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ABSTRACT

ESR experiments on ZnSe:Mn++ have been carried out at room temperature
with X-, Ku-, and K-band microwave spectrometers. Parameters g and A are
isotropic, with values of 2.0055 = 5 and -61.2 = .5 x 107% cem-1 respec-
tively. The following values were obtained for parameters D, a, and F:

D=425.1 % 107% em™%; a = 17.66 x 1074 cm~; and F = 6.61 x 10-4 cm~1,

I. INTRODUCTION

It was pointed out previouslyl’2 that the Watanabe5 theory regarding
the cubic crystalline factor a holds satisfactorily in the case of oxides
of Mg and Ca. In the case of sulfides, selenides, and tellurides, how-
ever, the prediction from this theory is not in agreement with experi-
mental results. The disagreement is due to the covalency nature of the
bonds, which is more pronounced in the heavier compounds of the two ele-
ments zinc and cadmium. Since knowledge of the sign, magnitude, and deri-
vation of D from one-electron orbitals aids in the evaluation of a, it is
necessary to find theoretical expressions for D first. Therefore, the
experimental results obtained by the author and other investigators con-
cerning hexagonal AII BVI compounds are given in Section II. In Section

III, a theoretical discussion of the variation of the D parameter among

the A compounds with hexagonal structure is given.

11 BVI






II. RESULTS
A. EXPERIMENTAL

Pieces of ZnSe crystals were examined in an ESR system and the micro-
wave absorption was detected by a phase-sensitive detector. The deriva-
tive of the paramagnetic absorption with respect to the dc magnetic field,
dg/dH, was obtained through a Varian detection and recorder system. The
magnetic field associated with these resonances was measured by a Varian
fluxmeter and a Beckman transfer oscillator. The resonance spectra ob-
tained through the graphic recorder are shown in Figs. 1-4. The magnetic
field was rotated in a (lOI 0) plane. Figures la and 1lb give the spec-
trum at © = 0, where the dc magnetic field is parallel to the c-axis of
the crystal. Figures 2a and 2b give the spectrum at 6 = 25° to the c-
axis; Figs. 3a and 3b at © = 55°; and Figs. La and 4b at 6 = 90°.

A comparison of these spectra indicates that the crystal is at best
:a twin, which is obtained by dendritic growth of ZnSe. That such a phen-
omenon occurs in crystals grown from melt has been observed in the growth
of germanium from meltu. Due to the presence of these imperfections,
the spectra are more complicated in this ZnSe than in a pure hexagonal

5

crystal such as ZnO. Cuceaneau” reports the simultaneous presence of
hexagonal and cubic structure in ZnSe. Bube6, in his detailed investi-

gation of the optical properties of ZnSe, also reports the presence of

both cubic and hexagonal structures. According to these investigations,
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Figs. 1b-4b. ESR Spectra of Mnt* in the Plane (10Io) of ZnSe. © is the
angle between c-axis and H. (M = -1/2 > +l/2 transitions; signal level
is reduced by a factor of 3.)



it is possible that the complexity of the central portion of the spectra
shown in Figs. 1-4 is caused by the presence of microcrystallites of cubic
structure. Comparing the spectra in Figs. la and 3%a, one finds at least
one spectrum behaving as though there were a hexagonal crystal, one of
whose (lOI 0) planes is horizontal. The measurements were carried out
with respect to this set of spectra and the results for the two orienta-

tions © = 0 and © = 90° are given in Table I.

TABLE I

ABSORPTION PEAK POSITIONS OF THE LINES DESIGNATED IN FIGS. 1 AND L4
(in gauss)

e position a B Y o} A "

High Side  6920.70 T861.58 8745.66 9639.99 10577.08 8591.50
Low Side 6587.51 T7531L.67 8420.58 9315.24 10255.68 -

0 Diff = A 333,19 329.96 325.08 324.75 321.22 -
Average = o 6754.10 T7696.60 8583.12 9L77.61 10426.29 -
High Side - - 8745.22 - 9691. 35 8590. 41
o° Low Side T7549.23 - 8419.61 - 93hT. 71 -
? A - - 325.59 - 343.97 -
o - - 8582.40 - 9519.69 -
B. THEORETICAL
1,2,3

To analyze the data given in Table I the usual procedure is to
express the crystalline electric field as a function of the spin operators.

