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This is the first of a series of papers treating randomly sampled 
random processes. Spectral analysis of the resulting samples pre- 
supposes knowledge of the statistics of 1 t~}, the random point  process 
whose variates represent the sampling times. We introduce a class 
of s ta t ionary point processes, whose s ta t ionar i ty  (as characterized 
by any of several equivalent  criteria) leads to wide-sense s tat ionary 
sampling trains when applied to wide-sense s tat ionary processes. Of 
greatest importance are the nth forward [backward] recurrence times 
(distances from t to the nth point thereafter  [preceding!), whose dis- 
t r ibut ion functions prove more useful to the computat ion of co- 
variances than interval  statistics, and which possess remarkable 
properties that  facili tate the analysis. 

The moments of the number of points in an interval  are evaluated 
by weighted sums of recurrence t ime distr ibution functions, the 
moments being finite if and only if the associated sum converges. If 
the first moment  is finite, these distribution functions are absolutely 
continuous, and obey some convexity relations. Certain formulas 
relate recurrence statistics to interval  length statistics, and con- 
versely; further,  the la t te r  are also suitable for a direct evaluation 
of moments of points in intervals. 

Our point process requires neither independent nor identical ly 
distr ibuted interval  lengths. I t  embraces most of the common sam- 
pling schemes (e.g., periodic, Poisson, i i t tered) ,  as well as some new 
models. Of part icular  interest  are point processes obtained from 
others by a random deletion of points (skip processes), as for in- 
stance a j i t te red  cyclically periodic process with (random or sys- 
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tematic) skipping. Computat ion of the statistics for several point  
processes yields new results of interest  not  only for their  own sake, 
but  also of use for spectral analyses appearing in other papers of 
this series. 

LIST OF SYMBOLS 

Random point on the real line 
Length of time required for the nth point after time t to occur 
Length of time between the nth point before the time t and 

t itself 
Number of points in the interval (t, t -~ x] 
Average number of points per unit time 
Represents the event that "there are at least n points in the 

interval (t, t ÷ x]" 
Represents the event that "there are exactly n points in the 

interval (t, t ~- x]" 
Distribution function of L~(t) (and of L_~(t))  
Probability that there are exactly n points in (t, t -~- x] 
= E[e -`LÈ(t)] = fo ~- e - ~  dG~(z) 
Distribution (in a rough sense) of n successive intervals (a 

precise definition is given in Section VI) 
= f 0 -  e 
Probability of skipping a point 
Time-jitter error process 
= E[e - ~ ]  

I. INTRODUCTION 

This is the first of a series of papers treating stochastic sampling of 
wide-sense stationary random processes from a unified viewpoint. The 
sampling occurs at random times t~, and may take the form of a pulse 
train (Leneman, 1966a), stepwise sample-and-hold (Leneman, 1966b, 
1966c), linear interpolation between sample values (Leneman and Lewis, 
1966a), or one of various other modulation schemes. Under the basic 
assumptions on Its}, the new process created by the sampling procedure 
is again a wide-sense stationary process. By using techniques introduced 
in the later papers of this series, and based on the theory presented here, 
we may then compute spectra of the randomly modulated process 
(Leneman 1966a, 1966b, 1966e, 1966d), discuss the mean square error 
associated with the reconstruction of the sampled process from the 
(randomly timed) samples (Beutler, 1966; Leneman and Lewis, 1966a, 
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1966b, 1966e), and study minimum mean square error recovery (Lene- 
man, 1966d). We are also able to study pulse-modulated control sys- 
tems (Leneman, 1966e). 

The key to the spectral analysis of stochastic modulations lies in a 
suitable description of {t~}. Our definition yields remarkable properties 
that facilitate the spectral computations of the above cited references. 
At the same time, the definition is sufi%iently inclusive to admit as special 
cases jittered, periodic, Poisson, and skip sampling, in addition to some 
new sampling schemes of practical importance. Analysis of the spectral 
properties of stochastically modulated signMs is undertaken in the ref- 
erenced publications; our present concern is the underlying theory, on 
which the spectral analysis is necessarily based. 

It is convenient to think of the t. as points on the line (representing 
time), and to speak of them as such. In this language, we require the 
following of {tn} a s  our basic assumption: the joint statistics of the re- 
spective numbers of points in any set of intervals are invariant under a 
translation of these intervals. We also demand that tk =< tk+l for all/~. 
A process {t~} meeting these conditions has been called a stationary point 
process (hereafter abbreviated s.p.p.) (Wold, 1949; McFadden, 1962; 
Beutler and Leneman, 1966) and we shall use the same nomenclature. 

The requirement that the point process {tn} be an s.p.p, assures the 
wide-sense stationarity of samples (of whatever kind) from a wide-sense 
stationary random process, while placing a minimum of constraint on the 
sampling sequence. For instance, that {tn} is an s.p.p, does not imply 
either that the interval lengths ~k = tk - tk_l between successive points 
are independent, or that the r~ are identically distributed. 

A random sampling theory could have been based on other (existent) 
point processes, but each of those known has major deficiencies that 
severely circumscribe its applicability to random sampling. For instance, 
one might consider an equilibrium renewal process (Cox, 1962), only 
to find that the requirement of identically distributed mutually in- 
dependent intervals precludes jittered sampling and sampling in (ran- 
dom) bursts. There are also mathematical difficulties connected with 
limits and indexing of the sample points. A more promising point process 
has been proposed by McFadden (1962) whose definition of stationarity 
(in terms of interval statistics) we have borrowed. ~ Indeed, MeFadden's 
work has provided much of the underlying motivation for our investiga- 

The same definit ion was independen t ly  in t roduced  by  Wold (1949) who failed 
to develop i ts  consequences. 



