological Station, Pellston, Michigan, in collecting fish from the Cheboygan River, and the assistance of the crew at Hammond Bay Biological Station, U.S. Bureau of Commercial Fisheries, Millersburg, Michigan, in collecting specimens for and assisting in bioassay experiments was most helpful.

REFERENCES

- AMERICAN FISHERIES SOCIETY (1960) A List of Common and Scientific Names of Fishes from the United States and Canada. 2nd ed., Special Publication No. 2. Ann Arbor, Mich.
- APPLEGATE V. C., HOWELL J. H. and HALL A. E. JR. (1957) Toxicity of 4346 Chemicals to Larval Lampreys and Fishes. Special Science Report—Fish. No. 207, p. 3, U.S. Dept. of Interior, Washington, D.C.
- KELLING E. E. (1961) Minnow populations of Grimes Creek in relation to pollution. *Iowa Acad.* Sci. J. 70, 236-39.
- ROUSEFELL G. A. and EVERHART W. H. (1953) Fishery Science, p. 212. John Wiley, New York.

U.S. DEPARTMENT OF INTERIOR (1953) Hydraulic Conversion Tables. Washington, D.C.

U.S. DEPARTMENT OF INTERIOR (1965) Surface Water Records of Michigan, pp. 117 and 120. Washington, D.C.

Zusammenfassung—Diese Studie untersuchte die Auswirkungen der industriellen Abfallprodukte einer Papierfabrik auf Fische. Es wurden chemische Analysen des Abwassers gemacht, sowie des Flusswassers und zwar bevor dieses in die Fabrik floss und wiederum an der Einflusstelle des Abwassers. Statische Bioprobentechnik wurde angewandt um die jeweilige Abwasser-Toleranz von zehn Fischarten zu bestimmen, die sich in reichlicher Zahl

PAUL M. THOMAS and ROMÉO O. LEGAULT

in der Fabrikgegend vorfanden. An der Einflusstelle des Abwassers wurden Fische aus dem Fluss genommen. Es stellte sich heraus, dass sich dort eine reichliche Fishfauna befand. Die Firma Charmin Paper Products Company in Cheboygan, Michigan unterzieht ihre Abfallprodukte einer gründlichen physiochemischen Behandlung und dient daher als Beispiel dafür, was ein Industriebetrieb zur Reduzierung der Wasserverunreinigung beitragen kann. Notropis cornutus erwies sich selbst niedrigen Abwasserkonzentraten gegenüber als intolerant. Somit erscheint ihre Anwesenheit als Indikator eines sehr niedrigen Grades der Verunreinigung obiger Art.

APPENDIX A

Streams tributary to Lake Huron*

4-1300. Cheboygan River near Cheboygan, Michigan.

Location. Lat. $45^{\circ}34'40''$, long. $84^{\circ}29'15''$, in SW¹/₄ sec. 19, T.37 N., R.1 W., 300 ft downstream from Mullett Lake, $2\frac{1}{2}$ miles upstream from Black River, and 5 miles south of Cheboygan.

Drainage area. 865 miles².

Records available. October 1942 to September 1964. Monthly discharge only for October 1942, published in WSP 1307.

Gage. Water-stage recorder. Datum of gage is 591.21 ft above mean sea level, datum of 1929. Auxiliary staff gage at Cheboygan 5.2 miles downstream read hourly. Datum of auxiliary gage is 590.00 ft above mean sea level, datum of 1929.

Average discharges. 22 yr, 767 ft³/sec.

Extremes. Maximum daily discharge during year, 1120 ft³/sec Apr. 30, May 1; maximum daily gage height, 2.53 ft Aug. 3; minimum daily discharge, 150 ft³/sec Aug. 14; minimum daily gage height, 1.39 ft Mar. 22, 23, 25, 31.

1942-64: Maximum daily discharge, 1640 ft³/sec May 8, 1959; maximum daily gage height, 3.27 ft May 13, 14, 1960; minimum daily discharge, 90 ft³/sec Mar. 29, 30, 1958; minimum daily gage height, 1.12 ft Dec. 29, 1952.

Remarks. Records fair except those for periods of ice effect, indefinite stagedischarge relation or no gage-height record, which are poor. Flow affected by variable backwater from powerplant at Cheboygan 5.2 miles below station and by Alverno powerplant.

Cooperation. Auxiliary gage readings furnished by Consumers Power Co.

