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ABSTRACT

Molecular orbital techniques have been employed to find the cubic
field splitting 3a of (3d)5 6S ions in II-VI compounds of Td symmetry.
The parameter 3a is calculated by perturbation analysis, through spin-
orbit interaction Z cl Qi between the ground state t 3 ea2 6Al and
excited states |t p* S; b e 4 S, hys ¥ S5 ngs S h . Here ty,e, are
the antibonding orbitals of the complex composed of the (3d)° 65 ion and
its four nearest ligands and p and 4-p are the hole configurations of
orbitals ta and e, respectively.

The perturbation calculations have been carried out up to the
fourth order which is the lowest order necessary for the splitting 3a to
occur. Moreover, these calculations have been limited to the very small
number of states which arise exclusively from those initial states t P

h.y e S, h ...... ves . .
Sl 1° €, 5 By with Sl’ S2 having their maximum value

3a = ZC tg— cpl

i=o

where 24 and cp are spin-orbit parameters of the d-orbitals of (3d)5
ion and p orbitals of the ligands respectively. The coefficients Ci are
functions of coefficients of linear combinations of d and p orbitals
which give rise to the molecular orbitals ta, e and vy. They are also

a

functions of energies E,, required for promotion of a hole from a state

jk
|Xj Sj hj > to another state Xi Sk hk >. The Xj and Xy in above states
describe the hole configurations of orbitals ta’ e s Y and their coupling

scheme.

ix



Numerical results, obtained for states |xS = 5/2 h> of Fe3t in
the series of ZnS, ZnSe and ZnTe compounds with a reasonable set of
coefficients of linear combination of atomic orbitals and an average pro-
motion energy of 32000 cm_l, indicate that the term C4 Cp4 contributes
a large negative value to 3a in agreement with experimentally determined

3a of Fe3+ in ZnTe.



CHAPTER I
INTRODUCTION

The importance of the concept of spin Hamiltonian in electron spin
resonance (ESR) is very well known.* The techniques of the measurement
of the parameters in this Hamiltonian are also well developed. However,
the attempts to interpret the measured values of the parameters have met
with partial degree of success.

A particularly puzzling discrepancy has been the ground state
splitting of the iron group S-state ions in II-VI compounds of T4 sym-
metry. The first ESR measurement of this splitting was made on ZnS:Mn

1 This was followed by Watanabe's theory+ which

by Matarrese and Kikuchi.
predicted the 3a of a given S-state ion, in several compounds with the
same formal charge, should decrease as the metal-ligand distance, R,
increases. Predictions of this theory were given support by the measured
3a in II-VI compounds with Oj symmetry. Subsequent measurements showed
that such is not always the case for every compound such as CdS:Mn and
CdTe:Mn?. The 3a in CdTe:Mn was larger than that in CdS:Mn. This(pbser-
vation indicated that the point charge model is not adequate for the
explanation of 3a in covalent II-VI compounds and the covalency effects
should also be taken into account.

The purpose of this work is to explore the contributions to 3a
caused by the above covalency effects present in such compounds such as
CdTe by invoking the molecular orbital theory instead of the above-
mentioned point charge model. In order to obtain an insight into the

sources of such contribution to 3a, as well as to the mechanisms causing

*A. Abragam and M. H. L. Pryce, Proc. Roy. Soc. A, 205, 135 (1951).
Ibid, 206, 164. TIbid, 206, 173 (1951).

*+See Reference 5.
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the splitting to occur, a brief introduction to calculations based on the
point charge model should be very helpful. Therefore, we proceed by
giving a review of the previous work on 3a first, and then, we arrive at
the possible covalency phenomena affecting this parameter.

The ground state of the free ions Cr+, Mn2+ and Fe3+ is six fold

degenerate with the spectroscopic classification of (3d)5 6S Sub-

stituting such an ion in the metal site of cubic II-VI compouiéi, such
as Mn2+ in the Zn2+ site of ZnS, one finds from electron spin resonance
(ESR) spectra of the system ZnS:Mnl>2, that the ground state of the S-
state ion splits into a spin quartet U' and a spin doublet E". This
splitting is called the cubic field splitting of a (3d)5 685/2 ion and
is denoted by the parameter 3a = E(U') - E(E") with E(U') and E(E") as
the lowest energy values of levels of symmetries U' and E", respectively.
The crystalline cubic field can be expressed as:? V = a (15)_l
(@ + 571 ¢ & ot

V for two states |y L ML >and |y' L' M'L > are:

T44 + T4_J). The matrix elements of tensors T
*

<yLM| Tq(k)lY' L' > = (DM _;Lz L;,
L

x) (v LIIT(k)||Y' L') 20, forL=1L"=0;%k=24

6 . .
This result indicates that the ground state S is not split

5/2
by a cubic field but that the splitting is caused from admixture of the
ground state by excited states through perturbation by spin orbit cou-

pling, spin-spin interaction, etc.

*
B. R. Judd, "Operator Techniques in Atomic Spectroscopy,' McGraw-Hill
Book Company, Incorporated, New York, (1963), p. 42



A similar ground state splitting was manifested in an observation
of the anisotropy of the magnetic susceptibility of paramagnetic crystals
containing Mn2+ such as Mn (NH4)2 (804)2 6H20. To explain this, Van
Vleck and Penney (1934)3 considered various higher order processes
involving the cubic field V and the spin orbit interaction, Hp = E Ci &:§i
through intermediate excited states using the order of magnitude argu-
ment to estimate the resulting splitting. Later Pryce (1950),L+ in
explaining the same splitting for Fe3+, pointed out the inadequacy of
mechanisms proposed by Van Vleck3and attributed the cubic ground state
splitting of Fe3+ to a fifth order perturbation quartic in Hp and
linear in V. The work by Pryce was followed by Watanabe (1957),°
who based his calculations of the cubic splitting on the complimentary
theorem in the crystalline field splitting of the transition ions. He
argued that two ions with complementary electronic configurations, such
as T13+and Cu2+ whose ground level can be split by the first power of V,
have always inverted splitting patterns with respect to each other when
placed under the same crystalline environment. Based on this theorem,
he concluded that a 3d5 ion is its own complementary and that any split-
ting arising from the first power of V should be both positive and ’
negative, and hence identically zero. Proving, in this way, that linear
contributions of the cubic field cannot contribute to the splitting, he
extended the fifth order perturbation suggested by Pryce to the sixth
order so that the crystal field contribution could appear in the second
power and spin orbit interaction in the fourth power. In additiom, he
included contributions from fourth and fifth order perturbations by cubic
field, spin orbit and spin-spin interaction. In these calculations, the

excited states considered were spin quartets; 4P, 4D, 4F and 4G of the

(3d)5 configuration with excited energies in the range of 30 to 50 x 104
cm-l. The splitting 3a obtained from these calculations is positive, and
varies from about 10_3 to lO_4 cm_l. It seems to satisfy the scant

experimental data available at the time. (See Table 1, Ref. 5.)



Upon comparing the excited state energies of 5 x 10u em™Ll and the
cubic field splitting 3a of the order of 1070 cm™L obtained from fifth and
sixth order perturbations, there is an indication that none of the con-
tributions which might arise from other excited multiplets of (3d)5 con-
figuration can, a priori, be ignored. Indeed, there are spin doublets;
ZS, 2P, 2D(3), 2F(2), 26(2), 2H and 2I lying in the region of 45 to
100 x 10° '

of 4D and 4F and can contribute to the splitting. Powell et al (1960) 6

cmhl. Some of these such as 21 and 2H may be in the vicinity

took all of the doublets 2S.....ZI into account and carried out sixth
order perturbation calculations with and without spin-spin interaction.
They found that the inclusion of doublets increases the predicted split-
ting by one to two orders of magnitude as compared to the predicted
splitting arising from spin quartets alone. Their calculated results,
for the particular case of MgO:Mn2+, agrees with experiments, provided
that the spin orbit interaction constant, Cd of Mn2+, is taken as 400
cm-l and the cubic field strength, 10Dq of Mgo, as 10500 cm™L.
Both of these are unreasonably high. Low and Rosengarten (1963, 1964) 758
carried out calculations similar to that of Powell et al without Spin:
spin interaction but they included the orbital polarization factor a,
called Tree's correction factor.? Their conclusion was that crystal
field analysis is relatively successful in explaining the position of
energy levels of the d5 manifold, but it is not capable of explaining
the finer parameters such as the cubic field splitting, 3a, and the
spectroscopic factor, g, both measured from ESR spectra of 3d5 6S ions.
A comparison of the above theories with ESR measurements on Mn2+
in several compounds was made by Hall et al (1961) .10 They observed
that their measured 3a for Mn2+, in a number of fluorides and chlorides,
could be accounted for by Powell's theory, whereas the agreement for
Zn0 got worse. For very covalent compounds, CdTé? and ZnTe,11 a dis-
crepancy of almost one to two orders of magnitude can be found. This
indicates the inadequacy of Powell's purely ionic model for covalent
systems. Another area in which both Powell's and Low's theories have

failed is the spectroscopic g value. These theories predict a g value, for



an S-state ion such as Fe3+, as less than the 8 T 2.0023 of the free
electron, in complete contradiction to experimental observations that
the g parameter of Fe3+ is larger than 2.0023. Most of these investi-
gators have attributed these irreconcilable discrepancies to the ligand-
to-metal charge transfer processes such as those suggested by Fidone and
Stevens!? and by Watanabe !3-1% for the evaluation of Ag = g - g, An
initial study for the determination of the charge transfer contribution
to 3a, patterned after Watanabe's work, was carried out by Azarbayejani
et al.ld

These calculations included the construction of appropriate molec-
ular orbital (MO) wavefunctions and the allowance of ligand-to-metal
electron transfer. In constructing the MO wavefunction, o-bonding
approximation was invoked and the cubic field splitting was obtained by

a fourth order spin-orbit perturbation calculation.

It was found!S that 3a 3a, = 0.1728 el - e11/87) 51'3,
where A = L4 is the single electron spin orbit parameter, g2 =1 - az
is the covalency of the d orbitals of 3d5 6S ion and €,. and §, are

related to ligand-to-metal electron transfer energy. ;iom frei ion
optical spectra (Ref. 16, p. 437), an approximate value of 24 =350 cmfl
may be taken, and from a comparison of the hyperfine structure constant
in crystals to that of the free ion,17 82 may be estimated. For the par-
ticular case of ZnS:Mn where Lq = 350 cm—l, 82 = (.22 energies 61 of the
order of 8000 to 10000 cm—l give qualitative agreements with the measured
3a. The most encouraging aspect of these 3a results is their correct
trend for Mn2+ in going from ZnS to ZnTe because 61 is expected to
decrease as one goes from ZnS to ZnTe in accordance with Bube's con-
clusions on acceptor levels in II-VI compounds.*

In the present work, we have extended our previous analysis15 to

include m-orbitals in addition to the o-orbitals. This has introduced

*
R. H. Bube, "Photoconductivity of Solids," J. Wiley and Sons, Inc.,
New York (1960), p. 171 (Fig. 6.4-12).



extra orbitals in the charge transfer wavefunctions. Most of the desired
spin orbit matrix elements for the determination of 3a arise from the
above wavefunctions and contain three or four orbitals. Since no expres-
sion for the evaluation of these matrix elements is available in the
literature, general formulae for obtaining such matrix elements have
been found first, and then, 3a has been calculated.

A brief introduction to the method of measuring 3a and the values
of 3a for both the octahedral and tetrahedral II-VI compounds is given
in II. Spin orbit matrix elements between excited spin multiplets is
considered in III. The cubic field splitting 3a from these charge trans-

p _4-p

fer states, t,” e “7,is obtained in IV and is discussed in V. Con-

2
cluding remarks are given in VI.



CHAPTER II

EXPERIMENTAL DETERMINATION OF THE CUBIC FIELD
SPLITTING OF THE 3d5 S-STATE IONS

The purpose of this chapter is to give a brief introduction to the
method of measuring the cubic field splitting, 3a, of the S-state ions
such as Cr+, Mn2+ and Fe3+.

The equipment employed consists of an electron spin resonance
spectrometer such as the Varian V4502 EPR spectrometer in a 12-inch
rotating electromagnet. Most of the measurements have been carried out
at 4.2 and T77°K with a few being performed at 300°K. The magnetic
field, associated with a spectral line, has been obtained by first tuning
a Varian F-8 Fluxmeter for the proton resonance at that field and then
measuring of the proton resonance frequency by a Beckman 7370 electronic
counter. The frequency of the microwave source used in the experiment
was determined by first finding one of its subharmonics through Beckman
transfer oscillator and then measuring the frequency of that subharmonic
by the above mentioned counter.

The ESR spectra of Mn2+ in Ca0 and ZnTe are given in order to
serve as representatives of ESR spectra of 3d5 6S ions in octahedral and
tetrahedral II-VI compounds.

In the octahedral case (Oh), the paramagnetic 3d5 6S ion is sur-
rounded by six ligands or nonmetal nearest neighbors as shown in Fig. 2.1.
These lie along the six crystallographic directions [100], [010], [001],
[100], [010] and [001] with the paramagnetic ion at the origin of the
coordinate system.

On the other hand, in the tetrahedral case (Td), the paramagnetic
3d5 6S ion is surrounded by four nearest neighbors lying along the four
crystallographic directions [111], [111], [111] and [111] as shown in
Fig. 2.2.



The expression for the crystalline field of these ligands of the
central ion is the same for both cases, provided the coordinate system
is chosen as shown in Figs. 2.1 and 2.2.

Denoting the angle between the d.c. magnetic field and one of the
coordinate axes such as z by 6, we have shown the spectra at 6 = 0 for

Mn2+ in Ca0 (Fig. 2.3) and ZnTe (Fig. 2.4). As mentioned above, the

. ,
0

1001}
(100
0////
o L2 0y
0 & & [ lOIOIO
0
oo 1001)
gzo
Fig. 2.1. The octahedral coordination Fig. 2.2. The tetrahedral coordination
in cubic II-VI compounds (CaO:Mn). in cubic II-VI compounds (ZnTe:Mn).
L
Mn2t Pt o vt

Fig. 2.3. ESR spectra of V4%, Cr3+, Mn2+ and Fe3+ in a single crystal of
Ca0 at 6 = H A [100] = 0 and T = 300°K
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proper choice of the coordinate system has allowed us to analyze the

spectra in both 0h and Td cases by means of the same spin—Hamiltonian:*

H =g H-S+AI'_S_+a(SX4+Sy4

4 n /
+ . . - .
=8B HS+AL +5, /64 1K 8 - gy gy Bl

(2.1)

Here, g is the spectroscopic g factor, A, the hyperfine structure
constant, 3a the cubic crystalline field splitting, A'n is the super-=
hyperfine coupling coefficient and the last term is the nuclear Zeeman
effect. The brief reports on the measurements of g, A and Ja of
7nTe:Mn and Ca0:Mn obtained by using (2.1) are made previously. A
brief introduction to the calculation of these parameters from the
spin-Hamiltonian in (2.1) is as follows:

For 6 = 0, the spin-Hamiltonian of (2.1) may be rewritten as

Hs(e =0) =g Be HSZ + AI*S + a T4O + \[5/14 (T44 + T4_4))/15
(2.2)
in which P
_ 4 *2 2 2 *2 %4 :
T40 = [35 Sz - 308 SZ + 25 SZ - 6S 7 + 3S ]/8 (2.3)

"~ and

%2

Tty 170 si4/l6; ST =8(S+ 1), 8, = (5, %15/ V2 (2.4

The Hs in (2.1) can be expressed as

H =H fs o hfs
s s s

*
B. Bleaney and K. W. H. Stevens "Paramagnetic Resonance' Repts. Prog.
Phys. 16, 108 (1953) p. 137.
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where

fs _
Ho =g B HS, + a [T40 +-'V5/l4 (T44 + T4_4)]/15 (2.5)

and

Hshfs = AI-S (2.6)

The energy of each M ’level can be obtained by solving the secular equa-

S
tion corresponding to the fine structure Hamiltonian uts given in (2.5)

i

fs
|| (g g = E Sppe| | =0 (2.7)
where
fs
(HS )M’I' = X (SM:Mv + y GMI\{' i4
4 2

X =[2Me + a (14M" - 95M~ + 184)/48]

y = \/Sa/Z
and

(]
I

g B, H/2

Substituting for (2.7) one finds:

E (MS =+ 1/2) =+e+ a
E (MS =+ 3/2) = + 3¢ - 3a/2 + 5a2/32€ (2.8)
E M, =+5/2) =+ 5¢ + a/2 i.5a2/32
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172

Ry
l -5/2
|
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l H
|
my -5/ -3 Ry ! 2 wn Y
|

Ms= 12 ¢—> Mg = =172
(b)
Fig. 2.5. (a) The splittings of Mg = % and -}% levels into six close

lying levels and (b) the splitting of the Mg = % +> Mg = -% transition
into six approximately equally spaced transitions.
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For many cases where the microwave frequency v,, used for ESR
measurements is about 10 KMC and a II-VI compound is the host material,
the ratio ¢/a = 0.01 - 0.1 for 3d5 6S ions Cr+, Mn2+ and Fe3+. In such
cases, one is able to use AI'S as a perturbation on the first term of
(2.5) which causes each MS level to split into six close lying levels,

As an example, the splittings of the MS = 1/2 and -1/2 levels are given
in Fig. 2.5. For the allowed ESR transitions (AMS =+ 1, AmI = 0) each
MS -1+ MS transition will split in 2I + 1 transitions. The number of
MS -1+ MS transitions which can be observed distinctly is 2S, provided
that the parameter A in (2.8) is large enough to offset the effect of the
line broadening.