328 BEUTLER, AND LENEMAN 

tions. Unfortunately, 3/icFadden's description of stationary point proc- 
esses proved difficult to use in our work. In the first place, his point 
process suffers from "floating indices," so that  one cannot connect ex- 
pressions such as "there are n points in (t, t -~ x]" with set-theoretic 
expressions for events in a probability space. Secondly, there are some 
defective statements of which the most damaging is an assertion tha t  
stationarity of the point process (in the sense mentioned) implies that  
the intervMs ~ between points constitute a discrete parameter stationary 
stochastic process. 2 The latter is not a serious defect if one is willing to 
insert interval stationarity as an additional hypothesis. However, some 
interesting sampling processes would be eliminated thereby, so tha t  
it is preferable to proceed in a different direction making no use of the 
hypothesis. Finally, our analysis demands that  we obtain a number of 
s.p.p, properties that  3/IeFadden fails to adduce in his paper. 

Whereas renewal theory regards intervals between points as basic, 
we find it more convenient to work principally with the statistics of 
forward recurrences, i.e., the lengths of times L~(t) required for n points 
to occur after time t. The distribution functions of the L~(t) provide a 
direct description of the statistics of sample locations relative to ar- 
bitrary t, which is precisely the information needed for the determination 
of autoeorrelations of sampled signals. Moreover, the distributions of 
L~ (t) possess convexity and absolute continuity properties tha t  facilitate 
computations, and lead to a comprehensive theory. 

In what follows, we shall define point processes t~, from which we ob- 
tain such notions as forward and backward recurrence times, and num- 
bers of points N(t, x) in intervals (t, t q- x]. Stationarity is then intro- 
duced; this concept can be expressed in any of several equivalent forms, 
employing either interval or forward [backward] recurrence statistics. 
The distribution functions of the forward recurrence times are found to 
possess convexity and absolute continuity properties. Moments of N (t, x) 
can be expressed in terms of these distributions as series whose eon- 
vergenees are necessary and sufficient conditions for finiteness of the 
moments. The mean number of points in an interval is always a linear 
function of interval length. Further, if some order moment of number 
of points in an interval is finite over any interval of positive (small) 
length, it is finite for any (finite) interval, and is given by an absolutely 
continuous function of the interval length. 

Several examples of s.p.p, are provided. These include the familiar 

2 This  was poin ted  out  by  Professor  Wil l iam L. Root ,  who provided a simple 
example represen ta t ive  of a class of sampl ing schemes ~hat may  be met  in pract ice.  
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periodic process with random phase, and the jitter process discussed 
elsewhere by Balakrishnan (1960) and Brown (1963). Also well-known 
is the Poisson process; strangely, the mention of Poisson sampling in the 
literature (see e.g., Black, 1953) is not accompanied by suitable analysis. 
There are also other processes which have not been analyzed, such as 
the skip process. This process, which is generated by deleting in random 
fashion the points of another s.p.p., is here combined with possible jitter, 
and treated in some detail. 

For the sake of brevity, we have often omitted details and proofs, 
most of which may be found in the much lengthier exposition (Beutler 
and Leneman, 1966). In most cases, the missing proofs relate to facts 
easily accepted intuitively but extremely tedious to verify rigorously. 
To cite just one example, it is clear that the sum of the numbers of 
points in two adjacent intervals is equal to the number of points in the 
entire interval (i.e., N ( t ,  x + y)  -- N ( t ,  x)  + N ( t  ÷ x, y)  ); yet, the 
proof based on the set-theoretic definition of N ( t ,  x )  (rather than its 
intuitive interpretation in terms of points in an interval) requires several 
pages of set manipulations. 

II. RANDOM POINT PROCESSES--DEFINITIONS 
AND PRELIMINARIES 

A random point process is a statistical description for any physical 
phenomenon characterized by an enumerable, ordered sequence of 
specific occurrences. Electrons emitted in a vacuum tube, customers en- 
tering a store, pulse-type interference in a communication channel, 
random times of sampling a random process--all these can be defined as 
random point processes. To be more precise, a random point process is 
described by 

DEFINITION 2.1. Let {r~}, n = 0, ± 1 ,  ± 2 ,  • • • be a discrete parameter 
random process such that (with probability one) 

r~ >= 0 for all n (2.1) 

and all the r~ are finite-valued. I f  we ~ake 

[ ~'o+ ~ ' k  for n >= 1 
1 

t~ = "to for n = 0 (2.2) 
- - 1  

t o - -  ~ r k  t o r n  <-_ - -1  

then {t.} is  called a random point  process. 
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FIG. 1. Forward r ecu r r ence  times 

I t  is clear from the definition that  {t~} is an ordered nondecreasing 
sequence each of whose members is finite-valued. One could regard r0 
as an initial (random) phase, and the other r~ as the interval lengths of 
the sequence. 

All pertinent sets and random variables may  be expressed in terms of 
countable set operations on the "basic building block" sets B~ (t), which 
are defined for any integer n and time t by  

B~(t) = {co: t~(co) =< t}. (2.3) 

Here o~ is an element of the probabili ty space ~2 on which the r~ are de- 
fined, and the measurability of the r~ implies tha t  B~(t) is also measur- 
able. We shall often suppress the ~o variable, writing [t. _= t] when we 
mean B~(t). We observe for future reference that  B~+i(t) c B,(t), 
and that ,  when s <= t, B~(s) c B~(t). 