This is done simply by transforming the: terms of the crystalline field

from the crystalline coordinate system to the magnetic coordinate system



and then substituting the spherical harmonics in the new magnetic system
by Racah's b sz tensors. These tensors are functions of spin operators,
and the coefficients of transformation from the crystalline to the mag-
netic coordinate system are functions of the Eulerian angles <, f, and ¥
through which this transformation takes place. By following this proce-
dure one can obtain expressions which are easy to compare with experi-
mental data.

To illustrate this procedure consider Fig. 5. The Mﬁ+ ion, which
is surrounded by four Se” ions, is at the origin. The three Se” ilons, 2,
3, and L4 are equidistant from the Mﬁ+ ion when the Se ion 1 is slightly
further from it (R;>Rz). At the M£+ ion site this produces a local
field of the trigonal symmetry with OA, the axis of threefold symme-
try. We take as tlie polar axis and express the crystalline field terms
in such a manner that this axis represents the z-axis of the crystalline

coordinate system. The crystalline field V'(r,9,¢) produced at M

site by the neighboring ions can be expressed as a linear combination

of the spherical harmonics provided VAV = 0:
Ve = ) A Y (0,4). (1)
7 Im Im
m

For the case of d-electrons of the Mn** ion (the trigonal axis being the
polar axis), the effective field V, when it meets the requirements of

crystal symmetry,* can be obtained from Eq. (1) by retaining only those

*¥These requirements are that the fields by (1) real, (2) invariant under
rotation * 2x/3 about the c-axis, and (3) invariant under rotation n/3
followed by reflection in a plan normal to the c-axis.



Fig. 5. Relative positions of the magnetic (H polar
axis) and crystalline coordinate systems.

terms of even { up to £ = L, with lmlf fL.and mbeing O or * 3. Therefore

= + + + +
V(r,0,9) A Y ‘A Y +A Y A43Y43 A4_3 Y4_3, (2)

where Al 's are independent of © and ¢ and are numerical constants multi-
m

1

plied by r*. Since the term Aoo Y shifts all of the spin levels by the

(e]e)

same amount, it does not produce any change in the relative energies of

the levels. The coefficients A are related to each other. To find

this relation, use will be made of symmetry operations on the xyz coordin-



ate system. Before doing so we write Eq. (2) as a sum of two axial and

cubic terms V_ and V :
a c

V(r,0,4) =DV(xyz) = V_(xyz) +V (xyz), (3)
Va(xyz) - AooYoo * Aonzo * A;0Y4o’ (&)
Vc(xyz) = ALY, A48Y43 + A4_3Y4_8, (5)
where7
Y, (xyz) = \/}9; (352*-3025r%+3r*) /8r*, (6)
v, Gwe) = E /T 22 a(xeay) O, (7)

Substituting for Y4o and Y ,_ in Eq. (5) and operating with Ca (face

diagonal = yy'), we find:
CéVC(xyz) = Vc('x;y}"Z)- (8)

Since Cb is a symmetry axis of the cube (Fig. 6), Vc(x,y,z) = Vo(-x,y,-2),

resulting in
Agg = - Ags (9)
or
V (xyz) = AldoYao + Asa(Ysaz-Yaos). (10)

There is also a numerical relation between Aiy and Ags, which can be
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Fig. 6. Change of the axis of quantization (z-axis) from [100]
to [111] direction and the result of Cp operation on xyz.

obtained by operating on Vc(xyz) with Cs axis of symmetry (Fig. 6). This
operation brings the xyz system into the x'y'z' system. A close inspec-
tion of Fig. 6 reveals that this operation is equivalent to the initially
orthogonal rotations ¢ = /2, © = cos =(-1/3), and ¥ = 3n/2, around the

z, the a, and the z' axes respectively. Therefore

10



cosy O ) O cos® sin@ | [-sind cosdp O |y
z' 0 0 1/ \O -sin@ cose 0 0~ 1/ \z

e
I
1
)]

;-

=

x'! E cosy siny O\ /1 0 0 cosy sin¢ 0 <%>

0 -1 0\/1 0 /0 1 O\ /x
= {1 0 O o -1/5 0/ -1 0 0 <y) (11)

O 0 1 2\2/3 -1/5 0 0 1/ \z

-1/3 o 2«/

it

0
2«/% o 1/5

Since Cz is a symmetry axis, as in the case of C4 we have CZVc = Vc' Sub-
stituting for Y£ 's in Vc(x,y,z) from Eqs. (6-7) and employing the trans-
m

formation represented by Eq. (11), one obtains:

"4A \/_z— LS {552 -30 2%r%+3yp *-(Asa/Als) \/%{ A x+1y) 3+'Z(X“ly)3ﬂ
R
- (A%S/Azo&{g‘_f—i_}i - % [(% + _.2‘/.:;"2‘. - iy>3 + @ + @ + 1y>j}j} .