The energy diagram of the MS levels of a 3d5 6S ion at 6 = 0 is
obtained as a function of p = g fH/2a (Table 2.1 and Fig. 2.6). The
numbers identify the upper MS values. Thus, the five transitions
Mg = =5/2 +> Mg = -3/2.....MS = 3/2 <> = 5/2 are designated by -3/2,
-1/2.....5/2, respectively. When the lines are well resolved one expects
to observe 2S(2I + 1) lines. This number for Mn2+ with § = 5/2 and
I=5/21s 30 (Figs. 2.3 and 2.7). These lines can be identified with
the electronic and nuclear magnetic quantum numbers MS and my by con-
sidering the fact that the intensity of the five lines 3/2.....5/2
belonging to any of the 2I + 1 quintets should vary as 5:8:9:8:5., There-
fore, the following assignments are possible for both octahedral and

tetrahedral cases (Fig. 2.7).

o Ai correspond to MS =+ 3/2 <+ 1/2
Bi, Gi correspond to MS =+ 5/2 <+ 3/2

and
y; correspond to M, = +1/2 >+ 1/2

S
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Fig., 2.6. Energy level scheme of 3d5 685/2 (Mn2+) in a
tetrahedral field at 6 = 0,
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Table 2.1. Variation of separation of Mntt ESR fine-structure
components at 6 = 0 as a function of p = gBH/2a = ¢/a

o | Esi2 B | FBae e | Fae B | PBua B | By | BsyoBe
0 -2.00 -2.00 1.00 1.00 1.00 1.00
1 471 -4.62 0.00 2.00 1.71 5.62
2 -9.59 -7.57 -1 3 4.59 10.57
3 -14.56 -10.55 -2 4 7.05 15.55
4 -19.54 -13.54 -3 5 10.54 20.54
5 -24.53 -16.53 -4 6 13.53 25.54
6 -29.52 -19.53 -5 7 16.53 30,52
7 -34.52 -22.52 -6 8 19.52 35.52

10 -49.52 -31.51 -9 1 28.51 50.5

100 | -499.5 -301.50 | -99 101 298.5 500.5
m =<5/2 =31 ~-1/2 1/2 3/?2 5/2
| W M 1
By % | L
o v 8 A P ve B

H

fouy

Fig. 2.7. Assignment of ESR spectra of Mn?* in both O and T4 cases:
(The spectrum belongs to Mn2t in cubic ZnS)

The next step to consider is the determination of the spin-Hamiltonian
coefficients g, A and a of (2). For a fixed microwave frequency Vo

these coefficients can be measured as follows:
g = hv /8, [(H ) +H )]/2

Al =g 8, [(h ¢ -H )1/ (2.9)
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and
v
lal < g B, LGy - B+ (o -1 )1/5

The signs of A and a can be determined relative to each other
with the sign of a being determined independently by its measurement at
low temperatures. The results of such measurements are given in
Table 2.2 and 3a and g are compared with predictions of the present
theories of these parameters in Table 2.3 and Fig. 2.8. The agreement
is generally satisfactory for the case of Mg0O, Ca0 and SrS, whereas dis-
agreement 1s observed for zinc and cadmium chalcogendies., These devia-
tions from ionic theory which arise from larger covalency existing in the

latter group compared to the former, have emphasized the need of a more

Table 2.2, ESR results of S-state ions in II-VI compounds

g Ct+ MnH FeH
'% E g o; A 8 3a A 8 3a A g Ja
5 E‘ 81 % |1t 1074en! | 107%cn™t 1074en™t 10-Fea?
Mo | o7 6|22 | - - - -81.0 | 2.0014 | 55 2,0037 615
Ca0 °n7 6 | 2,40 - - - -80.7 | 2.0009 | 17.7 2,0052 191
8t§ °h7 6 | 3.05 - - - -n 2,0009 4.2 - -
20 | cb |6 |nes [ - - - | -n 2.0016 | 18 2,006 123
28 | 12| o [236 | 134 10005 | 12 64,9 | 2.0025 | 23.7 2,019 382
208 °63 4| - - - - - - - 2,018 384
zse | 10| 4 )25 [ 133 |2.006 | 16.05 - - - - 144.9
zse | Cob [ 4] - | - - - | =617 | 2.0085 | s2.1 - -
ate| 72| 4| 2.66 [ 12.4 |2.0023 | 19.80 [ -s6.5 | 2,005 | 88.9 2.09 | -7800
cds | cob | 4282 | - - | w653 | 200 | 17 2.01 285
CdSe c63 412,64 - - - -62,7 2,005 4.3 - -
care | 1,2 | 4 {280 [ 12,8 19997 | 9.3 -55 2.0078 | 83.1 - -
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*
Table 2.3.” Comparison of ESR results with predictions of ionic theory

r [y ASE
Hatertel o rT Cr+ M:++ Fe+++ gT Cr+ Mn++ Fe+++

¥g0 0, 1.000 1.000 1,000 | <0 <0 >0
a0 0, 0.287 0.32 0,311 |<0 <0 >0
sts 0, 0.026 0.07 <0 <0
Zn0 Ceé 6.635 0.76  0.316 | <0 <0 >0
Zn$ Csi & sz 1.000/1.000 1.000 1,000 | <0 0 "0 >0
mse |ce s7,7 | 0685|134 2,108 038 |<o © >0 >0
ZnTe sz 0.301|1,65  3.751 -20 <0 ~0 0 >0
cds c63 1.000 1.000 <0 0 >0
CdSe 063 0.624 3.67 <0 0
CdTe sz 0.345 7.02 <0 < 0

*The vy and rg are the theoretical and experimental ratios of Ja respectively and
bg = g-2.0023, The ratio r1(4,3) = 3al:3ad = (aojt 301)10 with a, being the lattice
constant.

- 350 3a(10"%cm™)

COMPARISON OF EXPERIMENT 300
WITH CALCULATIONS OF WATA-
NABE, PGJ1 AND PGJ2

- 250
- 200
> (108+5C
£23Kk)
- 150

PGJ1 (DOUBLETS AND Wy, )(b)

WATANABE (a)

-2000 -1600 -1200 -800

Na {cm!)

Fig. 2.8. Comparison of experimental and theoretical values of 3a.
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realistic theory which takes these covalency effects into account. In
the next few chapters the dependence on the covalency of the parameters

given in (9) is pursued with a greater emphasis on calculations related

to the cubic field splitting 3a,



CHAPTER III
THEORETICAL

As mentioned in the last section, we intend to obtain the cubic
field splitting 3a by using the linear combination of atomic orbital
molecular orbital (LCAO-MO) techniques. The wavefunctions constructed
from these LCAO-MO's in a certain manner,* serve as excited states which
admix to the ground state wavefunction through spin orbit interaction
and cause a contribution to the cubic splitting 3a.

From this brief introduction, it is immediately evident that our
task is twofold: (1) to construct the LCAO-MO (henceforth denoted by
MO) and the desired wavefunctions and (2) to develop appropriate expres-
sions for the matrix elements of the spin orbit interaction in the MO
scheme. '

Since we are primarily concerned with the cubic field splitting, 3a,
in compounds of Td symmetry, our effort will be directed toward the
determination of the matrix elements of spin orbit interaction,

. . _n‘
H = E Ci &}-g}, between various wavefunctions of a complex, [I A4] .

P s

consisting of a 3d5 6S ion" " I and four ligands, Al""A4’ the whole
complex being located in a cubic crystal BA. For example, in the case
of manganese doped zinc sulfide, (ZnS:Mn), Zn =B, S = A, Mn = I,

n'

= 6 and the complex is [MnSA]_6.
In order to limit our analysis to those formulae affecting just 3a,
we proceed by defining the cubic field splitting and the symmetry of the

levels which give rise to that splitting.

*
The excited wavefunctions considered here, are those obtained from an

electron transfer from the ligand to the metal ion.

*h
A summary of the symbols is given in Appendix A.

19
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1. CUBIC FIELD SPLITTING

The following is a brief elaboration of the symmetry group of the

!
states into which the ground state of the complex, (I A4) - splits

= o, m?t, reH, n =57, L 1e).

*
The symmetry of the ground state of the above complex is of Al and
has a total spin S = 5/2. Thus, the ground state may be given as

[tz a,1™

the MO's giving rise to the Al state, their electronic configuration

Al S = 5/2>] or more simply by Ix A > where Xo denotes

and finally, the total spin values and the irreducible representations,
Sihi, of each of these MO which comprise Xo*
The symmetry group of the total Hamiltonian of the complex is
0 x U2 where O is the group of symmetry operations of a cube in orbital
space and U2 is the group of rotation in spin space. The representation
of 6Al, in the full rotation double group, G' = Ry x Uy, 18 J = 5/2.
The irreducible representations of J = 5/2 in G = 0 x U, are E'" +U'.
According to the irreducibility principle,+ the maximum number of
levels created by the perturbation of IAl S = 5/2> = |6Al> will be the
number of irreducible representations of J = 5/2 in G which is two levels.
The cubic field splitting is defined as the energy separation of

these two levels:

= E(U') - E(E'") (3.1)

where

) =9 @+ oy e® @y, o= oorg
(3.2)

Mulllken s notation (see Ref. 22) is used for all cases except when
mentioned otherwise. The state symmetries and energy terws are identi-
fied by the irreducible representations Ay, Ap, E, Ty, Tp, E'y E'' and U'
or the cubic double group where the molecular orbitals are denoted by
the small letters aj, ap, t and tj.

V. Heine, "Group Theory in Quantum Mechanics," University of Cambridge
Press, 1960, p. 45.
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Here, E(n)(F') (n=20, 1..., 4...) are the nth order contribution to
E(T'). The 3a will be positive or negative depending on the relative
magnitudes of E(U') and E(E'').

The Hamiltonians giving E(n)(F) will be examined in the next section.

2.  HAMILTONIANS

We wish to consider a Hamiltonian of the complex, [I Ah]

1
-n ,
, which

includes a zeroth order Hamiltonian, H., satisfying Hown = Enwn and a

0
perturbation Hamiltonain, H_, from whose matrix elements an between
wm and wn’ the corrections E(n)(F) may be obtained. Denoting the above

Hamiltonian by H.', one has

0

' =
HO HO + HP (3.3)

In the present work, we limit out perturbation analysis to spin orbit

. . *
interaction. Thus,

n"
i i
H = . .
» Z g, s (3.4)
i
and the zeroth order Hamiltonian, HO is:
n'l n" 4 n"
2 2 -1 2 -1
HO—Z Pi/Zmi—Ze r, +Z erij+ Z V(;ik)
i=1 1> k=1 i=1
,(305)
where n'' = 37, refers to the sum of the 32 valence electrons in the

- 1
molecular orbitals of the complex, (ZA4) n , and the 5 electrons located

in the d orbitals of the central ion I. The first term in (3.5), repre-

sents the kinetic and potential energies, the second one gives the

*
ri acts as an operator, being rq when operating on d parts of the ith
orbital and Zp when operating on the p part of the ith orbital.
(Appendix B)
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Coulomb and exchange energles and the last term gives the effect

of four ligands, k, separated from the central ion by r. Zy in
(3.5) refers to the effective charge of the central ion. The eigen-
functions and eigenvalues of (3.5) are usually obtained by approxi-
mate techniques. One of these is known as the self-consistent charge
configuration (SCCC) method. Ballha.usen25 used this last technique
to construct the eigenvalues and eigenvectors belonging to the

24

[MnOu]'l complex and very recently Basch et al™ ' extended the same
method to the 32 complexes of transition ions in compounds with

0Oy, or Td symmetries. The latter authors give an energy diagram for
the [FeClh]"2 complex. The levels lie from -220 x 10° ent to about
90 x 100 cm™L and they are classified according to their symmetry as

follows:

(ta?(16,)° a2t * (1) (3t () P (20) P (4t ) *(5¢.) ° (32 ) -

[ 4
o0

2
..3al have the symmetry Aj, Ty....A; of the cubic point group. The MO

where the superscripts are the electronic configurations and lal, 1t

configuration for Fe3+, in tetrahedral complexes as well as Mn2+ and Cr+

in such complexes will be the same as in (3.6) except the configuration

of (4tp)reduces from 4 to 3. The orbitals we plan to use for the construc-
tion of the excited wavefunctions are le, 3t2, t1, 2e and 4t,. To simplify

the notation, we label them eps ths tl’ e_ and ta’ respectively. Here,

the subscript b points out that ey, and ty :fe bonding orbitals with

E and T2 symmetries, respectively. Similarly, those with the subscript

a are the antibonding orbitals, whereas tl’ which does not have any
subscript, is a nonbonding orbital. A schematic energy diagram associated
with the above five orbitals; tb’ ey tl’ e and ta ?nd their corresponding
electronic configurations characteristic of [Z /\4]_n is given in

Fig. 3.1.
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Fig. 3.1. A schematic energy diagram of {[ZA4]"“', 6A1}comp1ex.

The pm in Fig. 3.1 are linear combinations of the components of
ligand p orbitals which are perpendicular to the interionic distance.
The po are the part of the p orbital projected along the interionic axis.
Having defined the nature of the orbitals involved, we now proceed to

construct the wavefunctions.

3. WAVEFUNCTIONS

We want to describe the spin values Si and the irreducible repre-
sentations, hi’ of the individual molecular orbitals (MO) giving risge to
the ground state and excited states. A knowledge of these is necessary
for the determination of spin-orbit matrix elements as will be seen
later (see 4). Therefore, we first consider the ground state and then,

discuss the excited ones.

3.1 Ground State Wavefunction

A description of the ground state wavefunction is being
sought which emphasizes the symmetry, spin and irreducible representa-
tion of the molecular orbitals which constitute it.

The radial part of the individual wavefunction will not be
included for simplicity and the spin orbit interaction parameter, ¢ (r)
of (3.4) will be considered as Cd for the d orbitals of’ ion I and ;
for the p orbitals of ligands A in the complex [I A ] (r = crt,
Mn2+ 3+ -- ——)'

y Fe” L A =0, L T,
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The orbital part of the ground state wavefunction can be

deduced from Fig. 3.1, in the following form:

e 6 \ _ -n 6, 4¢ 6, 2, 3,6, G 4y B 2 3 8
1%, A1>‘{[(ZA4) S SR T AL 1>} 1% ta A1>

(3.7)
where
X €=t 6 4t 6e 2t 3 is electron configuration (3.8a)
o b 1 "a
or
h_,o o o 2 3. . .
X = tb ey tl e ta is hole configuration (3.8b)
The irreducible representations of the molecular orbitals
tb’ e+ in (3.7) - (3.8b) are
r (tb) =T (ta) = T2
r (eb) =T (ea) = E
r (tl) = T1 (3.9)

The symmetry of the irreducible representations T2, E and Tl

of Td group can be deduced from the character table of this group

(Ref. 25, p. 383) given in Table 3.1.

2 C3, dd and S4 of Table 3.1 are classes

of symmetry elements of a tetrahedron as shown in Figure 3.2.

The group classes C

3.2 Excited State Wavefunctions - Charge Transfer Wavefunctions

We wish to describe here, the excited states created exclu-
sively by the process of promoting one electron from one of the three

orbitals t or t1 of Xoe in (3.8a) to any of the two orbitals e and

b? b
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Table 3.1. Double Valued Character Table of Group T4

Bethe Mulliken 1 R 8C3 8C3R 602 12 Gd 651‘ GSAR
ry A 11 1 1 1 1 1 1
ry Ay 1 1 1 1 1 -1 -1 -1
Ty E R R | -1 2 0 0 0
Ty T 330 0 -1 -1 1 1
rs Ty 3 3 0 0 -1 1 -1 -1
Te E' 2 -2 1 -1 o VI -2
ry E'' 2 -2 1 -1 0o -2 V2
rg v A | 1 0 0 0

— —

Fig. 3.2. Symmetry elements of a tetrahedron

ta in xoe. All other excited wavefunctions arising either from multiple
charge transfer or from the irreducible representationms, hi’ of terms of
tap and ea5-p which belong to spin values of Si =p/2 - 1 and 1/2 (5-p)-1
are ignored. A similar restriction is imposed upon hi after charge
transfer (hole transfer) occurs, and, as a result of this, all excited
states arising from tap' and eaA—p' (after hole transfer, the sum of the
hole configuration of ta and e, will be 4) which belong respectively

to spin values of S, = p'/2 - 1 or (4-p')/2 - 1, are ignored. For

i
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3

example, a hole transfer from t, in (3.8b) gives taz as a new hole con-

figuration for this orbital. The irreducible representations, (IR) of
2

t are
a

2 3 1 1 1
r (ta ) T1 + A1 + E + T2 (3.10a)

and similarly,

2

r (ea ) = "A + AL +E (3.10b)

From the IR's (3.10a - 3.10b) only those with the maximum spin of these

two shells, namely,

2 3
I‘max (ta ) Tl
and

2 3
r (ea ) = TA

max (3}11)

2

are considered and all the remaining spin singlets are ignored. The

electronic configurations of the complex, after charge transfer, and
their corresponding terms constructed in the above scheme are given in

Table 3.2.
Now we consider the determination of the spin

orbit matrix elements between spin sextets 6A1 of the ground state and

the excited spin sextets and quartets given in Table 3.2.

4, MATRIX ELEMENTS OF SPIN ORBIT INTERACTION

The matrix elements of the spin orbit Hamiltonian, Hp = i Ly 5}'§;
will be discussed in this section and Section 5.