For each t, we define a new discrete parameter process {L~(t)}, 
k = 1, 2, • • • , where Lk(t) is the kth forward recurrence time, tha t  is, the 
length of time required for the kth point after t to occur (compare Cox, 
1962, p. 27). The Lk(t) are illustrated in Fig. 1. For a more formal 
approach, let 

----- B *  E~(t, x) U I m+i(t) ['1 Bm+~(t ~- x)], x = 0, n => 1, (2.4) 
m 

where the union is taken over all integers, B .  is as in (2.3), and * denotes 
the complement of a set. Evidently,  E~(t, x) carries the intuitive mean- 
ing of "a t  least n points fall in the interval (t, t ~- x]." An appropriate 
definition for L=(t) is then 

DEFINITION 2.2. L~( t) is the random variable satisfying 

[L~(t) =< x] = E~(t, x). (2.5) 
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Another important  concept in our considerations is N(t,  x), the num- 
ber of points in (t, t q- x]. If  we write 

An(t, x) = J~n(t, X) n J~n~+l(t, X) (2.6) 

it is obvious tha t  An(t, x) represents the event "exactly n points in 
(t, t + x]." Accordingly, N(  t, m) is specified by 

DEFINITION 2.3. N ( t, x) is the random variable satisfying 

[N(t, x) = n] = An(t, x), n = 0, 1, . . . .  (2.7) 

For n = O, consistency requires that we let Eo( t, x) = ~. 
Corresponding to the forward recurrence time notion, and equally 

useful, is the idea of backward recurrence times. For a positive integer 
n, the backward recurrence time L_~(t) is to be the time interval be- 
tween the nth  point before t and t itself, as shown in Fig. 2. This is 
aeeomplisbed by the extension of E~(t, x) to negative integers; for 
positive n, let 

E_dt,  z) U * = [Bm+l( t -  x) n Bm+~(t)]. (2.8) 
m 

Definition 2.2 may now be taken to hold also for negative integers, on 
which it defines backward rather than forward recurrence times. For 
the sake of completeness, we note that  Lo(t) = 0 follows in (2.5) from 
the definition of Eo(t, x). 

From a comparison of (2.4) and (2.8), we see that  

[L_~(t) -_ x] = [ L n ( t -  x) <= x]. (2.9) 

As we shall soon see, the stationarity of {tn} implies a certain symmetry 
of distribution functions of recurrence times in the sense that  the proba- 

0 t 

% ~-2 ~ L, o ~, ~" '2 '4 I 
L, (t) l 

l 
L_a(O I 

: 1 
L_3(t) 

FIG. 2. Backward recurrence times 
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bilities P[L,( t)  <= x] and P[L_~(t) <= x] are equal. This property does 
not extend to higher-order (multivariate) distribution functions of the 
recurrence times. 

For simplicity, we will henceforth consider only forward recurrence 
times, the properties of backward recurrence times being entirely similar. 
The distribution function of L~(t) will be denoted by 

Gn(x; t) = P[L~(t) ~ x], (2.10) 

where P indicates "probability of." The right side of (2.10) could equally 
well have been written as P[En(t, x)], as we can see from the definition 
of Ln(t). We further introduce the probability 

p(n,  x; t) = PIN(t ,  x) = n] (2.11) 

which is also P[An(t, x)]. The probabilities given by (2.10) and (2.11) 
are related to each other through (2.6) and the inclusions on the B~. 
Thus it can be seen that 

p(n,  x; t) = G~(x; t) - G~+l(x; t). (2.12) 

In general, N(t ,  x) and N ( t  ~- y, x) need not have the same probability 
distribution. Relatively little can then be said regarding properties of 
arbitrary point processes. For this reason, such nonstationary processes 
are of little interest to us, and will not be analyzed further here. On the 
other hand, many physical situations suggest that the entire probability 
structure of the occurrence pattern does not vary with time. This seems 
to be the case for emission of electrons in a vacuum tube, assuming that 
the tube is in steady-state operation. The same is true of certain random 
sampling situations, as in jittered sampling, skip sampling due to loss of 
samples associated with jamming of signals, or deliberately random en- 
coded signals; in each case, it is assumed that conditions of operations 
remain essentially unchanged for a period that is long relative to that for 
which the receiver is active. A stationarity assumption is therefore ap- 
propriate, especially since it renders the random point process amenable 
to the computation of sampling spectra and other results. 

III. STATIONARITY OF RANDOM POINT PROCESSES 

Although several possible definitions of stationarity for a random point 
process may occur to the reader, these definitions in fact turn out to be 
equivalent. Perhaps the most intuitively satisfying one is that of Mc- 
Fadden (1962) who required that the number of points in a set of fixed 



S T A T I O N A R Y  P O I N T  PROCESSES 333 

time intervals be invariant under any time shift which preserves the 
lengths and spacing of those intervals, i.e., 

DEFINITION 3.1. {t~} i s  a s t a t i o n a r y  p o i n t  p r o c e s s  ( s . p . p . )  i f ,  f o r  e a c h  

Xl  , X2 , " . . , x~ , each  h , t2 , " " , t~ , each  i n t e g e r  set  k l  , k2 , . . . , k~ , a n d  

a n y  h 

One of the consequences of Definition 3.1 is that  N (t, x), the number of 
points in (t, t -[- x], is a finite-valued random variable. Indeed, the basic 
definition of the point process implies tha t  no realization of t~ (except on 
a fixed zero probability set) can have more than two limit points. An 
argument based on the additivity of the probability measure, together 
with (3.1) applied for n = 1, leads to the desired conclusion. I t  follows 
that  (the Ak being disjoint) 

£ p ( k ,  x; t) = 1 (3.2) 
/~=0 

for any x and t. Further, we deduce that  

lira G ~ ( x ;  t) = 0, (3.3) 

which is equivalent to (3.2), as we may verify by summing of (2.12). We 
remark that ,  in accordance with the preceding discussion, an s.p.p, can- 
not have finite limit points, except possibly on a fixed set of zero proba- 
bility. Specifically excluded are point processes such as those generated by 
the zero crossings of a Brownian motion of Ornstein-Uhlenbeck process. 