Equation (12) holds if the coefficients of each power of x, y, or =z are

the same on both sides. We will take the coefficients of 24:

g(gg - §O~+) - (Aaa/AYo) + - —( q }A43/A4o (13)

Jio0/7.

=(35-30+3)

o8] ot

I

Thus, the cubic part of the crystalline field Vc(x,y,z) is
v = AlolYaot N10/T (Y43-Ya-3)]. (1k)

The Vc- belongs to the field produced on those Mn*" ions which are sur-

B LI |
rounded by tetrahedrons of ligands represented by £&,n,{ (Fig. 5).

11



We must now find the matrix elements of these Va and Vc+ between the
magnetic states of the Mn*tt ion. This can be done by transforming Va and

VC+ into a magnetic coordinate system where H, the dc magnetic field, is

considered the z-axiz. The transformation of Va and V.4 involves the

transformation of the spherical harmonics Ylm' These spherical harmonics
, .8 I+m f-m

transform like the monomials ¢ 1 /{4+m)!(£-m)!) where & and 0, under

a rotation of the coordinate system through the Eulerian angles &, B, and

v, transform into &' and n' as follows¥

b) - (2 )E)

where

-iq/2 -y/2 -ig/2

a = e .cos P e B b = -e singely/e.

The coefficients of transformation of Yl are
m

A (g-m) ! (£+m) ! (L-m') ! (f4m")!
(£-m'=A) ' (£+m=A) !N (Mm' -m) !

m'm

o ((a,8,7)) = 2 (-2)

0 - - - 1
(x) elm (0} c082£+m m'-2A g sin m+m' +2\ (16)

(2)

Considering the axial nature of the spectra (Figs. la-4a), we obtain D

m'o
form' = -2,-1,0,1, and 2 for Y,, terms, whereas for Y4m terms we find
. (1) (4) .
only the terms corresponding to D and Doa . It is necessary to note

(e]e)

*Do not confuse &, 1, £¢' and n' with the é€nt and £'n'C' above.

12



that the angle y in Wigner's notation is similar to ¢ of the Goldstein

+ ﬂ/2. For the case where the magnetic field is in one of the planes par-

()

allel to the c-axis we can take @ = o. Therefore we find only Dm'm(o’ﬁ’y)’
as follows:
(2) 2 Ne=n')!(2+n')! u-m'-2%<s>
b o _ Z -1 - CcOSs =
m'o( £7) A ( )(2—m'-%)3(2'%)3%3(2+m')3 §
' (17)
(X) sin™ +2A (-S—)

Therefore

D(ii(0:577) = bk {% Coséég -cos2 (Sjsin2(§> + % sin4<§>
:1

cos® Bl . sin2<é>] 2_4L 251n<§) cos<ﬁ) 2

[ (2) - 2 2 [- ) 5 | (s

- x 2,
= 2(5 cos“B-1),

1]

(2) A A JE 3-2h . 1+208
DlO(O;BJ')') = ;\' ('l')‘, (1_7\) ._1“(2_7\)37\‘,(7\_’,‘1)3 cos . E sin §
= %(cos g sin g - cos g sin %) (19)
N6 o
= _Z sin B cos B,
and
(2) A It 2-2) 2+2)\ )
D Py b Z -1 -é i E
20 (0,8,7) A (-1) (-N) H(2-N) I (W2) ! °o° (2) o 2
(20)
= cose g sin2 % = % sinEB.
)
Since Dm'm(o,B,y) coefficients are real, it is obvious that
1 m'
o) e = (0" 2o, (21)
-m'm m'm