A few initial comments are necessary to point out the need for the
development of new formulae for evaluations of the desired matrix elements.
Considering Table 3.2, it is evident that a matrix element between the
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Table 3.2. Charge transfer configurations and terms

Hole Configuration * Spin Sextet Spin Quartet +.
No, t, e ot e by E T1 T, El T1 T,

2 2 2 1 0 0 1 1 1 1 1 1

3 2 2 0 1 0 1 1 1 1

4 2 2 0 0 1 1 1 1 1 1 1

5 3 1 1 0 0 1 1 1 1

6 3 1 0 1 0 1 1

7 3 1 0 0 1 1 1 1 1

*These are the spin quartets obtained from the spin sectets by allowing
its total spin to add up to 3/2 instead of 5/2

*The MO's ta----ty, are linear combinations of atomic orbitals as will
be seen later (Sec. IV).

spin sextet of E symmetry from configuration 4 and the spin sextet of T1

symmetry from configuration 3 contain the four different orbitals, ta’

6

e s t, and ey which participate in the construction of 6E and T

1 1°
Therefore, the final matrix elements depend on the coupling scheme rof

the above four orbitals in 6E and 6T . The behavior of the sublevels,

Sihi’ arising from tap'; ea4-p' and ither orbitals tl’ ey and tb is
unique for spin sextets, but varies for quartets and doublets which in
turn gives rise to several hundred spin quartets and doublets. The best
technique for the determination of matrix elements of any operator
between a huge number of states with the same spin S and IR, h, but with
different configurations is the method of Reduced Matrix Elements.
Griffith2® has applied this technique to calculate the matrix
elements of the spin orbit interaction between various, Sihi of the
cubic group. Our analysis follows his very closely and gives rise to

new fofmulae for determination of the spin-orbit matrix elements between
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pairs of the spin sextuplets arising from coupling of three or four
orbits.*®

As in Griffith (p. 82), the matrix elements of spin orbit inter-
action, § gy &?~§F, from a pair of states |x ShJtrt> and

|x'S'"h'J't T > can be given as:

<x ShJt Tli Ty &}'gélx'S'h'J't T) = j{: <<X ShJtrt|xsShM 6>

M M'
6 8'
(x)(x ShM eli Ty &é'E}IX'S'h'M'9'><X'S'h'M'6'|x'S'h'J't T) (3.12)

where S and h are the spin and irreducible representation (IR) of the
state Ixsh>; M and 6 are, respectively the components of S and h, t is
an IR of the system in the cubic double group belonging to the resultant
of the coupling of S and h; J is an identification number used wherever
there are more than one t are, finally t is one of the components of t.
The first term in (3.13) is the reduced matrix of E Ty &é‘ﬁé from states
|x S h > and |x'S'h' > and the second one** is the coupling coefficient
which is independent of x and x'. The study of the coupling coefficient
will be reserved for Section 5. The reduced matrix elements will be
elaborated further in the next subsection and new results, not found in

the literature will be tabulated.

*

Griffith?® has given all the formulae needed, for evaluation of the
reduced matrix elements of spin orbit interaction, arising from two
orbits t9 and e of cubic group. As a result of this, his book contains

tables for spin quartets only (see Ref. 26 p. 126)
k%
Kjj' 1s exactly the same as the QJJ' defined by Griffith (p. 82)
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4.1 Reduced Matrix Elements

Here, the reduced matrix elements (RME),

<x S hl|z ) Wt sl||x'S'h'> (3.14)
i

of (3.13), will be discussed further with particular attention to the

effect of x and X' on RME. There are three classes of RME depending on

the nature of configurations x and x':

(1) Both x and X' include three orbitals with the same

configurations.

(2) Both x aud X' include three orbitals with different

configurations.
(3) x and x' include four orbitals with different configurations.

The formulae for obtaining the reduced matrix elements, (RME), associated
with these three classes of configuration are given in Sections 4, 5 and
6 of the Appendix C respectively, The numerical results are given gere
in Tables 3.3 through 3.5.

f

Table 3.3. Reduced matrix elements

1 1
|<x18n|[218447 87| 218 0> |
o 6, 6. |6, 4 |6, 6|6 4 |4 6 |4 o |4 6 [a
Xl = Xl N Tl- T2 Tl- T2 Tl- E Tl- E Tl- T2 Tl— T2 Tl- E Tl- E
34 G
e}, e ) O, [oe favao | ersx |- | - | ers 310k | --- | ---
e 23 e % Yt e | 77200 | 25 | as30x | 830 | 25+ | 1710 | 8/30% {2730
a 1 a b 1] bb

tt 7/20% 1/40% | 7/30% | 1/60* 1/40 9/40% 1/60 3/20%

aa
23 2 4 o o * o o
ta Tl (ea eb) E tata 21/20 3/40 3/40 27/40
e 3% (et 1. e, |21720% | 6s5 e | = | 5% |30 | --- -—-
2 al 2 171

t T, (ea tl) T, | t,t 7/20 1/40 7/10 1/20 1/40% | 9/40 1/20% 19/20

t.t 7/20 2/5% 7/10% | 4/5 2/5 1/10% 4/ 5% 1/5

*
The sign of the square root of the numbers with asterisk is negative

Taav=:<l/2a1|§£_-§|ll/2a>
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h' ht

which were

'.
5.  COUPLING COEFFICIENTS OF SPIN ORBIT INTERACTION K., (SS Tl)

Here, we want to obtain the coupling coefficients KJJ,,
defined in (3.13). These coefficients couple the matrix elements of
spin orbit interaction, from a pair of states identified by their irre-
ducible representations IJ t > and |J't > in the cubic double group, to
the reduced matrix elements <x S h li oy _&i-_s_il |x'S'h'>' between the
states X S h >, and |X'S'h' > from which the states |J t > and [J't >
are constructed.

Following (3.12 - 3.13), we have

SS'T

i,i taip ! p! _ i, 1
Shytrlre oo IxSthT>-<xsh|l§ L, s IIx'S'h')KJJ.(h. -

:

where (Griffith, p.82):
g o |ss' 1| _g 8s' Tg
JI' {Kht JJ' {h' h t

- S-M'+1 . . h+o = [ss' 1| [hh' Ty
B Z (-1) =117 v ‘-MM'r)V(-ee'—r)
MM’
66

(x) <s hJtt|ShM E><S'h'M'6'|S'h'J't r> (3.15)

a b C, in (3.15) is related” to 3-j symbols by

a By
(-1) , and V ‘2 g 3’ is related to V by (_l)Z(b—c). The symbols,

<ShJtt|ShMB6 > are coefficients of coupling S and h to obtain t

The symbol, V (
a+b+c

of the cubic double group with occurrence number or angular momentum J,

The latter coefficients are given by Griffith (Ref. 16, pp. 400-408) for

spin quartets, 5T2 and 5E only. Therefore, the coefficients

*
U. Fano and G. Racah, "T-veducible Tensorial Sets,'" Academic Press,
New York, (1959) p. 50
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6

<S h M 6|S hJt 1 of Sh="E, 6T and 6T2, which are not found in the

literature, are obtained and givenlin Tables 3.6 to 3.8.

Having obtained the coefficients, <S h M els h J t 1>, we now are
able to calculate the coupling coefficients, KJJ'(EE:T%" for h = Al
and h' = E. Tl and TZ' These are given in Tables 3.9 to 3.12.

After substituting for reduced matrix elements and the coupling
coefficients in matrix elements, <x ShJ t'rl[§ qi_&iﬂgilx's'h'J't €>,
in (3.13), we find this quantity as a function of single electron reduced

matrix elements such as

tptys EEseenityty, et

given in Tables 3.3 through 3.5. These matrix elements will be determined

in the next section.

Table 3.6. Transformation of OF into the IR's of double valued group T'd:
|{shMe|shIt |2

Jt .
E' E' 1u' 2y’
T
S Mot ! g’ ' g'! A K A v

h e @

5/2 5/2 E u 5/12% 5/12 1/6*

3/2 1/12% | 1/12%

1/2 1/2 1/2%

~1/2 1/2 1/2

-3/2 1/12% 1/12 5/6

-5/2 5/12% | 5/12% 1/6

5/2 5/2 E v |5/12 5/12 1/6

3/2 1/12 1/12% 5/6

1/2 1/2 : 1/2

-1/2 1/2 1/2%

-3/2 1/12 1/12 5/6%

~5/2 5/12 5/12% 1/6%

*
The sign of the square root of coefficients with asterisk is negative
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8Z/1 *v8/1 *T2Z/1 12/S €/C T z/S-
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Table 3.9. Coupling coefficients Table 3.10. Coupling coefficients
KJJ'for h = Al KJJ'for h = Tl
J J S [ t KJ.J(SSTI.AlTlt) J J' S S t KJ,J(SSTI’TlTlt)
s)2 |52 | sr2 s | (1,18)1/2 5/2 | 5/2 |5/2|5/2]w (1/15) (5/7)1/2
1/2
E" sy e | ansy m/?

2 | v | -amsy mtf?
g | -s/us) (5112
a2 L | v | -2 annt/?

E' | -(1/2) (1/10)

Table 3.11. Coupling coefficients Kjj' for h = E

J J' S . S t KJ'J(SSTl'TlEt) J J! S S t KJ'J(SSTI,TITZt)
s2 1 52 si2 v | e/109) si2 1 32 s/2 v | -2/15)

si2 52 v | -(2/105) (10)Y/2 2 32 52 v | eoy (oytf?

si2 sz et | -wnon Y2 | sz 2 a2 sz m| ane st

2w | o @/mtf? 2 32 32 v | -0 o/?

si2 32 e | o onnt? 32 32 | -2 0not/?

Table 3.12, Coupling coefficients Ky;, for h =T,

]
J T 8 (] t KJ.J(SSTI’Tszt) J J S s .t KJ,J(SSTI'Tszt)

s2 a2 sz siz | ~es asot?|sin o osiz s w0l anost?

52 s/2 82 v | -sasy ot sz a2 32 s;z v a/s) (1/30y /2

W2 s/2 52 W @y @t sz sz s v | eno st
5/2  1/2 3/2 5/2  u'| -(1/3) (1/35)1/2

s sz et| ey @sMsn w2 o sz wef-am am?
s a2 sz o v | o-wsy @uen?lse ap vz sz v | ws anot/?
si2 32 32 v | 10 nont/?
1/2 w2 32 a2 0| - snlf?

1/2

s/2 S/¢  5/2 3/2 u' | ~-(9/10) (1/105)
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6. SINGLE ORBITAL REDUCED MATRIX ELEMENTS <l/2 a||c &;§]|l/2 €>

The matrix elements of § 24 &?'gé from a pair of states with
electronic configurations x and x', (3.8), are related, among other
factors, to these configurations. This dependence on the electronic con-
figuration of the orbitals giving rise to the above states, is manifested
by the presence of single orbital reduced matrix elements of the type,
tt, = <1/2 ta|[§ 2s||1/2 ta>and ey = <l/2 ta||c 2s|]1/2 eb> which
appear in Tables 3.3 through 3.5. To find tata...., we should express
them in terms of atomic symmetry orbitals.

Since the determination of the energies of the molecular orbitals
ta’ e of Fig. 3.1 is beyond the scope of the present work, no numerical
values of the coefficients of linear combinations of atomic symmetry
orbitals, d(e, t2) and pn(tl, e, t2), (Fig. 3.1), are available. There-
fore, we choose a set of arbitrary coefficients, a, B, k, A, 4 and v, to

tl, ey and tb’ as follows:

£, = k|d t2> - Alm t2> - ulo t2> - v|s t2>
a al d e> - Blﬂ ;>
1 | tl>

= A'[d t2>+ ' t2>+ u'lo t2>+ v'ls t2>

B|d é> + afm é> (3.16)

express the molecular orbitals, ta’ e s

o
]

t
]

t
]

0]
]

where all coefficients, a, B,.... V', are real and positive.
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Moreover,

az + 82 = K2 + AZ + uz + v2 = K'z + A'2 + u'2 + v'2 =1 (3.17)

Substituting for ta,....tb, we find the single orbital reduced matrix

elements as given in Table 3.13:

Table 3.13. Single orbital reduced matrix elements

No. | a, b <1/2a||tses]|1/2b> No. | a, b <1/2al|ca8||1/2b>

1| et V3s t, 7| te, | V2V 5

2 | e, | 3VZawg - 3BAL 8 | te, | -2 V3 t,

3 .ty -3 2uxcd+38rcp 9 t.ty -3 ZKAcd-3/2kkcp
b | ot |- V3a t, 0 | gy a2 e,

5 | ety | 3 VZBrkg+ 3 g, | 1| et 3 2 Ty + 3/2 k2 t,

6 | et | -3 V22 tg- daxgy | 12 | ey |03 g a2t

With the spin orbit matrix elements known, we can now proceed to

formulate 3a in the following section.



CHAPTER IV
CUBIC FIELD SPLITTING 3a

In this section, we wish to obtain the contribution of spin orbit
interaction to cubic field splitting 3a, with the intention of carrying
the calculations through the lowest order of perturbation required for
the ground state, 6Al, to split. Our task, therefore, is to establish
the lowest perturbation order first, and then, carry on the numerical
computations to obtain an estimate of 3a (under certain assumptions
regarding the coefficients) for some special cases.

1. DETERMINATION OF THE LOWEST ORDER OF PERTURBATION BY
Ho= o, ahest THAT CAN SPLIT %,
The first step in determining the lowest order perturbation re-

quired for the splitting of 6A1; is to find those coupling coefficients,

of 6Al. Because the energy associated with level |6Al J=5/2%t=0">
must differ from that energy associated with the level, |6Al, J = 5/2
t = E" >, in order for the matrix element of . Cs gi-si to contribuge

toward splitting 3a. As shown in Appendix D, we have

SS'T]_ _ / 1 1
K hA; t Ty (R) (25 + 1) 5SJ68'J'6h'Tl (4.1)
and
SS'Tl _ - J+S e 111
K1 (TlTlt) = (-1 GJJ' Wlsss (4.2)

39
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It is immediately evident from (4.1)-(4.2), that the matrix elements
between |6Al> and |6T1> and those between |6Tl>and |6T'l> contribute
the same amount to both levels t = U'and t = E'', and their contribution
to 3a vanishes.

The chains of the products of the matrix elements:¥*

<6Al - 6T1> <6Tl - 6Al> (4.3)

and

6 6 6 6., 6., 6
RS SRR WY S

are the only nonvanishing products which give rise to terms for the
evaluation of the second and third order energy contribution to levels
with IR t = U' and t = E'' of the ground state. These energy contribu-
tions are the same, and consequently, both second and third order con-
tributions to 3a, by spin-orbit interaction, vanish. Moreover, con- »
tributions from higher than third order perturbation with excited states
having Tl symmetry vanish too. The next perturbation order to consider
is fourth order.

Considering Tables 3.11 and 3.12, it is evident that for the excited
states with T2 and E symmetries, the coupling coefficients, KJJ' EE'E%),
differ for t = U and t = E''. Therefore, a splitting will occur.

This indicates that the fourth order perturbation is the lowest

one which contributes to the splitting.

*
6, _6 - _b 1,16 Vet
<Al T1>_<A1Jt1|§ci_g__s_['l‘l.]t'r



2. CONTRIBUTION TO THE CUBIC FIELD SPLITTING 3a FROM

FOURTH ORDER PERTURBATION OF 6A) bY ¢y, gd.s
1

Here, we formulate the 3a by considering the following relation-
ships (3.1):

3a = EU') - BE") Y @y - @ @' (4.5)

where E(A)(U') and E(a)(E") are the fourth order contribution from spin
orbit interaction to the levels U' and E'' of the ground state 6A

1 of the
S-state ion. The expression for E(A)(U') - E(A)(E") is:

(4) ;101 (4) v -1
ey - eV E") - —Z(EJEkEL) {RojRijsz!,o
JK2

mnp

) [&om<°i>‘<m<ik)l<npM)Kpo(“ﬁu'-{“om<°ﬂ) Kmn(jk)xnp<kz>xpo<zo>}E. .]}

where

Ry = <xjsjhj IS I stkhk>

and

5,5 T

Kmn(jk) = KJ J hjhk i (4.5a)
mn)\ kj

The parameters Xj’ veees Xy in (4.5a) represent the molecular

electronic configuration and lxjsjhj> characterize the orbital part of
configuration xj.
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Substituting for the various parameters involved, the expression
for 3a will be of the form:

4

(4) -E 4-1
1 p
=0

where Ci are complicated functions of the coefficients; o, B, K «uess
given in (3.16) and the promotion energies Ei’ EJ and Ek of the excited
states appearing in (4.6). The precise numerical values of a, 3 and «
could be obtained from solving eigenvalue equations from which the ener-
gles; Ei"'Ej and Ek could be found too. As mentioned earlier, the
determination of Ei"'Ek is beyond the scope of the present work and as
a result of this, we can use only a set of arbitrarily chosen numbers
for both the coefficients and the energies involved. For the following
set of coefficients:*

0231"82=0-7,

2 e 0.8-2%=0.6,

uz + vz = 0,2,

and

kv, A v

we find the coefficients C, of (4.6) as given in Table 4.1,

Table 4.1

The Coefficients C, (~2/5625 1363)‘1

c c c C C

0 1 2 | “3 4
87.17 | -138.99 | -164.94 | 14.63 | 35.75

*
(See 3.16)



Substituting for Ci in (4.6), one finds 3a as a function of the

1

ratio cp/cd. The result in units of 10 cd4/E63 are given in Table 4.2,

Table 4.2

Calculated Values of 3a for Spin Sextets

LA G| R ELW G T
0.5 0.07 6 -152.30

1 0.59 8 -507.40
1.5 0.993 10 -126.30

2 0.573 12 ~-2645

3 -5.30 16 -8443

4 -24,90 20 -20562

A discussion of these results will be given in the next section.



CHAPTER V
DISCUSSION

We want to give a brief discussion of various models used to cal-
culate 3a, first, and then apply the result of these models to the 3a
of Fe3+ in the compounds ZnS, ZnSe, and ZnTe.