An apparently weaker requirement than (3.1) is that  this equation 
hold for mlmbers of points in successive adjacent intervals, i.e., whenever 
t~.+l = t~- + x~-. But  in fact, (3.1) is then actually valid for arbitrary 
choices of t~. and x~.. This knowledge is useful, for it provides a criterion of 
stationarity that  is easier to verify than that  demanded by Definition 
3.1. 

Stationarity may also be described by forward (backward) recurrence 
statistics. A necessary and sufficient condition that  a point process be 
stationary is tha t  

for each set x~, x2, • • • , x~, each set of positive (negative) integers 
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kl ,  ks, • • • , k~, any h, and some t. I f  (3.4) is satisfied for positive (nega- 
tive) integer ki ,  then for any integer combination (with variable signs), 
and any set of times h ,  t2, • • • , t~, we have 

P [~01Ek~(tj , x s ) I = P  [jO~ E~j(t~-t-h,x~) 1 • (3.5) 

Thus, (3.1), (3.4), (3.5), and the condition on successive adjacent 
intervals (the apparent weakening of (3.1)) all imply one another, and 
are therefore equivalent in defining or verifying stationarity. 

In  view of these properties, p(n, x; t) is the same for all t, so tha t  we 
may write p(n, x) whenever this probabili ty refers to an s.p.p. The 
equivalent conditions on recurrence times likewise renders G~ (x; t) inde- 
pendent of t, so tha t  we are also justified in suppressing t there. Since in 
the remainder of the paper we restrict our considerations to s.p.p., the 
subscript t will not appear hereafter. 

IV. C O N V E X I T Y  A N D  A B S O L U T E  C O N T I N U I T Y  OF 
DISTRIBUTION FUNCTIONS 

As we have noted in the introduction, our work tends to utilize forward 
recurrence statistics rather than interval statistics. One of the reasons 
for our preference lies in the nature of the G~ (x),  which possess proper- 
ties tha t  are of considerable value in later calculations. Most of these 
depend ult imately on convexity properties which we now proceed to 
develop. 

Combining (2.4) and (2.6) leads to 

Ix < Ll(t) <= x q- hi = Ao(t, x) N El(t -{- x, h) (4.1) 

whence 

G~(x -t- h) - GI(X) = P[Ao(t, x) rl El(t + x, h)]. (4.2) 

Now the right side of (4.1) is subject to the containment relation 

[A0(t, x2) A E~(t -t- z2, h)] (4.3) 

C [Ao(t -~- x2 -- xl ,  xl) N El(t -~ x~, h)] 

valid whenever x~ _-__ x2 • If (4.2) is applied to both sides of (4.3), we have 
the fundamental  inequality 

al(x~ + h) -- G~(x~) <= a~(xl + h) -- a~(xl) .  (4.4) 

Hence G1 is concave (Hardy,  Littlewood, and Polya, 1951) and since 



S T A T I O N A R Y  P O I N T  P R O C E S S E S  335 

G1 m u s t  have  a poin t  of con t inu i ty  in every  in terva l  

Gl[oex -t- (1 - ~)y] => ~G~(x) -1- (1 - o~)G~(y) (4.5) 

for x, y => 0 and  0 =< ~ =< 1. I n  par t icular ,  Gl(~x) >= agl(x) .  
T h e  convexi ty  of G~ implies not  only  t h a t  G~ is cont inuous ( app ly  

(4 .4) ) ,  bu t  even t h a t  G1 is absolute ly  cont inuous on any  in terva l  [~, ~ ), 
> 0. We  now prove  this result.  W i t h o u t  loss of general i ty ,  we m a y  as- 

sume t h a t  G~ is cont inuous  a t  ~, since G~ (being a d is t r ibut ion funct ion)  
has  a cont inu i ty  po in t  in every  interval .  Next ,  pick h so small  t h a t  
v = /t - h > 0. T h e n  for eve ry  set  of hj such t h a t  h = ~ h i , and  every  
set  [xj} such t h a t  ~ _-< x~ < x2 < zs < . . .  , we have  

Gl(xk÷hA)  - G~(xk) <= Q v +  hi - G I  v - 4 - ~ h j  (4.6) 
/=o  j = o  

where ho = O, and  (4.6) is t rue  b y  v i r tue  of (4.4).  Summing  over  
k = 1, 2, . . .  yields 

[Gl(Xk + h/~) --  Gl(xk)] ~ GI(~) --  GI(~ - h).  (4.7) 

Since the  r ight  side of (4.7) becomes small  wi th  h ( independen t  of the  
choice of xl~ or hA), our  asser t ion is proved.  

T h e  absolute  cont inu i ty  of G~ permi t s  us to wri te  

f/ G~(x) = G~(~) + g~(u) du for  x > ~ > 0. (4.8) 

I n  (4.8) ,  g~ is a de r iva t ive  of G1 ; because  G~ is concave,  we m a y  t ake  g~ to 
be a m o n o t o n e  noninereas ing function.  B y  tak ing  the  l imit  ~ --+ 0 in 
(4.8) ,  we find t h a t  this equa t ion  reduces  to 

G~(x) = a~(0+)  + g~(u) du. (4.9) 

We shall find t h a t  if the  m e a n  of N ( t, x) is finite ( and  under  even weake r  
condi t ions) ,  G I ( 0 ÷  ) = 0. I t  is t hen  possible to deal wi th  a dens i ty  func- 
t ion g~ (which is mono tone  for posi t ive  a r g u m e n t )  r a the r  t h a n  a dis- 
t r ibu t ion  funct ion.  