15



giving

Dsié(o,ﬁ,y) = ~‘£% sin B cos B (22)
and
2
ng())(o,fs,y) - -i‘:sineﬁ. (25)
For transforming the remaining terms, it is necessary to find D(gg and
(&),
D,os'
(1) A )2 8-2) 2\
D 00(0,5,7) = % (-1) [(u_x)g]gixj)g cos g sin g
8 2 ) 2 2 4 4
= "B . (&) Bsin B 4+ (1) B B
cos G2 cos Zsin 3 + EDE cos = sin
(k)2 2% ° %
- cos — sin — + sin —
(31)® 2 2
' 2p 2g\2 2 2 (24)
= (cos = - sin —) - % cos p(l-cos B)
2 2
+ 5(1-2 cos®p+cos?p) = %{8 cos*p+2l cos*p-2hcos3B
+ 3-6cos2pt3 cos®B] = §[55 cos4B-30 cosp+3],
and
(&) 2 N Ca1-2n/a\.. -5+2_x<5) iByl
Dos = E(’l) (BN T(7-N N (A=) T 0% '<‘§>§1n )
5 34 s 3 5
= —MJJ7T cos P sin BelX? 1 cos B gin B 13y (25)
13! 2 2 L1zl 2
= _‘éig%e517 sinSB cos B.

It is evident that

14



D(“i I TR A (26)

- e sin B cos B.

Considering the Egs. (3-5) and substituting for Yoo, Yao, and Yu+s, one
finds for the transformed potential in the magnetic coordinate system

V'(QSJ¢')B;7)T):
2

2
V(0,9 ,8,7,r) = AggYo, * Az }: ,i (0,8,7) Yam,(0',9")
m'=-2

+

216D(8(0,8,7) Yao(0',41) + ALo[Dlg) (0,8,7) (27)
ihfgg—Déi)(o,a,y)(Y43(e',¢')-Y4-3(9',¢'»J

The electric field represented by Eq. (27) does not predict any splitting
of the magnetic levels of Mh++ ions; but a splitting of the levels does
exist (see Fig. la-ba), and Eq. (27) must be modified to include the spin
operators. This has béen done by Bleaney and Stevens9 by a method similar
to the one they used for substitution of Yzim(g“,¢') with L, operators.

lO: instead

An alternative procedure is suggested by Kikuchi and Matarrese
of writing the Yzm(O’,¢') as a function of x, y, and z [see Egs. (6-7)]

and then substituting x, y, znd z with appropriate linear combinations of
Sy s sy, and s, as shown elsewhereg, one can substitute those Yzm functions

11
with Racah's Tk tensors. These tensors are generated by the process
q

T = [k¥-q(g-1)]. [s-, T (28)

kg-1

To obtain all terms of Eq. (27) as functions of the spin operators, we
have to define Too and Ty44. According to Kikuchi and Matarrese they can

be taken as:

15



-1/2
Toge = 6 / S8, Tara = (16) " J70 s (29)

Substituting from Egs. (28-29) for the Yzm's of Eq. (27), and substituting

from Egs. (18-26) for the D;f;(a,ﬁ,y) of Eq. (16), one obtains

1
Vi(r,0',0',8,7) - Ago¥os = Thzo [‘2'(5 cos®B-1)Tao+ny sin B cos B
!
(x) (T21-To.y + n2 sin®p(Taz+Ta.2) + % Ao
1
(x) (35 cos*0-30 cos® 6+3)Ty + g A,

(x) [(55 cos4B-30 cos3p+3)Tuot8 rjig%s sin®g
(x) eos B (e 7Tag-e"171, 5), (30)

where the n parameters are numerical constants arising from the substitu-
tion of szﬁs for YZm’s. The energy associated with each magnetic level
M, m of the Mnt* ion to the second-order perturbation can be found from

the Hamiltonian

W= eBSTE+ALS' + V' - Ay Yoo - gPE L (31)
and is
E. (B,7) E T, E .
Mn 8)7 - Mn Mn

Eﬁﬁo) - Eﬁ&l) + Eﬁég) (32)

ESPC

)

where f and h denote the fine and hyperfine structure and M and m the
electron and nuclear spin gquantum numbers respectively. For transitions

due to AM = + 1 and Am = O corresponding to [EMm(B’7)'EM-l,m(B’7)]/gs’ we

16



will find*:

y— l - 2
Hl_M = % <>z %,m,B;VJ = Hoi~{FDFl + 2pa + EFQ}“' 52%Fe
- a2 [ - (32)
+ 'I'_I'—Fs Am - EE['—E' - m@ * ll-mJ + €3
H [M = % g <> %,m,6,7+n} = Hy i{thFl + 2p'a + %Fé}
) _
D2 D2 A2 [25 2 }
- 32E;F2 + ﬁ;Fs Am - oA [M -m° £ km | + €1,
L s Dessl ] Spa - 2Fg b + 22
H [M = & 5 <> 5,1, B,?J = H ¥ {jQDFl - —pa - 2& + ﬁg—Fg
] (34)
2
2D, _a -A_a_[éi-mzisz+e2;
L H, oH Lk
H ':M = % —g- <> g:m)B:'}':"’ﬂ} =H + {QDFl - E'P a - 2—14- }*
) (35)
2
+ EQ—FQ -2 Q—Fs - Am - A [22 - m? Em:] + €25
H, 5 2H, L
and
1 1 16D% op®
H [M = & 5 <> - 'é;m:ﬁ: :\ = Ho * Ho Fa - —I% Fa * €3 (36)

where D = stAp, is the so-called axial field splitting of second degree
(4 = 2); F is the axial field splitting parameter of fourth degree (£ = L)
related to Aly [Eq. (30)]; a is the cubic field parameter associated with

A%o; Fi corresponds to the first-order perturbation and Fz and Faz to the

*Do not confuse B,y with P in gB, which is Bohr magneton.

17



second-order perturbation; and p, p', and g are related to n'Aﬁo and

n”Aﬁo. These parameters can be obtained from Eq. (30) as follows:
- 1 2
F, o= 5(5 cos®p-1), (37)
Fo = sinZB coszﬁ, (28)
4
Fg = sin™B, (59)
4 2
g = 35 cos PB-30 cos B+3, (40)
3
p,p' = - %5 + sin B cos 3y (41)

12
The coefficients €y €2, and €z are derived elsewhere and have the values

o - {30}/, (2)

2 = -a® (5(3+178¢-625¢")/48)/H,, (43)

es = a2(10¢(7-25¢)/3)/H,, (4h)
where

b = 1%0® + 00+ 0202, (b5)

L, m, n being the direction cosines of H referred to En{ axes of the cubic
field. [See Fig. 5 and recall that «,B,y here are not necessarily the
same as those in D;fm(a,s,y)]. Comparison of Figs. l-L4 reveals that the
magnetic field lies in the (lOIO) plane of the hexagon; thus y = /6 and

7'= 7n/6 yields p = p' = 11/12. For this special case one has (putting

18



B =0)
H LM = + % <> & %,m,@] = H ¥ ‘{2D(52cos e-1) - a-k
’ 2
(x) (35 cos*6-30 c0529+5)} - 52%— cos®0 sin?e (46)
o
2 2
+ I]Z—sin‘*g - Am - gﬁ; G-i - n® ¢ l&m>+ €1,
o
- o
H [M = -Z-@ + Z,m,p = 0,r = %j = H, -'riD(3 cos20-1) + %—(a—F)
35 cos 0-30 cos-0+3 D2 5 D2
(x) z + b= cos®0 sin®e - T sin%o - mA
- ° (47)
\
- %%.(2- - m % 2m)+ €2,
o
H \:M . i;m,ﬁ e,r = ﬂJ = H_+ 1602 55125 cos20 - 2D sin®o
2 2 6 © Hy Ho
(48)
ma - A2 {20 _ g2 ) 4 €.
2H \4
For @ = 0,
3 _ L
H [M = §+§,G = O,m:I -H, = -L4D+ 5(a-F)
' : (49)
- Am ji-B—B-m2+l¥m + €1
oH, \ 4 ’
H[M - 1,30 =O,m] ~H, = -2D-2(a-F)
2 2 . 3
(50)
- Am



H[M = __5_->-}-,9=O,m:‘~H =2D+2(3‘F)
2 2 )
R (52)
- Am - A” Ez -m? - 2m| + €p,
2H,
and
2 ) b
H [M = - E > - E,G = O,m] - Ho LD - g(a-F)
A2 (53)
- Am - o %2 m2 - km| + e
0
In all the AII BVI compounds of sphalerite and Wurtzite structures studied

so far, A has been found to be negative. Therefore the low side and high

side fine-structure components such as QIS ..... aﬁs ..... B BLS ..... and
Brgr (see Figs. la-La) are related to m = -5/2 and m = +5/2 respec-

tively. It is also wellknown that the relative intensities of the reson-
ances corresponding to M = 5/2 <> 43/2, +3/2 <> #1/2 and -1/2 + 1/2
transitions vary as 5:8:9. Thus the transitions Qj..... Og and d3..... Os
(see Figs. la-4a) represent the M = #5/2 <> * 3/2 transitions. Consider:

ing Egs. (49) and (51), one has

_5A
Equation (54) indicates that A for -5/2 + -3/2 transitions should be

NN

2 m = 5) - <+5 + 2= _5>
<> * m = + Hitz <>+t m 2
2’ z 2 2’ 2

(5k)

1042/ Ho.