As’was mentioned in Chapter I, Watanabe® was the first to calcu-
late 3a on the basis of the point charge model. His work was followed
by Powell® and by Low and Rosengarten.’?8 Azarbayejani, Kikuchi and
Watanabel® substituted the point charge model with the molecular orbital
model and obtained the contributions to ground state splitting arising
from charge transfer between o-bonding and o-ﬁonbonding orbitals of the
complex consisting of a central S-state ion and its four tetrahedrally
coordinated neighbors. In the present work, the contribution to 3a
arising from charge transfer between the m-orbitals of the same complex
has been found. To make an assessment of these various contributions
to 3a and their relative importance, we are considering all of the

above-mentioned calculations, in turn, as follows.

1. CONTRIBUTION TO 3a FROM WATANABE'S CALCULATION
i
The cubic field splitting obtained by Watanabe is given in (15)

of Ref., 5. The expression for 3a is as follows:

2

(3a), = 3 (Dq)? [2.015 + 15.9 M. - 149.5 M, - 5.937 (M, - 8N

0 2)

- 0.388 (MO - 8M2)2 (Dq)2 10‘6] X 10—10 cm—l (5.1)
h of the host compound around the

where 10 Dq* is the cubic field strengt °
2 and 5000 to 6000 cm

-1
S-gtate ion and is about 3000 to 4000 cm ~ for Mn

+
for Fe3

*See the first footnote on the following page.

L,
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in II-VI compounds of Td symmetry. The coefficients M0 and M2 are

(see Ref. 6, Part a) 0.204 and 0.0159 cm—l, respectively. Substituting

for MO and MZ’ one obtains:

(32), = 3 (Dg)? [2.015 + 15.94 x 0.204 - 149.5 (0.0159) - 5.037 (0.024
- 0.127)% - 0.0388 (0.077)% (D)% x 107%] x 10710 &pt
= 3 (bg)? [2.015 + 0.87 - 0.029 - 2.25 x 100 (dq)?] x 1070 et
or
(3a) = 8.57 x 10710 (Dq)2 - 76.5 x 10”20 (Dq)4 ent (5.2)

2, CONTRIBUTION TO 3a FROM POWELL'S CALCULATIONS
The ground state splitting given by Powell et al (Ref. 6, part b)

can be expressed as:
(3a)P = KP cd4 (Dq)n ; 3.5 <n <’6 ; Dq> 103 cm“l (5.3)

The equation (5.3) was obtained by limiting their calculation to
Mg0:Mn where MgO is an octahedral II-VI compound for which Dq is large
GM1> 10—3 cm-l). For the II-VI compounds of Td symmetry, Powell et al

(Ref. 6a) give some numerical values of 3a as a function of (Dq) as

given in Table 5.1.

*Ref. 16, Table 11.3 p. 310 gives 10 Dq [Mn (H20)6]2+ and [Fe (H20)6]3+
as 8300 and 14700, respectively. Pappalardo and Dietz (Phys. Rev 123
1188 (1961) have concluded Dq (CdS):Ni) = -0.85 x 4/9 Dq[Ni (Hp0) 6 ].
Thus, in an analogous way, 10 Dq [CdS:Mn°t] ¥ -3100.
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Table 5.1. Calculatedt 3a in Mn2+ in units of 10~4 cm"1

Dq

(en™ 0 -200 | -400 | -600 -800 | -1000
(3a), .

with doublets 0 3.56 11.0 23.8 45.1 81.4
(3°)P

without doublets | © 0.115 | 0.338] 0.668 | 1.09 | 1.59
(3a)w

Eq. (5.2) 0 0.35 1.4 3.15 5.6 | 8.75

TThese values are obtained for the spin-orbit constant, = 400 cm -1

and spin-agin interaction constants, Mg and My as 0.284 em=1 and
0.0159 cm~!, respectively.

The first row of Table 5.1 gives 3a arising from all spin multiplets

within the 3d5 manifold, whereas the second .row is obtained without
taking the spin doublets of the 3d5 manifold into account. Watanabe's
calculations are based on spin quartets alone and are given in the third
row of Table 5.1. The numerical values of the first row of Table 5.1
give the total contributions from excited states generated within the

3d5 manifold. Now, we consider the calculation by Low and Rosengarten.

3. CONTRIBUTION TO 3a FROM LOW AND ROSENGARTEN CALCULATIONS

The cubic field splitting given by Low and Rosengarten, (3a)LR,
was obtained from the same spin quartets and doublets of (3d)5 manifold
considered by Powell et al. However, the techniques used by the former
authors differ from those of the latter. Low et al diagonalized the
eneroy matrices of E', E'' and U' levels which contain five parameters;

B, C, Dq, and a.* Powell el at, on the other hand, diagonalized the

%4

B C are Racah coefficients, Dq is the cubic crystal field strength,
o’ is Tree's correction factor and My and Mj are spin-spin interaction
parameters.
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energy matrices of Aj, Ag, E, Ty and To levels as functions of six
parameters B, C, Dq, (g, My and M, first. Then, they obtained the
energies of levels E" and U' from the energy values of the above levels,
Al....T2 by sixth order perturbation.
The numerical values obtained by Low et al are given in Table 5.2.
Considering Table 5.2, it is evident that (3a)LR and (3a)P are
of the same order of magnitude, whereas (3a)w (Table 5.1), calculated by
Watanabe, is much less than these two. This is expected because both
(3a)LR and (Bak) have been found by taking into account all spin multi-
plets of (3d)5 configuration, whereas (3a)w is obtained from spin quartets
of (3d)5 only. As for (3a)LR and (3a&,. the latter gives 3a as a

function of Dq and T4 Therefore, it is more suitable for the calculation

Table 5.2.* Comparison of (3a)LR with (3a)p and (3a)EXp.

Mn2+ Fe3+

MnF Mncl2 Mn(H20)6 Mg0:Fe Be3A12(SiO3)6:Fe Fe(HzO)6

r

(3a)
LR
4 -1 10 160
10 " cm
-1
Dqcm ) 750 1350
t;d(cm“l) 320 420
(3a), 10 eyt 1 325
-4 -1
(3“)1~:xp (10 'em ) | 12 6 20-30 615 450 350

*
(3a);g is the 3a calculated by Low and Rosengarten, (3a)P is the 3a
calculated by Powell and (3a)gxp is the experimentally determined value
of 3a.

+(3a)P are obtained from the relationship;(3a)p. = Kp ch (Dq)4 and from
the numerical values of (3a)P at Dq = 1000 cm™ and Cd = 376 cm~l,
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of the 3a of a certain ion in compounds of different Dq. Thus, we
choose (3a) as the contribution to 3a from the excited states within
the (3d)5 configuration and, discuss the charge transfer contribution

in the next section.

4, CONTRIBUTION TO 3a FROM o-BONDING CHARGE TRANSFER STATES
The contribution to 3a from the o-bonding charge transfer states

was obtained previously.l®

Here, it will be reviewed briefly in order
to make a comparison between this and the contribution of the m-bonding
transfer states given in the next section.

The irreducible representations of the metal d orbital and ligand

g-orbitals in II-VI compounds of T, symmetry are:*

d

h(d)=h(2=2)=e+t (5.4)

2

and

h (o) = a; + t) (5.5)

Considering (5.4)-(5.5), it is evident that the molecular orbitals
consist of a d orbital of e symmetry, a o-orbital of a; symmetry and
a pair of orbitals comprised of metal d-orbital and ligand o-orbital of
t2 symmetry. In the last two orbitals, the orbital with the higher
energy is the antibonding, denoted by tza, whereas the one with the lower

energy is called bonding and is denoted by t b Thus, the molecular

2 .
orbitals of interest to us, are (al is ignored):

]e> = |de> , |t2a>= aTldt2>— BT|0t2>

|t2b>== BTIdt2>+ aTlot2> (5.6)

*
Ballhausen, "Introduction to Ligand Field Theory," McGaw-Hill Book
Company, New York (1962), p. 53 [Eq. (3.34)], p. 171.

and
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The energy diagram for such bonding 1s given in Fig. 5.1.

The electronic configuration characteristic of the ground state,

6A1, of a tetrahedral complex of 3d5 68 ion and its bonding-nonbonding

and bonding-antibonding states are given in Fig. 5.2. The 6'1‘1n and
6. n b

T2 in Fig. 5.2(b) result from an electron transfer from the t, orbital
6 g 6 6

to en, whereas the levels; , 1 4 and T2 result from the above proc-

ess taking place between the t2b and tz orbitals as shown in Fig. 5.2(c).

"
/ LRI \
/ \
/ \\
/ \
d(ty, e) " —_— )
e [1}
\ /
\\ cb //
\__2 uuy 7/
113K L)

Fig. 5.1. o-bonding molecular orbitals in II-VI compounds of T, symmetry.

r

a
I ”' \ " / “l \\'2 n l |”h 2 -
!/ e
— __++_ S -——.i-+ﬁ_->—__- —! .44__ N
’
\ I \ ! b "ml 72
M 'y 6
6To Y E°
6. " 2 bro
— T |
6T" ¢ T T
1 '*“-So a2
5 ¢+
n
6 6 6 ’
Al—__ A‘ Al
(a) (b) (c)

Fig. 5.2. (a) Ground state of complex [EA ]—n , (b) t -en charge
transfer states and their schematic energy levels, and (c? t2 —t2 charge
transfer states and their schematic energy levels.



50

The contribution of these o-bonding levels to 3a depends on their

stability for a given S-state ion in a given compound. In the case of
6Ea, 6Tla and %1 2 may not be localized because

2
of the small energy band gap of compound, only 6T1n and 6T2n can be

compounds where levels

taken into account. For the general case where anitbonding levels are
also localized, the simultaneous effort of both antibonding and bonding
levels on 3a must be considered. The contribution, 3a(c), to the cubic

field splitting 3a, from the above o-bonding orbitals can be expressed

as:* '

3a(0) = ) w) - ¥ @) (5.7)

6T " alone. Then, we

We first obtain the 3a(o) for 6T1“ and T,

6.a 6. a 6

include the states E, T1 and Tza.

4,1 Bonding-Nonbonding Charge Transfer

6p M 1111 be identi-

The contribution to 3a(c) from 6'1‘1n and 2
fied by 3a(o;b-n). This can be obtained both from (4.11) or from the dif-

ferent techniques described in Appendix F. The result 1g:15

3a(o;b-n) = 0.1728 eT6 cd“ (1 - e 1/6 1) (5nT)‘3 (5.8)

where BTZ =] - aT2 is the covalency of the d-orbitals of the S-state
ion in the desired complex. L4 is the single electron spin orbit param-
eter and is the same as A in Ref. 15. dnT and enT are as shown in

Fig. 5.1.

4.2 Bonding-Nonbonding and Bonding-Antibonding Charge Transfer

lleing the same techniques as those employed for the bonding-

nonbonding process, one finds the contributions to 3a(o) arising from

*
For definition of U' and E'' see Table 3.1
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6 6
Tln, Tzn, 6Ea, 6Tla, and 6T2a as shown in Appendix F. The result is
a functlon of the coefficients of atomic orbitals O and B ( TZ

1- BT ) in the molecular orbitals used, and the energies; 6 T enT,
GaT, ETal and eTaz as shown in Fig. 5.1. For a particular case where

=€ =0 (5.9)

and with the assumption that*
§ " =r$ (5.10)
one finds that:
3a(0) = (108:625) (8 )™ (x)

(%) [BT4 -2 (1 - BT4) r-l + (1 - BTZ)(3 -3 BTZ) r-z] BTZ Cd4
(5711)

The parameter r and its power denote the presence of 6Tl s

6T2a or 6E in the matrix elements from which 3a(c) is obtained. Thus,

the first term in the bracket in (5.11) represents contributions arising

and 6T2 , Whereas the last two terms give the

1
contribution arising from the presence of both 6Tl and 6T2n nd 6Ea

6Tla and 6T2a.
SaT -+ o one obtains 3a(0)> 0. Numerical values of 3a(c) as functions

of both BTZ =1- aTz and r can be found from the following relationships:

exclusively from 6T

An examination of (5.11) reveals that only for r -+ 0 or

-1

2 _0.2) = [(18/625) (snT)'3] [0.048 - 2.3¢

3a(o, B +1.92 r‘z] ;d4

(5.12)

* .
r is a real number chosen as the ratio of the two energies GaT and GnT
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ﬁ
%o, By = 0.3) = [(18/625) 6 H [0.162 -3.3 4 1,89 r'2] Gy
(5.13)
3a(o, BTZ = 0.4) =[(18/625) (6nT)'3] 0.384 - 4.03 £ + 1.44 r-z] Cdz.
L

(5.14)

The numerical values obtained from (5.12)-(5.14) are given
in Table 5.3.
An examination of Table 5.3 indicates that a positive contri-
bution to 3a(o) takes place only in very covalent compounds (BT2 = 0.4)
and for GaT:GnT = 12, The latter condition is unrealistic because for
5"
Tla and T2a levels unstable. Thus, one can conclude that:
(1) 3a(o) is positive if only bonding-nonbonding states are
localized (5aT/5nT > w).
(2) 3a(o) is negative when both bonding-nonbonding and bonding-

in the order of 1-2 e.v., éaT must be 12-24 e.v. which makes Ea,

antibonding states are localized, and r = 5aT:5nT is 1-10.

(3) 3a(o) depends only on Cd as shown*in (5.12)-(5.13).

Since 3a(m) depends on both Cd and Cp’ it is desirable to elaborate
further on the absence of cp in 3a(o). The fact that 3a(c) does not
depend on cp is intuitively clear since ¢ orbitals arise from atomic

s and P, orbitals, and since the matrix elements of spin orbit

Table 5.3. Numerical values of 3a(o) in (18/625) (tSnT)-3 ;d4

r 1.2 1.6 2 5 10 12 14 16 18 20
By 2
0.2 -0.54 | -0.6 -0.60 | -0.34 | -0.17 | -0.134 | -0.106 | -0.088 | -0.072 | -0.062
0.3 -1.25 | -1,14 | -0.94 | ~0.42 | -0.15 | -0.100 | -0.064 | -0.037 | -0.015 0.002
0.4 -1.85 | -1.55 | -1.26 | -0.37 | -0.03 0.058 0.103 0.138 0.165 0.187

%
See Section 5.
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interaction between such pairs of atomic orbtials, automatically vanish.
To put this in a more rigorous language we will consider the part of
the matrix elements of H_ = % [ 2 i between a pair of states of anti-
bonding orbitals ty = Op |dt > B |0t2> The matrix elements arlslng

exclusively from the 11gand o orbitals have the general form of
Mo (0, mE, m'n") =<l/2 m ot, Elz &+s|1/2 m' ot, n> (5.15)

where (Ref. 23, p. 108):

|0t2 £> = |ct2 y;> = (1/2)(01 + 0y =0y - 04) (5.16)
lot2 n> = |0t2 z%> = (1/2)(0l + O, = 0y = 04) (5.17)
and
2 2
oy = aS(k) +b pz(k), a +b =1, k=1,.., &4 (5.18)

Substituting in (5.15), we find that:
M a (0, m&, m'n) =(l/4)[Rl - R2 - R3 + R4]

where
2 <1/2 ms(k)|z &°s|1/2 m' s(k)> +02 (12 m p, ()¢ 2's|1/2 m' pz(k)>
resulting in

M a (0, mg, m'n) =(1/4)[R-R-R+R] =0

+ . ,
€ and n are the components of Ty irreducible representation behaving
as yz and zx.
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Thus, the off-diagonal elements, M (0, mg, m'n'), vanish., For diagonal

*
elements, we have

Mg (05 mE, mE) =(L/4D[R; + Ry + Ry + R, ]

where

2 . [] 2
R=b <1/2 mp,lt 28]1/2m pz>=(1/2)b % <pz|lz|pz>6mm.
2 -~
-2t ¢ (olll]e) T (;gg) s 5o (5.19)

Thus, we conclude that: (1) charge transfer from bonding
to nonbonding o-orbitals gives a positive contribution to 3a, (2) simul-
taneous bonding-nonbonding and bonding-antibonding charge transfer give
a negative contribution to 3a for GaT:SnT varying from 1 to 10, and (3)
these contributions do not depend on Cp’ the ligand spin orbit interaction.

5 CONTRIBUTION TO 3a FROM n-BONDING CHARGE TRANSFER STATES
The last contribution to consider is that of the w-orbitals.
This was included in the calculations of 3a in the previous chapter.

From (4.17) we have:
4

12a® < 3. (g, m =Z c ;d"'i ;pi (5.20)

i=0

The above result was obtained by substituting the promotion energies,
for charge transfer among various orbitals t),, ey, %1, e, and t, of Fig.
3.1 by an average energy. To refine the above result further we consider

the case of tl > ey electron transfer first and then discuss the

*ee
v (ééé’ in (5.19) is vector coupling coefficient of two vectors.
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ene ' > > »> -+
general case where all six transfers tb e e e t1 e tb ta’

e, >t and t, >~ t_ are taken into account.
b a 1 a

5.1 Determination of 3a (o,m, ty > ea)

The effect of t; > e, charge transfer states on 3a (o,m) will
be discussed in this section. The symmetry and electronic configurations

of the m-bonding molecular orbitals of t; e, charge transfer are shown
in Fig. 5.3.

/y \ /, W\
Vg N\ v i N\
1] ——
N ‘—'HHH'_ L (§ Ny A
(RN 7/ W

6 ‘
Al GA'
(o) (b)

Fig. 5.3. Molecular orbital and energy levels of (a) the ground
level A7 and (b) the t] + e, electron transfer levels 67, and 6T2
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3a (o,m, tl > ea) can be obtained from the following relation.