A l though  (4.9) generalizes to G~, n = 1, 2, 3, • • • , the  re la t ion (4.4) 
need not  hold for n > 1. However ,  if we define 

s~(z) = ~ G~(z) (4.1o) 
k = l  
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we shall find tha t  for xl < x~ and any  n = 1, 2, •. • 

S~(x: q- h) - S~(x2) <= S~(xl Jr- h) - S~(xl), h >= O. (4.11) 

To prove (4.11), we observe tha t  

r 1 P [ x < L m ( t ) < x + h ] = P  {Ak(t,x) F I E m - k ( t + x , h ) } .  (4.12) 
LT~=o 

The Ak are disjoint, so tha t  (4.12) implies 
m--1 

Gm(x Jr- h) -- Gin(x) = ~_, P[Ak(t, x) f'l Em-k(t -{- x, h)]. (4.13) 
k=o 

Both sides of (4.13) are summed oll m over the first n integers, and the 
(finite) summations  interchanged; there results 

S~(x + h) - Sn(x) = ~ k P[Aj_k(t, x) N Ek(t -~ x, h)]. (4.14) 
k = l  j=~  

On the other hand, it m a y  be seen tha t  for any xz =<_ x2 and h ~_ 0 

[J [Aj_k(t, x2) ['l Ek(t -t- x~, h)] 

j=k (4.15) 

C 0 [Aj-k(t q- x2 -- x~, Xl) N Ek(t q- x2, h)] 

so that ,  applying (4.14) with x replaced respectively by  xl and x~, we 
have (4.11). 

Since (4.11) corresponds to (4.4) in every respect, the  reasoning lead- 
ing to (4.9) is equally applicable to the S~.  Thus  for each n = 1, 2, • • • 
and positive x 

Sn(X) ----" Sn(O-}-) -[- 8n(U) du ( 4 . 1 6 )  

where s, is a derivative of S~,  and s~ m a y  be taken  to be monotone non- 
increasing. We remark  tha t  if the mean of N(t,  x) is finite, S~(0q- ) = 0 
for each n, so tha t  S~ is everywhere differentiable. 

Further,  we m a y  conclude f rom G~ = Sn -- S~_Z in combination with 
(4.16) tha t  each G~ is absolutely continuous (except perhaps at  the 
origin) with 

G.(x) = G,(O+) -I- g~(u) du (4.17) 
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for positive x. Again, if N(t ,  x) has finite mean for any positive 
x, G~(O+) = 0 for each n; furthermore, each s,, is bounded, so that  
g~ = s. - s~_~ is both bounded and of bounded variation. This means 
that  the forward recurrence times are described by a rather simple prob- 
ability density function. 

V. MOMENTS OF THE N U M B E R  OF POINTS IN A T I M E  IN T E RV A L  

The number N(t ,  x) of points in a given time interval (t, t + x] is of 
equal interest with recurrence times, and deserves particular attention. 
As will be seen in the following, the distribution functions G~ turn out to 
provide ideal tools for the study of the moments of N(t ,  x).  We shall state 
some of the results more pertinent to applications; since detailed proofs 
are often delicate and/or  tedious (see Beutler and Leneman, 1966), we 
shall normally provide only outlines of proofs. 

Since E{[N(t,  x)] k} = E n ~ = l  nkp(n, x) ,  we obtain by a substitution 
from (2.12) (compare Takacs, 1960, Eq. 3.1(3) for renewal processes): 

THEORnM 5.1. 

E{[N(t,  x)] k} = ~ [n k -- (n -- 1)k]G~(x), (5.1) 
n = l  

the two sides of (5.1) being finite or infinite together. 
In the statement of Theorem 5.1, as elsewhere, we accept + ~ as the 

limit of a sum of positive terms divergent in the usual sense. By using 
the Minkowski inequality, we prove 

THEOnEM5.2. I f  E([N( t ,y )]  k} < ~ forsorney > O,E{[N(t ,x)]  ~} < 
for every positive finite x. 

COROLLARY 5.2.1. I f  ~ = 1  [n ~ -- (n -- 1)k]G~(x) converges to a finite 
limit for some x > O, it converges for every x, uniformly in each interval 
[0, x0]. 

The corollary combines Theorems 5.1 and 5.2, and the uniformity of 
convergence follows from the nondecreasing character of the nonnegative 
summands. The same two theorems also yield 

COROLLARY 5.2.2. N(t ,  x) has finite moments of all orders, i.e., 
E{[N(t,  x)] k} < ~ for all ]c = 1, 2, . . .  i f  and only i f  

lira n~'C~(y) = 0 (5.2)  

for some y > O and each j = 1,2, . . .  
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For  the first moment  of N(t ,  x),  there are certain special relationships; 
indeed, we can specify the precise form of the mean as a function of x. 