+

1l

greater than A for 3/2 + 5/2 transitions. Comparing the data in Table I
and Eq. (54), we find that a-, B-, y-, ®-, and A- absorptions in Fig. la

correspond to M = -5/2 + -3/2, -3/2 > -1/2, -1/2 » 1/2, 1/2 + 3/2, and

20



3/2 + 5/2 transition respectively, and that the individual lines such as
Orseses Og in each group correspond to nuclear magnetic quantum numbers

ranging from m = -5/2 for Q3 to m = +5/2 for Qs.

C. DETERMINATION OF g, A, D, a, and F

To compute g [Eq. (30)], a strong set of six lines corresponding to
v transitions (Fig. la) has been considered. This set is believed to be-
long to the cubic crystallites inside the crystal. The g factors at € = 0O
and © = 90° are obtained through hydrazyl with the magnetic probe being

located close to the bottom of k-band cylindrical cavitys:

g12(6 = 0) = 2.0056
6 = 90° = 2.00

g (6 = 90°%) 55

A comparison with o, B, d, and A transitions reveals that the g corre-

sponding to the hexagonal components is slightly smaller, and that at

© = 0 we have
h ~
g11(6 =0) = 2.0050 (56)
The computation of A has been carried out through the relation
~ 1
|a] = 5 (76 - 71)

with the following results:

A = - 65.09 gauss or - 60.86x10"% cm%,

c (57)
A7, = - 65.02 gauss or - 60.78x10™% cm™?,

21



and
AEl = - 65.4k gauss or - 61.18x107% cm~2.
Considering Eqs. (49-53) and Table I, one finds:

- 8D + %(a-F) = 3672.19 gauss

(58)
- 4D - %g(a-F) = 1781.01 gauss,
giving
D = - 455.03 gauss or - 425.1x107% cm~1. (59)
Equations (58) give:
a-F = 11.8 gauss or 11.05x10"% cm~?.
Tt is found'” that
a = 17.66x10"% cm™1; (60)
therefore
F = + 6.61x107%* cm™?. (61)
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III. DISCUSSION

In Table IT the parameters g, A, D, a, and F corresponding to the

hexagonal AII BVI compounds Zn0O, ZnS, ZnSe, CdS, and CdSe are given.

TABLE IT

Mn*+ ESR PARAMETERS IN HEXAGONAL Ay Byp COMPOUNDS

Crystal g AxlO4cm-l Dx10%em™* ax10%cm ™t Fx10%cm™* T(0K) Ref.
7Zno 2.0016%6 -76.0+. 4 -216.91+2.2  4+6+1.5% - 7 a
ZnS 2.0016+1 -65%1 -105+2 =7 .61 ** - b
ZnSe 2.0050+5 -61.2%5 425,141 +17.66 +6.61 300 c
cas 2.0029+6 -65. 3%k +8.242.2 +h. 241 . 5% 300 a
Cdse 2.0042+10  -62.7%.5 +15.2+.5 +1h, 3+1 -211 T7° d

¥In ZnO and CdS these a factors should be considered a-F
*¥F here is actually a-F

P. Dorain, Phys. Rev. 112, 1058 (1958).

References: a
b. Keiler et al., Phys. Rev. 110, 850 (1958).
Cc
a

This paper.
Reuben Title, Phys. Rev. 130, 17 (1963).