226

^{*} Courtesy of U.S. DEPARTMENT OF INTERIOR (1965),

			E	Effe	cts	of	In	du	stri	al	W٤	aste	es c	m	Fis	sh e	of 1	the	Cł	neb	oy	gar	n R	live	er]	Dra	in	age	S	ste	m			227			
Sept.	320	327	519	448	395	363	533	587	603	585	462	454	450	350§	385	433	466	526	477	463	628	847	914	985	987	<u>666</u>	948	926	700	I	17,375	579	0.669	0.75		n indefinite.	
Aug.	414 475	840	869	<u>797</u>	554	009	593	454	395	350	412	227	<u>150</u> §	180§	283	210§	250*§	290§	354	457	502	478	423	463	432	420	469	427	328	366	13,462	434	0.502	0.58		Stage-discharge relation indefinite.	0
July	443	458	470	470	477	477	596	540	471	440	466	542	<u>616</u> *	573	616	589	585	570	513	486	478	478	478	497	439	426	385	443	442	456	15,365	496	0.573	0.66		Stage-disch	
June	560	4008	477	534	519	533	532	542	591 *	607	595	609	608	591	548	542	554	617	582	566	538	528	476	474	497	481	481	456	442	1	16,047	535	0.618	0.69		I by ice.	
May	<u>1.120</u>	1100	1.080	1.080	1.100	1.090	1.100	1.110	1.090	1.090	1.080*	1.080	1.070	1.040	1.070	1.070	1.040	1.020	106	835	792	723	735	770	760	694	693	691	642	628	29,404	949	1.10	1.27		‡ Stage-discharge relation affected by ice.	
Apr.	608 200	070 818	787	781	831	206	933	896	842	849	879	878	861	906	895	892	921	921	953	973	1.030	1.030*	066	984	984	966	1.060	1.080	1.120		27,632	921	1.06	1.18	8	charge relat	
Mar.	578	090	81 82	686	740	783	786	867	* 906	888	902	916	896	903	901	907	912	897	668	868	859	837	829	826	846	862	857	857	828	854	25,422	820	0.948	1.09	.854 In. 11. In. 10.55	t Stage-dis	
Feb.	\$008	1008 1008	+000 800‡	813	810	792	780†	780†	760†	740†	731	725	713	713	706	702	919	682	625	614	599	599	599	575	599	599	586	586		1	20,304	700	0.809	0.87		nt record.	
Jan.	<u>630</u>	050 608	724	702	729	727	733	735	761	720‡	741	726	714*	700	100	713	692	069	717	715	708	706	648	755	776	661	815	806	816	807	22,539	727	0.840	0.97	739 ft³/mil) gage-height record.	- Bran
Dec.	764	84/ 979+		7601	741	729	738	816	756	740	160*	813	740‡	682	670	650†	£009	540†	560†	572	587	593	577	614	625	640	670‡	640‡	689	625	21,316	688	0.795	0.92	Mea	his day. † No	
Nov.	469	535 526	505	512	505	505	541	543	516	581	590*	607	615	607	527	566	706	757	835	859	893	835	668	975	096	927	869	860	754	ł	20,387	680	0.786	0.88	Min 339 Min 150	ade on this	
Oct.	557	498 507	523	551	531	507	474	491	490	434	366	339	494	534*	518	504	586	489	393	560	504	517	536	605	607	699	630	624	564	450	16,052	518	0.599	0.69	1: Max 1390 4: Max 1120	surement ma	
Day		71 6	04	ŝ	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	Total	Mean	Cfsm	In.	Calendar year 1963: Max 1390 Water year 1963–64: Max 1120	* Discharge measurement made on the	AS INITACI

Discharge in ft^3/sec , water year October 1963 to September 1964

APPENDIX B

Streams tributary to Lake Huron*

4-1320. Black River near Cheboygan, Michigan.

Location. Lat. $45^{\circ}30'00''$, long. $84^{\circ}19'35''$, in NW $\frac{1}{4}$ NW $\frac{1}{4}$ sec. 21, T.36 N., R.1 E., on left bank 0.3 mile downstream from Black Lake, 5.3 miles upstream from Alverno Dam, and 12.6 miles southeast of Cheboygan.

Drainage area. 597 miles².

Records available. October 1942 to September 1964. Monthly discharge only for October 1942, published in WSP 1307.

Gage. Water-stage recorder. Datum of gage is 609.26 ft above sea level, datum of 1929. Auxiliary water-stage recorder 3 miles downstream at same datum.

Average discharge. 22 yr, 415 ft³/sec.