THEOaEM 5.3. N(t ,  x) has a finite first moment i f  and only i f  

lira [Gn(h)/h] < ~ ; (5.3) 
n=l  h~O+ 

i f  either is finite, we have 

E[N(t,  x)] = /3x (5.4) 

where ~ is a finite constant. Moreover, 

G~(O+) = 0 ,  n =  1, 2 , . . . ,  (5.5) 

g n ( X )  = ~ ,  (5 .6)  
n = l  

and 

lira ~ [G~(h)/h] = ~ lira [G~(h)/h] = 8. 
h~O+ n = l  n=l  h~O+ 

(5.7) 

The key to the proof of the theorem lies in the equality N(t ,  x + y) = 
N (t, x) + N ( t  + x, y) ; if expectations are taken of both sides, a func- 
tional equation of the form f ( x  + y) = f ( x )  + f ( y )  is obtained, with 
f ( x )  =- E[N(t,  x)]. Thus (5.4) is proved. The other results stem from 
Theorem 5.1 with k = 1, and interchanges of limits and summations 
validated by  the nondecreasing character of each of the positive sum- 
mands as h --~ 0 + .  Theorem 5.3 is also intuitively meaningful in tha t  
is the average number of points per unit time. 

VI. INTERVAL STATISTICS, RECURRENCE TIMES, AND MOMENTS 

In renewal theory, most results are expressed as formulas involving 
interval statistics, in particular Fn , n = 1, 2, - . .  , where F,, is the dis- 
tr ibution function for the length of n successive intervals. Since the 
intervals of an s.p.p, need not be identically distributed, it is not possible 
to find distribution functions to which we can impute the same meaning, 
nor can we take advantage of mutual  independence of intervals, such as 
is assumed for renewal processes. However, by  formulas similar to those 
applicable to renewal processes (cf. Takacs, 1960, p. 50), we are able to 
find distribution functions F~ that  refer in a rough sense to the average 
of n successive intervM lengths. In case the s.p.p, has mutually inde- 
pendent identicMly distributed intervMs (like a renewal process), the 
F~ have the same interpretation as they do for a renewal process. 
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We shall assume throughout this section that the first moment of 

N(t, x) exists with parameter ft. Then we take F~(x) = 0 for x < 0, and 

for x >-- 0 

Fn(x) = 1 -- ~-~s~(x), (6.1) 

where the s,, have been defined in Section IV. I t  is easy to show (since 
the s~ are noninereasing and tend toward zero) that  each F~ is a distribu- 
tion function. Moreover, we obtain from an integration by parts 

THEOREM 6.1. 
~ o  

f o x  dF~(x) = nil3. (6.2) 

Note that  (6.2) reflects our intuitive interpretation of the Fn, in the 
sense that  the average length of n successive intervals should be n times 
the average length of an interval. In turn, the average length of an 
interval should be f~-i the reciprocal of the average number of points per 
unit  time. In renewal theory }-]~=1 F~(x) = H(x )  is called the renewal 
function, and is related to the moments of the number of points in (0, x] 
(see Cox, 1962, Sees. 4.1 and 4.6). Similar relations are found in the 
study of s.p.p. Without  proof, we state 

THEOREM 6.1. E{ [N(t, x)] 2} < ~ i f  and only i f H ( x )  < ~ ,  and then 

f/ E{[N(t ,  x)] 2} = /3x -I- 2~ H(u)  du. (6.3) 

This theorem is stated and proved (Beutler and Leneman, 1966) in 
more general form applicable to moments of arbitrary order. One is able 
to conclude from the integral form of the result that  E{ [N(t, x)] k} is an 
absolutely continuous function of x, with nondecreasing derivative, and 
that  E{[N(t,  x)] k} = 0(x) as x --+ 0. For s.p.p, with finite second mo- 
ments, there are additional results useful in computing spectra of ran- 
domly sampled signals. We have 

THEOREM 6.2. Let E{[N(t,  x)] 2} < ~ ,  and take s <= s Jr-x <- t <- t + y. 
Then 

E[N(s, x )N( t ,  y)] = ~ fY 
Jo 

[H(u -~- t -- s) 

- -  H ( u  - l -  t - s - -  x ) ]  d u .  

(6.4) 

Formulas such as (6.4) are of use in obtaining the second moment 
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properties of signals sampled by a train of delta functions or very narrow 
pulses. 

VII. EXAMPLES AND CLASSES OF STATIONARY POINT PROCESSES 

Several examples of s.p.p, are presented in this section. Proofs of their 
stationarity is given elsewhere (Beutler and Leneman, 1966), using 
whichever of the equivalent stationarity criteria of Section I I I  is most 
easily applied to each particular process. In this paper, our principal con- 
cern is with the computation of the Fn and G~. 

I t  would be expected that  there is a Poisson s.p.p, corresponding to 
the renewal process of the same type. The simplest and most appealing 
construction--all rk exponentially distributed and mutually independent 
- -unfor tunate ly  fails to satisfy the stationarity criteria. 3 Indeed, it can be 
shown that  if the rk are mutually independent, and all rk, k ~ 0, are ex- 
ponentially distributed, there is no distribution of r0 leading to an s.p.p. 
However, the process we shall describe has all the properties demanded of 
a Poisson process, at least insofar as required for random sampling. Let 
the rk, k ~ - 1 be mutually independent and exponentially distributed, 
i.e., their probability densities are given by 

f l ( x )  = ~e -~,  (7.1) 

and let ~_1 be specified by 

r_l = r0 -1- r ( 7 . 2 )  

where r is independent of the rk, k # - 1, and has the same probability 
density (7.1). I t  is easily shown that  this point process satisfies (3.1) 
over disjoint intervals and is therefore an s.p.p.; furthermore, N(t ,  x) 
has a Poisson distribution with parameter ~x, and the number of points 
on disjoint intervals are mutually independent random variables. From 
the above, one obtains 

g~(x) = ~(~x)"-~e-~/(n  -- 1)! (7.3) 

and thus by (5.6) and (5.4) of Theorem 5.3 

E[N(t,  x)] = fix. (7.4) 

By a slightly more involved calculation, based on Theorem 5.1, we obtain 
another result classical for the Poisson renewal process, namely, 

3 The  no ta t ion  and  the  re la t ion be tween the  r .  and  the  r andom poin t  process 
{t~} are those  of Defini t ion 2.1. 
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E{[N( t ,  x)] 2} = ~x + (fix) 2. (7.5) 

Moments of all orders could be computed from (5.1), but  we shall not do 
this, remarking only that  it is immediately apparent from (5.2) and the 
exponential character of G~ that  all moments are finite. 