It is very interesting that D is negative for Zn compounds but is posi-
tive for Cd compounds. There are two different mechamismsllL contribut-
ing to the D parameter. One involves the spin orbit interaction to sec-
ond order and the axial field of a single d-electron and the cubic field
to fourth order. The other mechanism mixes some 3d%L4s configuration with

5 . . . . . .
3d configuration. These mechanisms give rise to the expression
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2
D = Dy + Do = a3 + ag | —— (62)

where a; and as are constants depending on €, the spin orbit coupling fac-
tor, and the difference of Mn™t orbital energy levels. According to Watan-
abe,lu D, is more pronounced than Dz; therefore we can assume that in an
ionic picture the D parameter in different compounds varies as R™3 (R is
inter-ionic distance) provided < r2 > remains the same. In Table III the
values of R; and Ro (Fig. 5) are given. A comparison of D values for Mo+t
in ZnO, ZnS, and ZnSe (Table II) with the theoretical values obtained

from Eq. (62) and Table III reveals that

D D

0 Zn0 .

Zn = 17, = 2 (63)

Dyns T DZnS 0

and

Dzno Dzno )
= 2 = O- 6

Dznse T ? Dznse R 2 ( )

where E and T stand for experimental and theoretical respectively. It is
evident that though an ionic model for ZnO and ZnS gives a satisfactory
result [Eg. (63)], it fails to account for the large value of D in ZnSe.
This discrepancy is also present in CdS and CdSe. Therefore it is nec-
essary to take the effect of covalency into account. The factor D can be
expressed as a function of degrees %i of covalency and overlapping inte-

15

grals Si as follows:
D = -5.05Acm™?%, (65)

2k



where

A o= (8'2-82) - (N'B-N3), (66)
NS (éi'N¢npO)/N¢5do‘ (€6)
TABLE III
CRYSTALLINE PARAMETERS OF AII BVI COMPOUNDS [ (R-x) = R(A®) ]
Crystal 8, (A°) c(a%) c/a, R, (A°) Ro(A°) Ref.
Zn0 3. 2426 5.1948 1.603% 1.95 1.98 a
7Zns 3.811 6.234 1.636 2.33 2.33 a
ZnSe 3.98 6.55 1.645 2.45 - b
cas h.131 6.691 1.619 2.51 2.53% a
CdSe 4.30 7.02 1.6%2 2.63 2.6k a
References: a. Wyckoff's Crystalline Structure.
b. Crystallography 5, 364 (1960).
¢ and ¢ denote the wave functions corresponding to the 3rd and the
3do npo

np electrons of Mntt and ligand with JZ = 0. It is obvious that n has

the values 2,3,4, and 5 for the ligands O, S, Se, and Te respectively.

Considering Fig. 7, one finds that

= [aa—mz]l/g; kZ = g(az—a2/h) = a 2/3,

oo

1/2 (7=
% = [2a 2/3] / or ¢ = 2a~N2/3,
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Fig. 7. Ideal hexagonal packing.

and
(8/5)1/2 = 1.6327 = 1.63.

Comparing Eq. (69) with the c/a ratios obtained for Zn(0,S,Se) in Table
III, one finds that in ZnO the tetrahedron of oxygen ions is squashed
along the C-axis, whereas in ZnSe it is elongated along the C-axis as

shown in Fig. 8. This indicates that in the case of ZnO the relation be-
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tween the overlapping integrals SI’ S 1’ and SIV is

I’ SII

S_.,>8

v = St S11 °F S1170 (70)

whereas for ZnSe it is

SVI < SI’ SII or SIII' (71)

Assuming SI = SII = SIII = S and SIV = S' and recalling Eqs. (65-66),
one obtains

s21(Zn0) > s3(Zno),
where

S'2(zZnsS) < s2(znS) -
and

s'%(znse) < s°(2znSe).
Therefore the overlap model (A' = O) gives a correst sign of D for ZnO

but an incorrect sign for ZnS and ZnSe. Consequently we must invoke the

covalent model (A # O) for ZnS and ZnSe, so that
(5%-8%) - (\'22%) > 0. (72)

Equation (72) indicates that for ZnS and ZnSe, the covalency effect is more
pronounced than overlapping, and that A'2 < A2, 1In the case of CdS and

CdSe we expect that A'Z > A2 because the c/a ratio for these compounds
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Sse O (W)

Fig. 8. A schematic representation of the surrounding Se
ligands around the Mn*t ion in ZnSe:Mn.

(Table III) is less than 1.633. Therefore, according to this model we

expect
D(cds, caSe) = - 5.05[(5'%-82) - (\'E2-23)] > 0. (73)

Experimental results (Table III) confirm this prediction for the D value
of Mn++ in CdS and CdSe. Further investigations regarding S and A co-
efficients and their explicit dependence on the one-electron wave func-
tions are under consideration. Until such relations are established, the

only conclusion that can be drawn is that in the selenides of Zn and Cd
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the covalency effects play a major role, whereas in their oxides the ion-

icity is more pronounced.
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