Extremes. Maximum daily discharge during year, 960 ft³/sec Sept. 27; maximum daily gage height, 3.16 ft Aug. 3; minimum daily discharge, 15 ft³/sec June 28; minimum daily gage height, about 1.10 ft Mar. 1.

1942-64: Maximum daily discharge, 2,500 ft³/sec Apr. 20, 1960; maximum daily gage height, 5.74 ft Apr. 20, 1960; minimum daily discharge, 11 ft³/sec Aug. 14, 1949; minimum daily gage height, that of Mar. 1, 1964.

Remarks. Records fair except those for periods of ice effect, indefinite stagedischarge relation or no gage-height record, which are poor. Flow regulated by powerplant at Alverno Dam.

^{*} Courtesy of U.S. DEPARTMENT OF INTERIOR (1965).

* Discharge measurement made on this day. † Stage-discharge relation indefinite. Note—Stage-discharge relation affected by ice Dec. 14 to Jan. 1, Jan. 10–18, 26–29. No gage-height record Nov. 12 to Dec. 4, Dec. 18 to Jan. 1, Jan. 14, 21–23, Feb. 6 to Mar. 6.	
ent ma	

				E	ffec	ets	of	Inc	lus	tria	al V	Na	ste	s o	n I	Fisl	h o	f tl	ne (Ch	ebo	oyg	an	Ri	vei	r D	rai	ina	ge	Sys	tem	L		2	29 11	
Sept.	89 89	71	141	145	59	%	232	330	316	267	101	119	135	111*	111	169	278	372	244	227	401	460	637	941	924	<u>8</u>	924	936	<i>779</i>	l	10,566	352	0.590	0.66		
Aug.	111 112	398	4 00	333	312	343	260	64	71	81	139	4	69	25	72	20	<u>56</u>	37*	29	80	95	82	72	85†	101	96	84	76	116	66	3,955	128	0.214	0.25		
July	55† 51	118	67	57	56	166	230	184	82	71	62	249	336*	373	334	341	319	308	217	142	102	98	120	143	81	73	1 06	132	107	8	4,901	158	0.265	0.31		
June	267 200	152	10 10	112	126	106	104	119	140*†	75†	85	109	81	152	131	66	174	316	311	296	198	99	85†	65	115	53	<u>15</u> †	58	67	1	3,981	133	0.223	0.25		
May	723 728	730	<u>101</u>	717	710	700	511	315	307	390	408*	488	570	631	616	520	236	374	255	270	262	227	287	276	282	353	313	292	260	236	13,694	442	0.740	0.85	- -	
Apr.	406 401	413	404	383	367	394	452	481	479	558	607	629	681	678	682	727	758	743	736	723	726	*09L	734	730	727	721	711	729	728	1	18,268	609	1.02	1.14		
Mar.	818	500	230	250	300	329	315	345	354*	362	362	372	382	398	369	400	409	399	391	406 6	401	377	389	398	429	412	422	430	431	422	11,044	356	0.596	0.69	. 8.71 6.76	211
Feb.	284 290	288	285	287	290	300	800	300	300	300*	270	270	270	250	220	220	220	220	210	190	190	190	180	180	180	180	180	180	ļ		7,024	242	0.405	0.44		
Jan.	350	330	332	308	320	318	291	316	300	270	260	260	260*	260	260	260	260	267	277	260	250	240	225	242	230	230	230	250	278	290	8,568	276	0.462	0.53	ft ³ /mile ² 0.642 ft ³ /mile ² 0.496	· •
Dec.	400 500	IS IS	400	446	434	342	348	477	486	474	498*	480	450	400	400	450	400	400	400	380	380	380	380	380	380	380	380	380	380	350	12,835	414	0.693	0.80	Mean 383 Mean 296	
Nov.	124 130	69	41	5	83	63	85	56	101	203	350*	310	310	310	200	150	150	350	350	350	400	400	400	<u>8</u>	200	450	500	450	500	ļ	7,939	265	0.444	0.50) Min 40 Min 15	
Oct.	219 128	175	130†	132	145	156	122	59	16	120	117	125	128	129*	140†	200+	311	253	292	218	306	420	320	198	173	174	154	126	89	93	5,449	176	0.295	0.34	3: Max 137(4 · Max 960	~~~ vnmr · L
Day	1 2	ŝ	4	5	9	7	80	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	Total	Mean	Cfsm	In.	Calendar year 1963: Max 1370 Water vear 1963-64 · Max 960	Maint Junt 1/00

Discharge, in $\mathrm{ft}^3/\mathrm{sec},$ water year October 1963 to September 1964