In  spectral calculation on randomly sampled stochastic processes, the 
generating function for L~(t)  is often used. This function is defined as 

g~*(s) = E[e-~(t)] .  (7.6) 

In  the case of the Poisson s.p.p, just discussed, we find that  gn*@) = 
[~/(~ + 8)] n. 

The periodic s.p.p, arises in situations which manifest a periodically 
repeated pat tern  of points, the intervals between successive points being 
determinate. The simplest case (simple periodicity) has rk = T, k ~ 0, 
in which T is the period, with r0 being uniformly distributed over (0, T]. 
This s.p.p, is easily generalized to the following: let r l ,  r2, • • • , r~ be 
positive numbers such that  

hr 

E rk = T, (7.7) 
1 

and for general positive j = m N  ~- i, rj = ~ .  For negative indices, the 
r~ are defined to continue the spacing pattern. Finally, r0 is (again) uni- 
formly distributed on (0, T]. 

The process just described can be shown to be an s.p.p, by  verifying 
(3.4), a rather tedious procedure carried out elsewhere (Beutler and 
Leneman, 1966). An easier and more intuitive calculation, based on the 
fact that  the probability of an arbitrary t falling in an interval of length 
r~ is rk /T ,  shows that  gl is a stepwise-constant function with 
g1(0-}-) = N T  -1, and gl(x)  = 0 for x _-> maxl_<k_<N~k. We shall not 
pursue the general computation of these densities further, and only note 
tha t  quite precise upper and lower bounds can be obtained. Also, 
E[N(t ,  x)] is most easily computed from an ergodie theorem (see Beutler 
and Leneman, 1966) which yields the (not surprising) result 
E[ig(t, x)] = Nz/T. 

The case N = 1, ~-l = T, is of course, well-known. Here gl(x) = 1 / T  
on [0, T], and gl(x)  = 0 otherwise. For  higher indices, we have 
g~(x) = gl(x - [n -- 1]T) from which for all n = 1, 2, . - .  

g~*(s) = [(1 - e~r)/sT]e-~(~-~)r. (7.8) 
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The zero crossings of an Ornstein-Uhlenbeck (symmetric stationary 
gaussian Markov) process do not constitute (in our definition) an s.p.p. 
because these crossings are not a denumerable ordered sequence. None- 
theless, our theory yields a result that  is generally derived by rather 
lengthy procedures. I t  has been found by several authors (see e.g., 
Slepian, 1963) that  

GI(x) = 1 - (2/~r) sin -I (e--S). (7.9) 

Since G l ( x ) / x  tends toward infinity as x tends toward zero, we conclude 
(assuming Theorem 5.3 to be applicable) immediately that  
E[N(t ,  x)] = ~ ,  replacing a much more difficult computation used else- 
where (see, e.g., Siegert, 1950). 

A point process not previously analyzed thoroughly in the literature 
will be treated next. We call this s.p.p, the skip process, in recognition of 
its creation from the remaining points after points of an existing s.p.p. 
have been deleted at random. This corresponds to a physical model of a 
pulse amplitude modulated communication system, in which faulty 
transmission, reception, or perhaps jamming has expunged some of the 
sample pulses. Missing return pulses in a pulse radar system are also 
covered by this model. Finally, one can imagine queueing models in 
which some of the customers do not, after all, require service, or where 
defections occur from the queue. 

Suppose that  {t~'} is an s.p.p., and that  {xn} is a discrete parameter 
stationary process, independent of {t~'}, consisting of zeros and ones. 
Now form the new point process having a point at each time tn' whenever 
x. = 1, and no point at t~' whenever x~ = 0. The new point process {t~}, 
obtained from the remaining points, can then be shown to be an s.p.p. 
(Beutler and Leneman, 1966). 

The simplest type of skip process is generated by mutually inde- 
pendent deletions; each point has probability q < 1 of being expunged. 
Then 

a~(x) (1 q)~ ~ ~.~n-1 ,~, ~ " (7.1o) = -- q O'n+m-~cc~+m ix), 
m=O 

where Ck j is the number of ways of taking k objects j at a time, that  is, 
Ck ~ = k ! / j l ( k  -- j )  !, and the primed quantities refer to the original s.p.p. 
{t~'}. Moreover, if {t,,'} is an s.p.p, with independent, identically dis- 
tributed intervals, then {t=} is likewise an s.p.p, with these same proper- 
ties. For such a process, it can be seen that  
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/ ,  
• gl ( s )  

gl (s) = (1 - -q )  (7.11) 
1 -- qf[*(s) 

wheref[*(s) is the generating function for the interval r~' (in the process 
t '  { ,~ }), that  is 

f;*(s) = E[e -~'V] = [ e - ~  dFi'(u).  (7.12) 
vO 

We also have 

f[*(s) (7.13) fi*(s) = (1 - -q )  1 -- qf[*(s) 

where f i*(s) denotes the generating function for the interval rl of the 
skip process {tn}. From there, g~*(s) is readily computed, in view of the 
relation 

g~*(s) -= gi*(8)[f~*(s)] ~-1. (7.14) 

More generally, if we define (whether or not the intervals are inde- 
pendent and/or  identically distributed) fi* -= f0 ~- e -~u dFi(u),  and if 
f,~* = (fl*) ~, then (7.14) holds. Conversely, (7.14) implies that  
f~* = (ft*) ~. For instance, these relationships hold for the Poisson s.p.p., 
even though the intervals (e.g., ~-i) are not identically distributed. 