3a (o,m, t; > ea) = - [612 (61 + e)] -1 (18)-1

6 .
(=) {<6A1| 1o ), 1| ENEN ) 152, x| ) |6Al>

(x)[j{ZKs/z ] (5/2 5/2 1, T, T, U') K, 5/2'(5/2 s/21, T, T, U;)
~ |
s [ 32 ) g [ Eu)]}
J!

Substituting for reduced matrix elements from Tables 3.3 - 3.4, and for

KJJ, from Tables 3.9 - 3.12 one finds,

3a (r, t, e ) =~ [512 (8, + eﬂ'—l

(x) [(—) "\[7/5 (-) '\/21/20 +) V21/20 (—)V7/5 (=) (1/18)(128/9800)]

(e ty) (tye ) (t1ty) (tyty)

Substituing for eatl and tltl from Table 3.13 we find

-1 2 4

3a (o,m; tl > ea) = - (9/1250) [612 (61 + e)] Cp (5.21)

5.2 Determination of 3a (o,mw; tb -+ ea)

The contribution from tb >e, charge transfer can be obtained

in a similar fashion. The energy diagram is as shown in Fig. 5.4.
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(b)

Fig. 5.4. Molecular orbital and energy levels of (a% ground level 6Al

and (b) the t, > e, electron transfer levels

The effect of 6 1

Ja(x, tb

T! and 6T'

2
2R e '
+ea) [61

on Ja can be written as

(Gi +s:')]_l

(x) {(-)VHS (+)V21/20 (—)'\’21/20 (+)‘V7/S [(-)(1/18)(128/9800) )

Table 3.13 gives

2 2
(e ty) (tyty) }

eatb = - 3V2 u)«cd +V3 Bxl;p

*
The fact that 3a (x, ty; + ea) = 3a(o
1s evident from the cholce of k2

\e o

Tty e ) and also 3a(x) =

=08<lin(526)

(5.22)

(5.23)

Ja(o,x)
The reason

is that the only role played by o orbitals 1s to reduce the coefficient
of x and A of dt, and =nt; orbitals in molecular orbitals of t; symmetry.
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t.t = 3A2

2
bEb tg t 3/2 k Cp (5.24)

Supsti .uting for eatb and tbtb in (5.22) one finds

3a(o,m;t, > ea) = (18/625)[6i2(5i + €')]_1

b
2.6_4 2 2.4 5.. 3
(x){% a A Cd + (6 kA - ZWIg-aBKA )Cd Cp

2 4

+(3/2a2k Kk + 82K2A4) Cdz 4 2 2k

+ 8502 - /2 24850
3 1 26 4
(%) cdcp + (4) 7 Bk zp } (5.25)

‘The numerical value of %a(w, t, > ey) can be obtained from following

coefficients

k- = 0.8 - 2" =0.6 (5.26)
and it is found as

3a(c,ﬁ;tb > ea) =

[(18/625)('«5]’_2)‘6i + ei)l] -1 [.034 cd4 +.0674Cd3Cp

2.2 3 4
+ .0827 .0487 + 0251 5.27)
I R 5 } (
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5.3 Determination of Total 3a(g,n)

The 3a(o,M) representing the effect of all charge transfer

states of transfers ty - ey, ep » €5, t] + €5, and tp > tas €b » ta and

t] = ty, can be expressed as (4.6):

4 o
3a(o,m) = 3a*) = Zc. bt 1 (5.28)

where Ci are functions of a,B,k,A and the charge transfer energies such
as 61 and Gi in (5.21) and (5.27).
The numerical values of the coefficients Ci are calculated

for aZ,Bz,KZ,AZ as in (5.26) and for

6, = &

~'=
1 + € 61 E

1 6

The results, given in Table 4.1, and 4.2 indicate that

3a(4)>0

cp/cd 22 (5.29)
and

3a(4) <0

cp/cd >3 (5.30)

For ligands 0O and S and S-state ions Mn2+ or Fe3+ the

Cp/Cd < 2 holds and consequently

3a(n,0 ), 3a(x,S5 ) >0 (5.31)
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whereas for Se and Te  the condition cp/cd > 3 applies and one con-

cludes that
3a(n, Se ), 3a(x, Te ) <0 (5.32)

Comparing sections 4 and 5 one concludes that (1) in both
o- and n-bonding schemes t, + e charge transfer gives a positive contri-
bution to 3a, (2) tg + e charge transfer seems to be the most probable
in o-bonding scheme whereas the t; > e transfer seems to be the most
probable in m-bonding scheme and gives a negative contribution to 3a(n)
and (3) the 3a(o), for an average charge transfer energy*Eg(c) 1s nega-
tive whereas 3a(n), under similar condition is positive 1if cp/cd < 2.

Now we proceed to the next section for comparison of (3a)w,
(3a)p, 3a(o) and 3a(x).t

6. COMPARISON

The five separate calculations given in Sections 1 through 5 can be
compared now, To simplify this comparison we ignore the effects of spin-
spin interaction on 3a which appear as small corrections in calculations
of Watanabe and those of Powell. This enables us to describe their results

as functions of cda and (Dq)n. The result is
4 2
(3a),, = K &, (Dq)

(3a)P = KP ch(Dq)n 3.5 < n <6

4
3a(o) = Ko Cd
4
4-1 i
38(Q.ﬂ) - Ci L4 Cp (5.33)
i=0

Let 8, T §,f = r =1 1n (5.11)
3a(ﬂ) 3a(o,n)
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where (3a)w and (3a)P are contributions to 3a from calculations by
Watanabe® and by Powell®, respectively, and 3a(o) and 3a(o,w) in (5.33) are
contributions from charge transfer excited states. Since (3a)P results
from spin doublets and quartets of 3d5 manifold, whereas (3a)y results

from spin quartets alone, one immediately concludes that (3a)y is included
in (3a)P:

(3a)w(Z§a)P (5.34)
In a similar fashion¥
3a(o)| 3a(o,™) (5.35)

Therefore, the total contribution from spin multiplets within 3d5

manifold and charge transfer states is
(3a)P + 3a(o,x) (5.36)

The experimentally measured 3a can be affected by spin quartets and
. . td
doublets which arise as a result of charge transfer. In this case, 3a

can be written as

3a = (3a)P + 3a(o,n) + (3a)r (5.37)

where (3a)r represents the rest of terms ignored in the evaluation of
3a(o,n).

3

7. COMPARISON WITH MEASURED 3a OF Fe + IN ZnS, ZnSe AND ZnTe

We want to compare the measured 3a of Fe3+ in Zns, ZnSe and ZnTe
with 3a in (5.37) on the assumption that (3a), = 0.
The measured 3a of Fe3+ for above compounds are given in Table 2-2

and are repeated here in Table 5-4.

*3a(o,%t) = 3a(r) [See the footnote to Eq. (5.26)]
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TABLE 5.4

Measured 3a of F63+ in lO_4 cm“l

ZnS ZnSe ZnTe

384 144.9 -7800

TReference 27

To find the contribution (Ba)P to the measured 3a values in Table 5-4
we assume: (i) that the measured 3a of Fe3+ in ZnS arises completei} from

(3a),, (ii) the power n in (Dq)™ of the expression*
P
4
(3a), = K, 24 (Dq)”

is equal to 4 and (iii) (Dq) is proportional to inverse fifth power of
interionic distance R. With these assumptions, the ratios of (3a)P of

Fe3+ in ZnS, ZnSe and ZnTe can be obtained as follows:
(3a)P(ZnS) : (3a)P(ZnSe) : (3a)P(ZnTe) = 10.1:5.3:1, (5.38)

The (Ba)P obtained from (5.38) are given in Table 5.5.

*Kp, in (3a)p = Kp Cd4 (Dg)™, depends on several parameters such as Racah
coefficients B and C. For simplicity, however, both this and 4 are
assumed to remain constant in three compounds ZnS, ZnSe and ZnTe,
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TABLE 5.5
Estimated (3a)P for Fe3+ in 10_4 cm—l
7Zns 7ZnSe ZnTe
384 204 38

The contribution 3a(o,t) can be obtained for the appropriate values
of Lp/tq. The Lg* for Fe is 0.049 e.v. and Zpt for S, Se and Te are 0.06,
0.35 and 0.9 e.v., respectively. Thus, the Cp/cd ratios are 1.09, 6.4
and 16.4 for Fe3+ in the three compounds ZnS, ZnSe and ZnTe respectively.
The 3a(0,ﬂ§)at these ratios of cp/cd and for Cd = 0,049 e.v. and E6 =4 e.v.
is obtained from Table 4.2 as given in Table 5-6.

The sum of (3a)p and 3a(o,n) is given in Table 5-7.

*Ref. 16, p. 431, ( g4 of Fe® is chosen instead of gq of Fe3+ because
the effective charge of Fe in ZnSe and ZnTe is expected to be close to
zero).

+J. Dimmock et al "Band Structure of PbS, PbSe and PbTe," Phys. Rev. 135,
A824(1964).

4 . ,
§ (4) _ b-i 1
3a E Ci Cd Cp

i=0
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Table 5.6. Calculated 3a(o,t) of Fedt

ZnS ZnSe ZnTe
Zp /cd 1.09 6.4 16.4
3a(o, ™)
(10'“cm‘1) 0.564 -141.0 -6620

Table 5.7. Measured and calculated values of 3a of Fe3+
ZnS ZnSe ZnTe
(3a)P+3a(o,n)
(in 10-4cm-1) 384.56 63 -6582
(3a)
Pk 384 144.9 ~7800"
(10 cem 7)

I
A comparison of the calculated and measured 3a indicates that a

ligand to metal charge transfer process is capable of accounting for the
variation of 3a of the Fe3+ in the series of ZnS, ZnSe and ZnTe compounds.
A detailed examination of the coefficient C4 of Cp4 in the expression of
3a(4)in (4.6)* indicates that the sign of this coefficient is insensitive
to coefficients of the linear combination of atomic orbitals o,B,k and X
in the molecular orbitals, whereas the coefficients of Cd4 . e Edcp3
are the sum of almost equal number of positive and negative terms. With
small variations in such terms the sign and magnitude of these coefficients
will change.

Therefore, the spin sextet and ligand to metal charge transfer
approximations are valid for metals of higher formal valency and ligands
for which ;p/cd-10. ZnTe:Fe3+ meets both of these requirements. Hence,

the agreement found should not be surprising.

*See the footnote § on the preceding page
tSee Ref . 27
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. In addition to Fe3+ discussed above Cr+ and Mn2+, the other two
S-state ions of 3d5 configuration, deserve a brief discussion. In case
of these two ions, in addition to the ligand to metal charge transfer
process, employed for Fe3+, another charge transfer should be taken into
account. This latter charge transfer permits the transfer of an electron

from the antibonding orbitals*ta and e, to the higher lying antibonding

a
orbitals localized in the vicinity of the next nearest neighbor metal ions
such as Mn+Zn charge transfer in ZnTe:Mn. For brevity, this is called the
outgoing charge transfer whereas the former one is called the incoming
charge transfer. The matrix elements arising from such processes can be
obtained from general expressions given in Chapter III with slight modi-
fications. The evaluatioﬁ of charge transfer energies, however, would
involve the next nearest ions Zn and Cd in (Zn, Cd) (S, Se, Te) compounds
and more caution is needed for a correct assessment of such energies.

The extension of present theory to these two ions has to be deferred to

a later time when more accurate charge transfer energies are available.

t

8. COMPARISON OF 3(o,m) OF T, AND Oh CASES

d
Considering Table 5-6 one finds that both the absolute value and the
sign of 3a is determined by the presence of Cp in the expression of
3a(o,n) = zé' C, §d4‘i api. A question arises on the nature of the role
i=0 1

symmetry.

of Cp in BaZO,ﬂ) of Fe + in compounds of Oh

Before considering the above question it is worthwhile to give a
brief remark on the 3a in Ty case. Recalling (5.37) the total expression

of the 3a is

3a = (3a)P + 3a(o,n) + (3a)r (5.39)

*The orbitals t, and e, are the half filled orbitals which are localized
near the S-state ion and in ionic case form the components of the d
orbitals of the S-state ions.
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where (3a)p is given in Table 5.1 and 3a(o,N) and (3a), can be expressed
as

3a(0,M) = - ‘Zkl EEE)l

SS. Ss SS SS SS SSs :
{ ok M M 1m Mo 1oy~ Doy Mg My M) E'} (5.40)
and 1
= _ B - SS Sq qS
3a_ {zklm'(‘EkElEm') Mo M1 Mt Myt )U'
_|v SSy SS,, Sq, gs
[MOk M1 Mt Maro | g
-1 ss,, sq qq,, gs
+ Ligm (B ) o M M Mo | o
. 5q,,  qg, GS!
Mo M‘kl Myt Mpro | g0
) E ,E,E |t Uy 28
enm (BB B T (Mot Mgt My et Mgl g
qq qq gs 1
( okt Moy s My 39 0%) B
-1l d Ny
Zk'l"m|‘EklEll'Em', Ok' Mk 1" l"m'qM 'gs Ul
4, d
- (MOk?q k lv(vl l” lqM 'gs) E"}
(5741)
The Moﬁs, Mkiq, —— Mlvmqq in (5.4]1) are the matrix element of HP =

I:i Liliggi and the superscripts s, q and d refer to the spin sextet,
quartet and doublet, respectively and En, E v and Ejvi(n =k, 1, m) refer
to energies of these states,

An important distinction between II-VI compounds of 0y, and Ty

symmetries lies in the fact that the band gap energies in the former case
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varies from" 4-8 e.v. whereas in the latter case it varies from 0.02-3,7
e.v. Therefore it is probable that the energies of quartets, E v, and
doublets, En"’ are below 8 e.v. and as a result of this the spin quartets
or doublets can be localized around the complexes of 0} symmetry. Thus

an a priori omission of (3a)r does not seem to be a reliable approximation
for the 0y case. Another obstacle, in the 0, case is lack of experimental
information on 3a of Fe3+ in such compounds as SrSe or SrTe where Cp
becomes significant. Therefore it is impossible to assess the contribution
to 3a(o,n) in the ocathedral case. In the case of Fe3+ in the tetrahedral
compounds, such as CdTe or ZnTe where the energy band gaps are, respec-
tively, 1.5 and 2.1 e.v., it is possible to assume that none of the charge
transfer spin quartets are localized. As a result of this the (3a)r may

be ignored and only 3a(o,n) taken into account. In case of ZnTe:Mn2t
where Ga%;xe one may conjecture that the charge transfer spin quartets

also contribute to 3a(o,n) as well as spin sextets of outgoing charge

transfer process referred to in section 7.

*See R. Bube, "Photoconductivity of Solids" John Wiley and Sons, Incor-
porated, New York, (1960) p. 233



CHAPTER VI
SUMMARY AND CONCLUSIONS

1. SUMMARY

A calculation of cubic field splitting of S-state ions in II-VI
compounds was planned. To achieve this, the following steps were taken:

(1) Molecular orbital techniques were employed to construct the
excited states of complexes (ZA4)—n' with I as the S-state ion and
A as 0, S, Se or Te.

(2) A ligand to metal electron transfer process was taken into
account and the excited states arising from such pbenomenon were con-
structed with ¢ and 7 ligand orbitals.

(3) The cubic field splitting 3a was expressed as the lowest
order splitting of the spinor levels U' and E'' (Mulliken's notation)

of the ground state as a result of perturbation by excited states through

the spir orbit Hamiltonian,

(4) Utilizing group theory arguments, it was established that
(a), the lowest order perturbation, was four and (b), at this order of
perturbation the contribution to 3a arises exclusively from the two
groups of three excited states having symmetries of Tl, E, T] or Tl’ T2,
Tl respectively.

(5) Utilizing reduced matrix techniques the matrix elements of

Hp between any pair of states
I1€> = Ixi Si hi Jk t {>

and
Ijé I é

]
>
.
wn
.
=
¢

68
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was obtained in terms of the reduced matrix elements Rij and the coupling

coefficients Kkk as follows:

<Xi s, b, J tT ]le Xy Sy byt T> <Xi s, hiIIHpij 5, b, Kk£>

= R Ky
where
R.. = . S. h.||H ,S.h,>
5 <x1 : lllplli 5 by
and
Kkz = KJsz (si sj T hj hi t)

and |J tt > is the component of the irreducible representation of angular
momentum J in the cubic point group as defined by Griffithl® (p. 395).%
(6) 3a was obtained as a sum of the products of the four matrix

elements:

6
<Xo A, 5/2 tT|Hp|Xi 5, Ty Iy tr>
<Xi s, T, 9, tTal|xj 5, by I t‘r> hy=EorT,
<Xj Sy by I tT]Hpka 8, Ty J_ t'r>

and

6
<xk s, Ty I tT|Hp|Xo A 5/2 t-r>

*For example [5/2 ﬁv> =1/6 [-\/'5'|5/2 5/2> + |5/2 3/2>]
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with Xi eoee X representing various electronic configurations giving
rise to Si Tl ceen Sk Tl. "
(7) The numerical values of the 3a of Fe~ in Zn(S, Se, Te) com-

pounds was obtained with restrictions of

and Cd and Cp as the spin orbit constants of metal and ligand orbitaii.
For appropriate values of ¢ for Fe, S, Se and Te, and with 32,000 cm
for E6 it was found that the calculated 3a accounts satisfactorily for
the difference between measured values and the ionic contributions to

the 3a of Fe3+ in the compounds ZnS, ZnSe and ZnTe.

2. CONCLUSIONS

Most of the conclusions drawn from this study concern the effect
of charge transfer states on the cubic field splitting 3a of S-state jons
in TI-VI compounds with tetrahedral symmetry. These conclusions are
classified as follows:

(1) The cubic field splitting 3a of S-state ions in covalent
II-VI compounds of tetrahedral symmetry depends strongly on the excited
states arising from charge transfer from ligand 7 orbitals to metal
d-orbitals.