We specialize the above to a simple periodic process {t,j} of period T 
with independent probabilities q of skipping any one point. Because 
f'i*(s) = e -~r and (correspondingly)g'l*(S) = (1 - e-~r)/sT, it follows 
that  

g~*(s) = (1 -- q)(1 -- e-~r)/[sT(1 -- qe-'r)] (7.15) 

and 

f l*(s) = [(1 -- q)e-~r]/(1 -- qe-~r). (7.16) 

A similar problem is that  of a Poisson s.p.p. {t~'} with parameter fl' and 
independent probabilities q of skipping. The skip process is then another 
Poisson s.p.p., but with parameter ~ = (1 -- q)~'; this is similar to a 
classical result (e.g., Parzen, 1962). 

As we have already stated, the jitter process has been studied (Bala- 
krishnan, 1962; Brown, 1963), not only because it is amenable to simple 
analysis, but  also because it represents the time base for nominally 
equMly spaced repetitive signals (e.g., sampling pulse trains), perturbed 
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by the small timing errors one might find in actual sampling systems. Ac- 
cordingly, we shall suppose that  {ts'} is a periodic s.p.p, whose period is T, 
and tha t  {us} is a discrete parameter stationary process with 0 ~ u~ ~ T 

a 4 
for e ch n. Then u~ are of course the perturbations on the periodic points 
t~ p. The jittered (or nearly-periodic) process Its} is then specified by 
4 t = ~ + u , ,  from which the jittered interval lengths are v~ = 
T -k (u~ - u~_l) fo rn  ~ 0. That  the new process {t~} is also an s.p.p, is 
proved by verifying tha t  (3.4) holds (see Beutler and Leneman (1966) 
for this proof). 

In this paper we shall obtain explicit results only for jitters u,  that  are 
pairwise independent. We shall call 

~(s) = E[exp ( -suk)] ,  (7.17) 

which is the same for any k. Because of the independence assumed for the 
$ 

us ,  E{exp [--s(u~ -- u~-)]} - ~,(s)-y(--s) whenever j  ~ k. If  nowf~ (s) 
denotes the generating function for ~-~k~l rk, n ~ 1, that  is 

we find tha t  

f~*(s )  = e - ~ ' r ~ , ( s ) ' y ( - s ) .  (7.18) 

For this s.p.p., fl = T -1 by a direct calculation. Using fl = T -~ in (6.1), 
and subtracting successive equations to obtain g~, one has from (7.18) 

gl*(s)  = [1 -- ~ , ( s ) ' y ( - - s ) e - ' r ] / s T  

and 

g~*(s) = ~ ( s ) ~ ( - s ) e - ~ r ( e ~ r -  1)~sT,  n >= 2. (7.19) 

As another example, we combine the jittered process with skip sam- 
pling; we recall here that  the application of skip sampling to any s.p.p. 
generates a new s.p.p. The jitter process just discussed will be considered 
here. There is an independent probability q of the elimination of each 
point of the jittered process. The skip-jittered process (or nearly-periodic 
process with skips) will then have identieallydistributed intervals, and 
the generating function for the sum of intervals ~ - ~  r~ becomes 

4 Since  t h e  p u r p o s e  of t h e  r e s t r i c t i o n  on  t h e  u~ is to  m a i n t a i n  t h e  o rde r i ng  of 
t h e  t~ t h e  s a m e  as  t h a t  of  t h e  t~ ~, t h e  u~ m a y  be  r e s t r i c t e d  to  a n y  des i r ed  i n t e r v a l  
of  l e n g t h  T.  
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L * ( 8 )  = - - q - , , ] n .  ( 7 . 2 0 )  

This result is most readily computed by observing that  (7.10) holds with 
G~ replaced by F,  and G' F t , ,+~ replaced by , + ~ .  I f  we now take the 
Laplace transform of both sides, and substitute from (7.19), the infinite 
sum can be evaluated in closed form, thus leading to (7.20). By means of 
(6.1) and the knowledge that  ~ = (1 -- q)/T,  we can obtain an expres- 
sion for each g,~* in terms off~* and f ,+~.  Hence, (7.20) permits us to 
calculate each of the g, as another new result. 

For our final example, we consider the scheduled skip process. I n  its 
simplest form, every alternate point is skipped by our choice of 

t I x, = 0.511 + ( - -1)"X],  where X is independent of { , }, and takes on 
values of + 1 or - 1 ,  each with probability one-half. I f  this form of skip- 
ping is applied to a Poisson point process, or one with identically dis- 

f ~ct * ~ 2n tributed independent intervals, we have f~* = f~* t J* J , so tha t  
again g~* * ~ ~ * ~ ~-1 = g~ t]~ ) for the new process. In  particular, the Poisson 
process with scheduled skips (sometimes called the alternate Poisson 
point process) has 

f~*(s) = [~'/(s + fl,)]2~ (7.21) 

NOW g~* * * = g~ ( f~-0 ,  where we may compute gl* from (6.1) and (7.21), 
with ~ = 0.5~'. The result is then 

g~ (8) = 0.5(~')~-~(s + 2fl')/(8 -k- fl,)2.. (7.22) 
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