(2) The effect of these m orbitals is relatively insensitive to
the choice of promotion energies and coefficients of linear combinations
of atomic orbitals.

(3) To refine present theory, it is necessary to establish (a),
the energy levels beyond which excited states are no longer localized,
(b), the perturbation order beyond which the contribution to the initial
splitting 3a is negligible, and (c), a search for a few parameters

characteristic of charge transfer state energies.
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(4) To verify the predictions of this theory with experiments, it
is desirable to (a) determine the sign of the 3a of Cr+, Mn2+ and Fe3+
wherever it is in doubt, (b) prepare single crystals of (Mg, Ca, Sr)
(Se, Te) which have ocathedral symmetry and to measure the 3a of S-state

ions, particularly Fe3+ in such compounds.
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APPENDIX A
DEFINITION OF SYMBOLS

The frequently occurring symbols, in both the Latin and Greek
alphabet, are defined in Table Al of this Appendix. The former group

of symbols is given first and then the latter one.
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TABLE A-1
DEFINITION OF SYMBOLS

6Al Term designation of a state of space irreducible
representation, A, and spin § = 5/2.

3a The cubic crystalline field splitting of a 6S level.

Ci Numerical coefficients of the expression for the
charge transfer contribution.

2%_ Square root of the product of dimensions of space
and spin representations h, and Si of a state Isihi>'
Thus, for a state Isihi>= |5/2 Ti>o_ne has 9, =

1/2 1/2 1/2

[(2s, + (1M%< 1(6) (112 = 1812,

E'' An irreducible representation of cubic double group
as defined in Table 3-1.

ea Antibonding molecular orbital of symmetry E (Table 3.1).

e, Bonding molecular orbital of symmetry E (Table 3.1).

E(U") The lowest energy value of levels of symmetry U'
(Table 3.1)

E(e'") The lowest energy value of levels of symmetry E''
(Table 3.1)

Ejk The energy difference of states 1j and 1lk:

Ej The energy of state 1j from that of ground state:
E, =E, - E.
J J 0

H Perturbation Hamiltonian: H = I.z, gltegt = L su(k)

) ) i’i = = K
h An irreducible representation of single valued

cubic group.
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KJJ (SS'T,,h'ht)
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MO

IR

1%)

[

V(abc,0By)
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An identifying number of the irreducible represen-
tation resulting from the coupling of spin S and the
irreducible representation h of a state hﬂ1>such
as U' = U!, of the state |5/2 Tl>’ and Uj = U} of

J 3/2 ~ 2
the state |5/2 E>. In the case of h =T, T, the
index J behaves as total angular momentum associated
with Russel Saunders level |SL> - lSL - l> whereas

for h = A2, E it is a designating number.

Spin-orbit matrix element coupling coefficient

between states | ShJtr )and [S'h'J'tT).
Magnetic quantum number associated with spin S.
Molecular orbital.

Irreducible representation.

Total spin associated with a total level or its

sublevels.

Single electron spin operator.
'

An irreducible representation in the cubic double
group of the coupling, the spin S, and space irre-
ducible representation h of a given state |Sh>

1
such as U' of |5/2 T )
Antibonding orbital of symmetry T2 (Table 3.1)
Bonding orbital of symmetry T2 (Table 3.1)
Non-bonding molecular orbital of symmetry Tl.

An irreducible representation of cubic double group

(Table 3.1)

Coupling coefficient of the components o and B
of the irreducible representations a and b into the
y component of the irreducible representation c¢ such

as V (ETszexg) = 1/2. The components O, X, £ of the
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representations E, T «+. and their symmetry

10 T
properties are defined in Table A.16 of Ref. 16.

V (abc, ¢BY) Coupling of ¢ and B components of spins a and b into

v components of spin ¢ such as V (5/2 5/2 1, 1/2 -1/2 0) =

(1/210)1/2. Tables of V are given by Rotenberg et al.

(Ref. 26 footnote of p. 86).

W(abc,def) An invariant product of four coefficients V(abk, ¢By)
...defined as W(abc,def) = LaBySe¢d V(abc,aBy).
V(aef,ac¢) * V(bfd,RB¢s8) *+ V(cde,ySe). The tables
of coefficients W (abc,def) are given by Griffith
(Ref. 26 p. 114)

W(abc,def) An invariant product of four coefficients V(abc,oBy)
...defined as W(abc,def) = ZaBysed
a-a+tb-p+c-y+d-S+e-e+f-¢
(x) (-1) V(abc,aBy)
(x) + V(aef,ac¢) * V(bfd,B4S) * V(cde,ySe).
Values of W are the same as the 6-J symbols corre-
sponding to a, b, ... ,f and the latter are given by

Rotenberg et al. (Ref. 26 footnote of p. 86).

ﬂV(N N N Nk 1 ) Product of a W and W coefficient as ﬂV(N.NjNO Nk lN ) =
W (S S 1,8 S S ) x) W (h h Tl, K lh ).
X(abc,def,ghk) An invariant sum of the products of six coefficients

V(abc,aBy), ... V(cfk,y¢k) expressed as X (abc,def,ghk) =
ZaBySed¢n bk V(abec,oBy) .

(x) V(def,8e9) * V(ghk,nbk) * V(adg,adén) * V(beh,ReH)
(x) V(cfk,y¢x). These X coefficients are defined by
Griffith (Ref. 26).



X(abc,def,ghk)

1 !
y.4 (NiNij,NiNij’

NaNbNo)

(zsA )

76

This is similar to X(abc,def,ghk) defined above except
instead of V(abc,0By), one takes V(abc,aBy). Thus
X(abg,def,ghk) = ?QBY5€¢HQK V(abc,a?y).

(x) V(def,ded) - V(ghk,nbk) «..... V(cfk,7:k). The
coefficients X are given by Howell (Ref. 26 footnote p. 86)

Product of coefficients X and X related to N, N N

k,
1
NN N N NbN as follows: /C(NiN_N NN Nk,N N N
= . '
x(sssk, k,SSl) X(hihh hhh Jh b T)).

The ligands surrounding the metal ion of II-VI compounds

such as S, Se and Te

The S-state ion substituting the metal ion of a II-VI

compound such as Mn2+ in Zn site of ZnS single crystals.

A complex formed of an S-state ion and its four nearest
neighbors, with a formal negative charge of n'. For

+
I = Cr+, an or Fe3+ the number n' is, 7, 6 or 5

respectively.

Single electron spin orbit inter-action of an electron

in the ith orbitals.

Cd of a d orbital of the S-state ion.

Cp of a p orbital of the ligands S, Se or Te.

Component of t denoting an irreducible representation
of the cubic double group. The properties of these
components are given by Griffith (Ref. 16).
Electron configuration of five orbitals ta’ e s tl, ey
and t, as defined in (3.8a).

Hole configuration of the five orbitals ta’ e t

e, and t_ as defined in (3.8b).

l’



IxshjtT>

Gsnl 1| x's'h)
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T component of Jth irreducible representation t
arising from coupling of spin S and space irreducible
representation h of the state |Sh> belonging to the

X configuration.

Reduced matrix element of Hp between states |xSh>

and ]x'S'h').



 APPENDIX B
SPIN ORBIT COUPLING IN MO SCHEME

This Appendix gives the appropriate form of the spin orbit inter-
action Hamiltonian HSO in the molecular orbital (MO) scheme. The expres

. *
sion of HSO for an n electron system is

_ Be -3 .1 i, . 1
HSO T me [Za 2 Tia (" xp) " s

- rij-3 e oxphy et + 2§J)] (B1)
i3

where o refers to all nuclei; L is the distance between electron i and
nucleus a, Za is the charge of nucleus o; i and j refer to all electrons
in the complex and the remaining parameter have their usual meanings.
The first sum in (B1l) gives the spin orbit interaction of each electron
in the Coulomb field of all the nuclei in the complex whereas the seébnd
sum describes the interaction of each electron in the field of the other
electrons and also the coupling of each spin with the orbital magnetic
moment of the other electrons (spin-other-orbit interaction). The H

SO
can be rewritten as:

g0 io Pig T Zi+j Hij (B2)

AH. A. Bethe and E. E. Salpeter, Quantum Mechanics of One and Two
Electron Atoms (Springer - Verlag, Berlin, 1957), p. 181.
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where

_ -3 i i i _ iOL. i
Hy = (Be/me) Z, x; " (W xp) - 5" = fa (Fy) &8

(B3)

and

_ -1 -3 43 4 i,
Hij = Be(me) r.ij (™~ xp) (s" + 2s”) (B4)

Misetich and Buch+ have shown that for the molecular orbital wave-

functions ¢0 and wn related to symmetry wavefunctions ¢o and ¢n of a

given term of the free central ion of the complex,one has

(wOIHSOIwn>=<wOI>:i' g, (ry) A%+ 1l 6 () &i-gilwn> (85)

The parameters EC (ric) and EL (rCL) in (B5) give the spin
orbit constants Cc and CL after being integrated over .. and r.o rispec—
tively except for the fact that their numerical values depend on the
coefficients of linear combination of atomic orbitals used.

In the general case where the MO wavefunctions wo and wn cannot be
related directly to free ion such as the charge transfer states in a
complex [I Aa]_n', the spin orbit interaction can be considered in a
slightly different way. Considering (Bl) - (B4) and denoting the single

electron spin orbit interaction by Hso(i), one has:

Sy _ io 1
Hso(l) - ZOL Hia —Z Hij = I F’a (rioc) L) z Hij
i (1) 3 ($1)
il i

- ic i ) _
=& (r; )% s +Iog (ry) &S Z Hij (B6)

i (41)

Ta. A Misetich and T. Buch, "Gyromagnetic Factors and Spin-Orbit Coupling
in Ligand Field Theory," J. Chem. Phys. 41, 2524 (1964).
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where the parameters c and L denote central and ligand ions respectively.
The matrix element of HSO(i) between the ground state wo and an

excited state of the system wn is

<‘”olﬁso(i) |‘Pn>= <i|Hic LR HiL|i'>
E: <1JIHIJ|1 J> (B7)

i (#1)

The single orbital wavefunctions i and j can be described as

|i>= Kilic>— Ai|iL> (B8)
5)= 5130 )= 2laL) (89)

where
-
K. + A =1 (B10)

oubstituting in (B7) one finds:

\ _ . . . r
<"’o|Hso(1) |‘”n>‘ KiK'y <lc|Hic|1'c>+ Ay <1LIZL e L>
_ ' PR 2 el s

Zj KiK' 4 <chClKj Hijll CJ;>

2
- 1 PR PR
Loy 1LJL|AJ, H |1L3L>

1 -. + 1
“1“°1 < c 1c J<éc j ijl3;>‘l c>

. 2 . -
A;'Lwi< |28y - 'j<JL|)‘j HileL>|l L> (BLL)

<+



If both ic and i'c have the same radial wavefunctions then the radial
integration of the first sum gives the spin orbit constant of the central
ion for the orbital iC being corrected for a change in the electron
density in orbitals j, measured by sz. Since in this work, the molec-
ular orbitals ic are constructed from d orbitals of the central ion,
they have the same radial part. Thus the first term in (B1l) can be

.
expressed as

(] . _ 1 . 2 . . ]
A i.<lclHic §: <Jc‘Kj Hile;> ’1 c>

j ($1)

- Y . ic i\
KiK'y <1C|;C .8 |1 c> (B12)

Similarly the radial parts of iL and i'L in the second term of (Bll) are

the same. Thus

, . 2 . cr N
>\i)\‘i<1LlEL fir 'Zj <JL|>\j hileL>|l L>

L
_ v/ il i,
=\ <1L|zL o 2 sl L> (B13)
Now we define a spin-orbit interaction operator cq &}-g} such that
z zi-sili >= z zdi-sih > (B14)
i= —'¢ d= — '¢
and
i iy, pi iy,
. = . B15
cy s llL> c, Ls |1L> (15)

* . , ‘e ic. i+ . s ,
The prime sign on \1clcc 21Cest|d c> in (B12) indicates it has been

integrated over ric
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The parameters d and p in (B14) - (B15) indicate that iC and iL

are constructed from d and p atomic orbitals respectively. Substituting
in (B11l) one finds

(‘”leso(i) I‘pn> = KKy <iclci &i'§i|i'c>
Ay <iL|Ci &i'ii—|i'L>
2<‘Ki<ic|-xi <iL|Hz;i &i-ii\

EAERERIHEL)
¥ (iley 2hsTle)

= <wo|ci 2tstly (B16)

n
Since

H,. = Zi H, (1) (B17)

resulting in

o=z ¢ otesd =}: su(i) (B18)
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where

u(d) =z, & (19)

and

su(i) = Ci g}-si (B20)

In (B16) - (B20) Ci-&? behaves as operators defined in (B1l4) and (B15).
The above definition of spin orbit Hamiltonian for the charge transfer
states of a complex (I A4)_n' is certainly an approximate definition
which will not be adequate for the precise evaluation of the matrix
elements of HSO but is sufficient compared to other approximations made

in construction of the molecular orbitals |i> and excited wavefunctions

v,)-



APPENDIX C

SPIN ORBIT MATRIX ELEMENTS
FROM THREE AND FOUR ORBITAL WAVEFUNCTIONS

The purpose of this Appendix is to give the spin orbit matrix ele-
ments between charge transfer states consisting of three or four types
of distinct orbitals each having at least one electron such as those in
Table 3-1. The spin orbit matrix elements between pair of states con-
sisting of only two orbitals have been calculated by Tanabe and Kamimura®
and by Griffith.t The ligand to metal charge transfer process, in cubic
complexes of S-state ions, results at least in three open shells of elec-
trons two of these around metal and the third around the ligand. Thus
the desired states consist of at least three orbitals. As a result of
this the formulae by above authors should be modified and extended to be
applicable for these wavefunctions.

We proceed by giving a brief description of charge transfer wave-
functions first and then discuss the matrix elements of Hp = Zi;igi . &}

between them.

1. CHARGE TRANSFER WAVEFUNCTIONS

A description of the orbital part of the ligand to metal charge
transfer wavefunctions, in complex [ZAA]—n, will be given here. Their
radial part is omitted for simplicity; it must, however, be taken into
account in a more refined analysis of this subject.

Considering Table 3.1,one finds the electronic configurations p,q,..t
and the representations ta, es tl, e and ty of the orbitals in a charge
transfer state. Denoting the spin and magnetic quantum number of the

participating orbitals by SiMi and their space irreducible representation(IR)

by hiei one can describe a charge transfer state of spin SM and irreducible
representation hé as follows.

*Y. Tanabe and H. Kamimura 'C . “he Absorption Spectra of Complex Ions IV.
The Effect of the Spin-Orbit Interaction and the Field of Lower Symmetry
on d-Electrons in Cubic Field" J. Phys. Soc. Japan 13,394 (1958)

+3.58. Griffith (Ref.26)

8l



85

[.P q t . )
IxiShM6> [ta 5,hyM,0,, e T 5 h 0, .t © S h M8, ;Shivg ] -

For example one of the states arising from the first row of Table 3.2
is

2 2 1
Ix,5/2 1, 5/2z) =|e 11, 1%, e 14)lay, € 1/21, 1/2y

0 0
e, 0Aj0a), t ° OA) 0a 5 5/2T, 5/22)

=|ta"31, 1x, e ? 3,la,, €, 21, 1/2y

01, . .6
ey Alal’ T1 5/22> (c2)

where Xy in (C2), as before, denotes the manner by which the five orbitals
tar €gr seeeey b have coupled to give 6T1 in (C2).
2. MATRIX ELEMENTS OF Hp = Zici&i . gi

The matrix elements of H_ between pairs of charge transfer states

IijhMe> and lxks'h'M'9'> will be obtained in this section. To simplify
the notation the above matrix element will be denoted by Mjk(ShMe-S'h'M‘B'):

a'h'M'A'") = thiM'g!
My, (ShO-S'h'M'6") (ijhM9|Hp|ka h'M'0 )

Rjk(Sh-S'h') Q(ShMe-S'h'M'e") (C3)
where

Ry (Sh=8'h") = <ijh| |HpkaS h ) (C4)

is called the reduced matrix element and Q(ShM6-S'HM'6') is the coefficient
of the coupling of |ShM9> and IS'h'M'B') through spin orbit interaction
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and it is independent of j and k as will be seen later. Now we consider
Rjk(Sh-S'h') and leave Q(ShMO-S'h'MO') for Appendix D.

3. REDUCED MATRIX ELEMENTS Rjk(Sh—S'h')

Rjk depends on xj and X The xj and Xy » in turn, depend on the
configuration p, q, ..., t of orbitals ta’ea ees tyoas shown in (Cl).
Therefore the reduced matrix elements Rjk between a pair of states |j>
and |k> can be characterized by the configurational numbers pj’ qj’ ves
tj and Prs Qps oo tk in these two states. Considering this fact in mind
and observing Table 3.2, one immediately finds that there are three classes

of reduced matrix elements as follows:

(1) pj =P Gy T G Uy Ty U= st (C5)
(11) pj = Py t ], qj =q ¥ 1, uj =y, u-=r1,s,t (co6)
(111) Py = Pyr 9y = Q5 uJ # U U =r1,8,t (C7Z

The numbers p,q, ... t in (C5) - (C7) are given in rows of the hole
configuration column in Table 3.2. In case (1) both states |j> and
|k) have three open orbitals with the same configuration such as |xj6T1>
6
and |xk T2> of the first row in Table 3.2. Rjk

homo-configuration three orbital reduced matrix element. In case (i1) the

in this case may be called

orbitals involved are the same but their configuration differ and therefore
the Rjk
matrix element. In case (iii) only one of the five orbitals ta’ ea, tl’

of this case 1s called hetero-configuration three orbital reduced

e, and t, remains closed in both states |j> and |k> such as ty in 6T1 of

b b

row 2 and 6T2 of row 3 in Table 3.2. The Rjk of this case will be called

hetero-configuration four orbital reduced matrix elements. These three

cases will be considered in the following sections.
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4, HOMOCONFIGURATION THREE ORBITAL REDUCED MATRIX ELEMENTS

Here we consider the case of Rjk between states |j) and Ik)
with both Ij) and |k> containing three open orbitals of the same symmetry
and configuration.

The Rjk in this case can be expressed as

Ry (S, 8'h") =<ijh||Hp||ka'h'> (C8)

where
|ijh>= [[aps hy (b5 b, c"s b )SAhA]j sh) (c9)
xks'h'>= I[aps'lh'l(bq phye"S5h1) 8 h ]k,s h > (€10)

The orbitals a, b and ¢, in (C8) - (Cl0), represent three of the

five orbitals ta’ e, o t, of Table 3.2 and the subscripts j and k denote

the coupling of such orbit:ls

Since the perturbation Hamiltonian H ):Ci 's = g; s*'u (1) 1is
in terms of single electron operators we must express the total wavé-
function in terms of the single electron orbital which constitute such a

wavefunction., To obtain this we rewrite (C8) as follows:t

p P 4y ¢ PHg
Ry, (Sh-5"h") =<a s,h (0950, cTs.h)s b, sh|| ) st + su(i)
i=1 1=p+1
ptqtr
+ Oy s+u(d)||afsih (qu hjc's3h1)8 h;,8" b >
i=p+q+l

[p(qr)r,Sh-8'h']
(C11)

[p(qr)q,Sh-8'h'] + R,

= Ry [p(qr)p,8h-5'h'] + Ry ik

J Jk

*
To simplify notation gigf is substituted by gi

+To simplify notation the brackets [""]j and [....]} are omitted from
|ijh and [y, 8'h' in (C11).
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the first sum operates on electrons in ap, the second on b% and the third
on ¢’ and

p
. 111 = {aP q r .
Ryk[p(ar)p,Sh-s'h'] <a Sihy (b8, h,c 550408, by Sh||£g£

sru@ @D @ [|aPs) by ©Isihy, c"sihyIsing, S'h'>

(C12)
R.[p(ar)q,sh-s'n'] = [ P dg p T
(1:1) P p q r
. ‘u(k . 1 1! 1Th1yQth! Q!
X &;Ig_g( )x(1+1) ||[a s1ht (b%s3hsc™s3hl)s h!,S'h )
(C13)

R. _artit = P q r
jetp(ar)r,sh-s'h'] <a-51h1,(b S,h,,c 8308, b, ,Sh |

r
(1 1)x(1-Dx ) s-ulk) ||apsihi(bqséhé,crséhé)szha,s'h'> (C14)
k=1

The symbols 1*1 represent double tensor operators of zero rank which
operate on their respective part in (C12) - (Cl4). The first symbol
1 of 1'1 acts as a spin operator with S = Ms = 0 and the second symbol
*]1 of 1+1 acts as the irreducible representation A1 of the cubic group.
Rjk’ in (C12) - (Cl4), should be determined by the techniques of double
tensor operators on coupled systems,

This subject is discussed by Criffith?® and will be given here as
follows.

Let a system n of electrons to be composed of two separate and

independent parts £ and m. Then

lamnv) = Y (2Amu|2mav) | 2A) |mu) (C15)
Au
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gives the |nv> state in terms of products of |£A> and |md> Now the
reduced matrix elements of a sihgle electron operator* Dg
the IRA) part can be described in terms of |nv> states as followst

(om n v| ¢ [2'm'n'v') = (-1)Hn+n'+d'\/(n)(n)' (nllndllz') W ‘i;?g)

op=rating on

(x) 6mm. (C16)

Similarly an operator E® operating on |mu> states has the reduced matrix

elements
YRR _ +m'+nte : el fm;me! .
(ema | [E%[[2'm'n') = (-1) UCICRRCIE LV {nn',-v; ‘n

(C17)

where (n) and (n)' are dimensions of these two irreducible representations
and W coefficients behave as six j symbols. For spin orbit inie.action
both orbital and spin wavefunctions of each electrons should be taken
into account. Considering, m, ..., n' as space representations offthe
states and operators involved one will add Sl’ 82...S' for spin part.

Thus (C16) can be rewritten as

1 ] '
<SllszmSn| |Dpd| |5i9«'32m'5'“'> - (-1)51+S +p+L4m'+n'+d

S Sip '
(x) [(2s+1) (25'+1) (n)(n')] 1/2 <SlZ|led||Si2'> W Sls}sz w(ﬁﬁ,:)

(C18)

*Dd5 1s the component of operator behaving as component of the irreducible
representation d.

+Ref. 26, p. 47



+h, +h+e

and S, +S +S+q+hl ?

<slz SzmSnI!Epe||si2'82m’s'n'> = (1 L2

5,5,9 mme
(x) [(28+1)(23+1)(n)'n')]1/2 <SzmHqu||Sém'> W (SZS?SI) W (n o,

(x) g gt By (c19)

Following (Cl17) the reduced matrix elements in (C12) - (Cl4) can

be decomposed as follows:

S.+5,+S+1+h_+h!+h+T
Rjk(Sh-S'h',p) = (-1) 14 14 1

p
) [(2s+1) (25141) () (1)) 17 @iyl ), @ - sanTillafsy )

' '

. Sl Sl 1 Y h 1h1T1 . .
' 1 1 '

S S S4 h h h4 SAS 4 héh 4

(C20)

The Rjk[p(qr)q,Sh—S’h'] and Rjk[p(qr)r,Sh-S'h'] must be obtained in
two stages. First the part of the system represented by S)h) should be
decoupled from the part represented by S1hy and then the parts Spho and
85h5 in Suhu should be treated as in (C20). Denoting part represented
by Syh), as Rjk(q,r) and considering (C16) - (C20) one finds

S.+S,+5+1+h,+h' , +h+T
Ry@n) = (0 1T 6o [ase sty )] M2

(b%5h,, c"s3n)s,h,| |.<§1 500 () || 653hy 753 hsing)

| 1
o) i SASA 1 . h4h4T1 . 5
' ' ' '
SS S1 h h h1 slsl hlhl

(c21)
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*

The term
q r
T = <bq82h2cr83h3)54h4|l Z s-u(k) + z su(k)
k=]l k=1
Gerpt Tarpryatnt
165301 s3nt)s b2 > (ce2)

in (C21), should be factorized in the same manner described in (C19) -
(c20).

'
)52+S3+h2+h3

T = (-1 [(254+1)(2s'4+1Xthhﬁ)] 1/2

S'+h! sts. 1\ [n'h.T
| s 6 w22 ful 221
hoh! s sts. [¥ln n'n

! ]
S485 hghy " 15,5.55 [ \hghyhs

q
(x)<§qszh2||KZi su(c) | [%s3h? )

' '

Sb+h4 . . . S3S3l . h3h3T1
1 ' ] 1

SZSZ h2h2 848482 h4h4h2

+(-1)

r
0 {c"s,n, 1| L sue)||c"syhg ) (C24)

kel

Substituting in (C21) one finds R k(Sh-—S'h',q) and R k(Sh-S'h',qr) of
(C13) and (Cl4) as the coefficients of <bq52h2“ Z su(k) | |bq85h5> and
K
<ch3h3| | Z su(x) | Ich3h:'3 )respectively . Thus,
- .

Rjk[p(qr)Q)Sh'S'h'] = Gslsi

S,+S,+5+h, +h'
. ST FSh S 45 b th ts 4,
bt (1)

11

*Hereafter s(k) * u(k) = su(x)
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(x) 65 ¢\ & . [(25=1)(25"+1) (h") (25,4D) (h,) () (0)] M/

373 373

S,5)1 S!S,1 h)h,T hlh, T

(x) ¥ 474 i 272 W 47471 W 27271
' ' 1

SS S1 848483 h h h1 h4h4h3

(x)<bq52h2| | ¥ su() ] |quéh§_ ) (c25)
K

and
+

il = g ; (_1)Sl+54+hl h4+h+Sz+S3+h2+h3

Rjk[p(qr)r,Sh— h ] s.g! h.h!

1°1 171

S,+h
&ty , , ] 1/2
@D 6 g oy e [(2s+0) (257+1) () (01) (25,30) (25,41 (0,) (1))

1 h

s!s.1 h'h,T h
W 373 W 47471 W
' ' '
1 543433 h h hl h4h4h2

1 \]
8,5, 33Ty

ss's

W

<cr83h3| | g su(k) | |c"s3h3 ) (C26)

Substituting in (Cll) we have
ptqtr
atht) = P q r
R, (s0-5'n") <[a 5,h, (b38,h,c S3h3)54h4] 4:5h I Z su(k)
k=1

1,P q r "
||[a 5.h (b95,hc 83h3)84h4] L S'h')

= Rjk[p(qT)P,Sh-S'h’] + Rjk[p(qr)q,Sh-S'h'] (€27)

+ _atpt
Rjk[p(Qr)r,Sh S'h']
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The Rjk in (C27) are given in (C20) and (C25) - (C26). They are given

here in simpler form as follows:

S,+S,+S+h +h'+h'

175,15+, ,
Ry [p(ar)p,Sh-8'n' ) (-1) Y 929¢Ps ||
’V NIN. N
11
Par
ZK su()|[aPsin ) NN, NN, (C28)

S.+S,+S+h.+h,+h+S, +S.+h, +h'+S'+h!
174 14 2 7372 3 74774
Rjk[p( ar)q,Sh-S'h']= (-1)

N!N_N N' N,No
4
(x) 9919494 R w 2 2 0 . 4
1] 1
N, NN, NN
x) <bs,h, || : su(K)Hqu'h'> § 8
X LD} 2"2) SN NN, (C29)

k=1

and

' 145, +h
Sl+34+5+h1+h4+h+52+53+h2+h3 LA
Rjk[p( qr)r,Sh-8'h'] = (-1)

N} NN N)N, N

(X)QQ"@K@:,W 3730yl 4bo
1
N4 N4N2 NN Nl
r
(x) <ch h, || X su(|<)||ch'h'> S
33t 2 3'3) NN NN (€30)
where
) 1/2
0, = [Gs; ) o]
N,N,N S,S5,1 h,h,T
» AT I S Tl I
NszNm SkSQSm hkh hm
vy, = %5 S (€31)
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- *
The coefficient W in (C31) is defined as

abec
W = }E: (-1) a-o+b-B+c-y+d-S+e-e+f-¢
def oBySed
_[abe aef| [dbf| _ [dec
(x) V \Y Vv i
—o-B-y o e~ -5 B ¢ §-¢ v
and
v 12’3 = (_1)2J2+J3—m3 (J,3,3.m,|J.m I m,) (C33)
1( T 41 172°373'"1717272

V and W are used for spin coupling coefficiencts whereas for coupling
of space irreducible representations the simpler V and W are used where

(Ref. 26, p. 10 and p. 33)

V(abc,0BY) =\/E- (abaBlach> (C34)

and

W(abcdef) = ZoBySed V(abe,aBy)
(x) V(aef,acd) V(bfd,B9¢8) V(cde,YSe) (€35)

The numerical values of W are taken from Rotenberg's tables of 6J symbols**
and W are obtained from Griffith's tables.+ The dimensions of hi entering
Di of (C31) are the same as their character under identity class in the
character table. The (—1)h+i =+ 1 as defined by Griffith* (p. 15).

Both of these numerical parameter are given in Table C.1.

*
V. Fano and G. Racah "Irreducible Tensorial Sets' Academic Press,
New York 1959, pp. 50-54

ok
M. Rotenberg, R. Bivins, N. Metropolis and J.K. Wooten, "The 3-j and
6-j symbols." The Technology Press, Massachusetts Institute of
Technology (1959).

TRef. 26, p. 114
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TABLE C-1
The Values of (h) and (~1)D

h Al A2 E Tl T2

SR

() | 1] 1|2 3] 3

The last unknown in Rjk (p,p),...Rjk (r,r) in (C28) - (C30) is the single

orbital reduced matrix elements of the type

P
o(pp) = {aPsh|| L. su(k) | [aPs'n")
k=1
= p {aPsh||su(p) | |aPs'h") (C36)

-
To obtain p(pp) we express it in terms of its matrix elements

between pairs of |apShMe> and IapS'h'M'e'>.

Ss'1 hh'T
(Psn|| | L sut)| ! T1l]aPsnr) (-5 M 7
k=1 MM'-1 66'i

aPS'h'M'0")

1T
= <apShM6} [ 2: su(K)} 1

k=1 -ii
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Multiplying both sides by (-1)5'M V (s,8'l, -MM'-i) and V(hh'T, 86'1)
and summing over the six parameter -M,...i one finds
1T
p(pp) = p Z (apShMel [su(p) ] 1 apS'h'M'e'> (x)
MM'i -ii
66"
5-M = ' " ' 1
(x) (-1) vV (ss'l, -MM'-i) * V(hh'T,,060'i) (€37)

l’

In terms of the coefficients of fractional parentage (cfp) we have”®

1

p _Z p-1 P
|a sm@ = s (a" s hl,a|} a Sh)(Sll/lem|Sll/2SM>

hlela

(%) <hlaela|hlah6>|ap—lSlthlel>° amo. > (€38)

Substituting for |aPShM6) and |aPS'h'M'6') in (C37) one finds

’ -1
(aPsh [a,aP™"s h (8 kM5 24, m) (x)
f(,p) =p ,
S M,mMM'iS'M'm' <hlah9]hlaeloc>°<ap_18

| ) 1
hlelaee lhlela

lth16|'<ama]

1T

| [su(p)] _iil|am'a'>‘lap-lsihiMi6i>

(x) (hjadla’ |hiah'6'><Si1/2Mim]Si%S'M')(ap—lSihi,aG aPs'n")

(x) (151 T (s8'1,-MM'-1) - V (hh'T.,00'1) (C39)

1’

*
Ref. 26, p. 62
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The matrix element in (C39) can be abbreviated as follows:

<ap-lSlh1M161| . (ama |su(p) |am'a" > . !ap—lsihiMi6>

=<am aisulam'a')' $ § s s

1 ' 1 1
Slsl hlhl MlMl 9191

=<1/2a||su||l/2a >(__1)l/2—m V(1/2 1/2 1, mm'=1i) V (aa'T,,00'i)

1

§. oy "8 eS8, (C40)
5,57 MM hht o Ve 67

The remaining coupling coefficients in (C39) may also be expressed in
terms of V and V. Thus

(s,1/25M]5 1/ m ) = (2s+1) /2 (1) 1¥SM W(s,1/28,1m-M)  (C41)

L \1/2
<hlahe\hlaela> = (h) V(hja h,0,a8) (C42)
L

Substituting in (C39) and considering the effect of GS gl serees

§. ., in (C40) one finds 11
6,96
11
S-M+1+4+S-M+1/2- +1+S'-M'
p(p,p) =P E (-1) / "2g (1)
SlM mMm' im'
1
hlele 3]

(x)< aPsh {Ia,ap_lslhl> . <ap_lslhl,a|}aps'h' >
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(x) V(sll/zs, Mlm—M)V(l/z 1/2 1,~mm'-i)V(Si1/25',Mim'—M')V(SSil-MM'—i)

'a'6') V(hh'T

'
1 86'1)

(%) V(hlah,elae) V(aaTl,ua'i) V(hiah', 6 1°

(x) (1/2a||sul| 1/2a) (C43)

The coefficients V and V may be rearranged according to the rules®

abe cab bac abc
v (aﬁc) =7 ‘;as) = (DT Ba;) = (-1F*Preg —a-e-;)
(C44)
and
abe bac
A (aﬁg) = (—1)a+b+C v (Bag)‘ (C45)

Carrying through symmetry operations of (C44) and (C45),on coefficients
V and V in (C43),o0ne finds

- w172 172 1) [1/28's.| _[1/2s,8'}
V(s,1/25, M;m-M)....= (-1)2(Sl+s )5 v 115 1
-m m-1i m'M'M m-M_M!
11
[1ss’
VI o

and

}[: V(811/ZSM m-M) *V ...= }E: (_1)-Sl+S+S'+(m-m—1-M-M'-Ml)

mlmMm'im' MlmMm'iM'

(x) (-1)F2HS-S'+S - (momhi-N='-M))

*Ref. 26 p. 77 and p. 15
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_[1/2 1/2 1) _[1/28's | _ [1/25,8") _ [1SS!
(x) Vv v v \
-m' m-i m'-M'M1 -m—MlM i-MmM’ (C46)

The first three powers of (-1) result into

+8'-M'+1/2-m=5-8"-S + (m'-mHi-M-M'-M,)

(-1)
- (_l)S'—M'+1/2-m+S-S'—Sl—M—M'-Ml =(_1)1/2-2M+s..sl
(1) (L/24848)) +1 _ )y 1/ 24545+ (C47)

Similarly the four V coefficients can be rearranged as follows

h,ah T.+h_ +h'+a [a aT a h'h
1
v V() o= (-1t 1 v Y v
910!.6 o'a i 0'8'0
ra
ah, h T.h h'
v 1 vt (c48)
o 616 io6e6

Substituting in (C43) we find
+S1+1/2+hy+h' - -
p(psp) = p }: (--l)S 1¥1/2+hy+h aPsh la,aP 18 h P15 1 a|
11 11
1M1

apS'h'> <l/2a| |sul |1/2a> (x)
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1/241/ 24145454545, - (m' -m1-M-M'-M, )
(x) Z (-1) ,

1] 1]
MliM im
_ 1/2 1/2 1 _[1/28's _ 1/2818' . 18S'
(x) V v v v
- ' m— oM —r ' _M!
m m-1 m'-M M1 m MlM i-M'M
_ aal, ah'hy ahph' Tyhh'
(x) v v ' \/ (C49)
8'060'a' \a'a i a'e'el o 6'6' i00':

The second and third sums are identical to (C32) and (C35) respectively.

Thus they can be substituted by their appropriate W and W coefficients,
The final result is*

p(psp) = G® (Sh-5'h") (1/2a||sul|1/2a) (C50)

where

Al - -

6P (Sh-8'h') = E: (-1)5¥51+1/24h"+hyta <apSh |la,aP" s h )(%p Lop! a

a 1 ™M
51y

IapS'h'>

w p [es) @sn @ @)

(x) W (@/21/21, 58 5,)*W (a a T, hh'h,) (c51)

Py q and r must be less than half shell numbers. If not they should be
substitutde by p' = 2(a)-p, q'=2(b)-q and r'=2(c)-r where (a), (b) and
(c) are dimensions of a, b and ¢ respectively,
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Substituting in (C28) - (C30) we have"
, s
Ry [p(ar)p,Sn-50'] = (-1) PO (NINN L N N'N,)

(x) Gz (Slhl-S'hv) <1/2 a||su||l/2a> GNANQ' (C52)
)

for 1 =014 ' '
Rjk[P(Qr)q,Sh-S h']=(-1) 99,%%W(N2N2NO,N4NZN3)
W(Nz N, N, N N'Nl)

(0 63 (s,h,-5301) (1/2 b |su] |1/25)8 by !

1
NNy Mgy (C53)

and

R, =S'"h!' 1 = (- Sr '
slp(ar)r,sn-s'n 1= (-1)°F D9 %‘QZW(NéNBNO,NaNzNZ)

(x) W(NANI"NO, NN'Nl)

r
ERICITNY <1/2c||su||l/2c> TR (C54)

5.  HETERO CONFIGURATION THREE ORBITAL REDUCED MATRIX ELEMENTS
Rjk.(pqr Sh, pq'r's'h')

Here, we consider the reduced matrix elements Rjk.between states

|j) and lﬁ) with both having three open orbitals of the same symmetry but

different configurations.

*Sp, Sq and Sr are the sum of powers of (-1) in p(pp), p(qq) and
p(rr) respectively.
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The Rjk' in this case, can be expressed as

') = ™
Ry;(5h,5"0") (xyshl 18 [ 1x, s'n" ) (C55)

where
= |[aP q-1 r ] ,
IXJSh) l[a 5,h (6375 b c"5 0,08,y j,5h> (C56)
11\ Ptho'r“lsvvsv] )

xS ') |[a 51h (6% ghye™ S8t | L 1uS'h ) (c57)

The orbitals a, b and c, in (C56) - (C57) represent three of the
five orbitals ta’ €s sees tb of Table 3-2.

Subscripts j and k' denote the electronic configuration and coupling
scheme of the three orbitals a, b and c¢c. The determination of Rjk'

follows that of the Rjk defined in (C12) - (Cl4). Considering these

equations, Rjk,can be written as follows:

o'y =/ AP q-1 r .
Ryjer (Sh-5'h") <a 5,h (5975 h,c"8 h )8 b sh| |

pﬁf;r D q r-1
: ! (RISt PN | 11, 1.1
(x) L su(x)||a sihi(bisshie’ "s3ha)S ks S'h >
= —a'h! —a'h!

Rjk(Sh s'h',p) + Rjk'(Sh s'h',qr) (Cc58)

where
P
~a'h! = (P q-1 r
Ry, (6-5'h",p) <a 5,0, (07 sh,c s3h3)34h4,8h||.<z=:1 su() ||

/ Patptpri9atpt Tl ottty atnte Qth?
x)||a §yhy (b785h,c S3h3)84h4, s'h > (C59)
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and
+q+
R,, ,(Sh-S'h',qr) =<ps h, (b971s oh,e s 314)8,h,,Sh] | P su(x) ||
jk' s q 22 4 4’ Z
k=p+1
(%) ||aPs"h" (bashe”" 1s hy)Sih!;S'h! > (C60)

The Rjk(Sh—S'h',p) of (C59) is given in (C20), whereas Rjk' of
(C60) is a new type of reduced matrix element to be examined in the

following. Considering (C21) and (C31) one finds that

Ryt (Sh=8'h',qr) = (-1)(5,+5,+ h +h+h) (x) 9 D'
(x) <(bq S hz,crs3h3)5 h, || Z su(x) || (* Syhsc - 153 DI >

(x) Z(/(NZ:NaN, NN'Nl) Sy ! (C61)
11

where as in (C31)

9, = [as (hi)]l/2 (C62)
and

W(NNN ,N. N

kzN) W(8181 sssm)(x)

3

h h.T
hohoh )z @ Ty |yl 131 (C63)

Skslsm hkhﬁhm

(x) W (h hj 1’
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The dimensions (hi) of hi in (C62) are 1, 1, 2, 3 or 3 for hi = Al’ A2,
E, T1 or T2 irreducible representations of the cubic group, W and W are
related to the 6j symbols as defined in (C32) - (C35).

be determined in (C61) 1is:

The last term to

+r
Rjk’ [q—l, r; q, r-—l]=<(bq‘1szh2, (:1's3h3)sz‘h4||(tl su(x) ||

K=

Qo Tl iy
(x) || syhac " 83h3) S h; > (C64)

Before considering Rjk,(q—l,r,q,r—l), a preliminary investigation

of the permutational part of the simplification of the bra (Z'l of
bq_lcr and the ket |Z> of chr—l is helpful. For any single electron
operator, F = Zkf (k), the matrix element between (Z'|= <(bq—1cr| and
|Z) = |chr—1> may be described as follows:

l2) = [t @+ r-1)!]‘l/2 ) Db o) e g")
u

(2'] = [t@D! et (@ + e-1)t] M2 )3 0" p (39 o [{cT]

Then,
<Z'|F|Z>= [q!(r-l)!(q-t-r-l)!]—l/z<z'| %: -n)¥ PuFlbqa Cr-18'>

qtr-1 + -1 1
- Ev - P\,<bq a'| <cr8|PuF|bqa> cf B'>

(x) [q! (e=D)1r! (r-1)! (abr-1)1 (qrr-1)1]" 2 (C65)



105

where<bq—la'| : <cr8| is a simple product. The next step is to express

the |bqa> and |cr8> as function of their coefficients of fractional

parentages:

Ibqa>= )X (bq'la",b|}bqa>- b9 2ar b, @) (C66)
a"

|e"8) = ) ("8 Qc,cr’l 811 ) ¢ lec™e, 8 ) (C67)
B"

where a,B,a' and B' in (C66) - (C67) denote the characterizing symbols
of |bq> ,.....hf:>, sugh as Séhé in (C61) for hf‘). Substituting in
(C65), we find:
u+v
(2'|Fiz) = [at-DiGa + -0 Y. L D
1y pn v
o ,B u’

v
(x) <cr8 {‘c,cr—‘lﬁ" > : <c.cr-18",8| '<bq_1a' IPuFlbq_la" °T),a>

- -1 q 1/2
(x) |cr lB' pd ot b|}b o ) (q/r)
) ) @
Considering that

q+ r-1
F = £ (k)

=
L
=

one has

, 2: PUF = (q+r-1)! F
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Substituting in (C68) one has
(z'|rlz) - [at -0 Zv (-1, Zanen<¢rB{c,cr_lB”>
) e a8 - (39t [E] b9t by ) lcr—lB')
‘ 0 (b7t b}bq Y (amY
- L [ate 15 L <c B{c F ) (o b}bq )

l' Bl'

(e,c™ o' 8l '<bq'1 Tr@ (67 - b, )l ) (am 2

: Z q(r-l) {'L R 16" <q1..b|}bq>

a"’B”

. (x) <C|f|b> (r—l)! GB'B||(q""1) !Ga'd” .(q/r)l/Z;(qr)

= (qr)l/2 (crﬁﬂmcr-lﬁ'> <bq'1a', bl} bqu> <c|f|b>

Thus
q+r-1 -
<bq—la', 8| Y £(0) b, o 1B'>

K

_ (qr)l/z <bq—1a', b&bqa> <Cr3 QC,Cr—lB'> '<C|f|b> (C69)
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We now apply (C69) to obtain

LJ ¢-1 . q+r
=<(b S,h,,¢"Sqh,) 81, || ):1 su(x) ||
K=

@ || ®Isshs, <" Fsinl) Sz'.“i) (C70)
- Z (-1)34‘M4<bq‘ls h,ctS.h:S,h M9|Zsu(k)|bqs'h'
aie @ 2"2° S3fyi Sy MOl £ oM
AU (c71)

(x) ¢ Is!n! s;‘h;’M'e'> ¥ (5,5) L,-M M'D) V (h,hiT, 00'-1).

3'3°
Here
q-1 r . . _ )
<b S,h,c S;hy5 80 M0, | = )} ' (s?_s3M2M3|szs334M
M, M,M) m
2723
1
88,04 U
q-1 r r-1
(x)<h2h36293 | h2h3haea><b 82h2M262|<c S3h3{c,c
[ EVIN ' 1 ' ' ' 1
S3h3M363> <1/ZS3mM3 | 1/28383M3> <ch3u63 |chih,0, >
) P
<c S3h3M363| <c mul (C72)
Also,

Qartnt =l o v arpiyrar \ = teimiv!
|b9sih)c S3h354h4M464> E <SZS3M2M3| 528384M4>
Ty '
M2M2M3m
1,1
926293U
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(x) (héhéazeé hyhshie; ><bq "1 ohys b m'u'l}bqs h) >
(8,1 [5,1/25m ><h2b92u' | hybhge; ) [bn's ) |t 1g! shm30;)
x) |63 Lsrnine °2>

222

Substituting in (C71), one finds:

L. X ). (_1)*‘4"94 o

' M'm'
1M4M4 M2M3M3m M2M2 3m

]
9464 629393u 926263u

()% T(s,5)1,4,)-1)

(x) <8283M2M3|828384M4><1/2 sim M5| 1/23553M3>
(x) ( 85333 15,8,5,M, Y(5,1/2M,m" [S,1/25)M; )
(x) V(hjh,T,, 8,6 1)

(x) <h2 36263|h2h3h494><ch5u9 |chy 393>

(x) <h2h36263|h2h3h464> <h b6, |h2bhzeé >

(x) <cr-183h3ﬁc, s3hy Y (b Tg,n z.b}bq hy )
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-1 -1
(x)(bq Szh2M262| <cr S3haM103 | <cmu|su|

| I | 1
(x) |bm'y > |° 3M363>|bq Syh 2M292> (C74)

The individual coefficients appearing in (C74) can be simplified further

as follows:

1/2-m

(emulsulb m'u' )= DYEM T @2 121, wwen) [-2]°

(x) V(chb Tys =M u'i)<1/2 c||sul]1/2 b>
. 1/2, ,\28 _
<SiSjMiMj‘SiSjskMk >= (25,417 (-1 g+ 8, M

(x) T (5,5,5,5 MM,-1)

and
h,h6,0 |hhhe ) = )% vmn 6,)
(yhy0,0, b b6, ) = (hy 1Py 84848

Substituting for coefficients in (C74), we find

L

' 1
Z ( 1)82 82 + S3 S3+ hl+h2+h2

11
iM4M2M3MM M2M3m

6,0581 076703

1/2 ‘D' q-1 g,
(qr) 9494929 c S h {|c, c 3> <b 5,h b}b S h2>
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v ' -~ -— v . — v ' - — '
(x) v (34341, M4M4 i) V(SZSSS4’M2M3 M4) \Y (1/25353, m M3+M3)
(x) v (523384, M2 M3+M4) \Y (521/28 ,Mzm Mé) V(1/21/21, -m m'-1)

(x)

<

] 1 1
(h,0,T158,8,1) V (hyhzhy) V (e hihy, 1630,)

Thipt a1ptgl 1 1
x) Vv (h2h3h4,926394) v (th h ,6211 92) V(b Tl, uu i)

(C75)

S-S, +S.-S. +h.+h.+h 1/29999,
=(_1)2 2 373 2 2 3(qr) o

(x)<bq-132h2, b&bq Séhé><ch3h3ﬂc,cr-IS§hé )
<1/2 c||su||1/2 b>

Z v _ v ' M'_
(x) V (5,845,, MyMy-M) V ( S,55 1/2, My-M}-m)

3
iM 4M2M3m

1ol ! !
M4M2M3m

T taltal _M'_M'M') U 1 _ -
(x) V (55858;,-My-M:M") V (5, 81,-M)M-1)

(x) V (s, 1/2,—M§Mém") V (1/2 1/2 1, m'-m-1)
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' 1at 'HLW!'H! aAtatpn!
(%) E: V(h2h3h4,626364) vV ( h3h3c, 6363u) \ (h2h3h4,926394)
u6,0,6,1

2°37%

targtg!
u 626364

! ! 1! .
x) Vv (h4h4T1,04641) \4 (hzhzb,ezezu) \4 (chl,Pu;é36)

The sums in (C76) are the same as the 9-j symbol* and defined as:

X [abc, def, ghk] = ILoByde¢nbk V (abc,o0By)  V (def,ded)
(x) (ghk,n6k)-V (adg,adn)»V (geh,nee)-v (cfk,ydK) (€77)

Substituting for the sums in (C76) and recalling from (C64) and (C70)
that, Rjk'(q_l’r; q, r-1) = L, one has

S,-S!+S!-S_+h_+h'+h +h!

VIR AR N M A AL W VY
Rjk'(q-l,r;q,r—l) = (-1) 3 3 (qr) /
q-1 q ' Tarp r-1
< b Szhz,bl} b Séh2><c 83h3{c,c 30, >
(x) Cop NN R L NN NN
DDDD' X
2344 234 234 beo
(x) (1/2¢||sul|1/25) - (c78)

where
X[NiNij,NszNn,NbNCNO] =X [SiSjSk’ §,5,5, 1/2 1/2 1]

(x) X [hihjhk, hhh,be Tl] . (C79)

*
They are also called X coefficients (See Ref. 26)
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and the remaining coefficients have their usual meanings. Substituting

in (C61) and taking into account (C58) - (C60), one finds

p q-1 r
<a 5;hy (09778,h,, c"S5hy) S;hy, sl L, su(x)

‘P|v Aoty =1,y 11, Qlh!
) |laPsint o%stha, < sihy) spngisth >

= Ry (sh-$h) = R, (Sh-$H, p-p)

k|
X
+ Rjk,[p,(q-l,r,Sh)-(q,r—l, Sh)]

() 6P (s;h;-S1h!) <1/2a| | sul |l/2a'> 6N4NL

sl+s 4+ S+h1+h 4+h
1] 1 1
+ (~1) 99D aV(NANaNO, NN Nl)aNlNi

52-52+53-S3+h2+h2+h3+h3 1/2

(x) (-1)

q-1 q ./ or r-1
@G sy, bl}b Séhé) <c Séhé{p,c S3h3>

(qr)

) D008, KN, NN, NN ]

(x) <l/2c| |sul|1/2 b (C80)
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The complex conjugate of etero-configuration; three orbital reduced
matrix elements can be obtained from (C80) by appropriate symmetry

transformation on W and X coefficients in this equation. The result is:

R.py(s'h'-sh) = aPsint (bdsih) cr—lséhé) syhssh' || L su() ||
K

P q-1 r

= Rkj(P,S'h"Sh) + Rk'j [pa (q’r—l,S'h')"(Q"l,r)Sh)] (C81)

where

1 1 1
Sl+SA+S+hl+h4+h

ngj(p,s'h'-sh)=(—l) 99 W(NlNil,N'NNa)

P '
(®) & (slh-5;h)) <l/2a||su[|1/2a> b, (c82)

and

§1#s,+8'+h +h, +h'
Ry [P @r-1,5 - (@-Lr,sw)] = (D)

', ' ' ' 1/2
99 Z(/(N4N4NO, N NNl) (qr)

(o) (bIsphy {lb,bq‘132h2>' <c,cr-lS3h39cr83h3><1/2b| |sul |1/20>

99'9D D NN
(x) %2737, x[N2N3N4, NONoN, NbNCNO] - (C83)

11



114

Recalling (C56) - (C57), one finds that in both xj and Xy the aP
parts of the system appears first and then bq, bq-1 and cr—l, cf parts.
Moreover, part b4 and cr-l are always coupled together, first, and then
their results are coupled to aP. The desired matrix elements are not,
however, arranged in this fashion and appropriate recouplings and couplings
are needed to bring the three participating parts of the system in the

above form. This has been done by using the following formula:

<[Slh S.h ]SShE’ S3h3; Shll; Su(K)ll[S'hVS'h'] S'h!.S'h! S'h!>

122 11272 ee’ 33

+S +S 4+S+S'4+S'4S' 48" "4+h'4+h! '

_ Z - S 45,45 4545148748148 h +h,+h +h +h)+h heh
'h h'
5456 " ¢

29" . . T N T
(x) fifi 2 W NN, NN, ) W (NINININAN N )

(x) <§1hl(szhzsah3) S¢h¢, Shl|§;su(r)|Isihi(35h585h5),s$h$,s'h' )

(C84)

For the spin sextets, the sum reduces to one term because there is only
one S¢h¢ and one s&hé which results in the same Sh and S'h'. The values

of Rjk'

four orbital reduced matrix elements.

are given in Table 3-4. Now, we consider the problem of

6. HETERO-CONFIGURATION FOUR ORBITAL REDUCED MATRIX ELEMENTS

Rjk,.(pqrs—ISh,pqr-ls S'h')

Here, we consider the reduced matrix elements Rjk" between states
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Ij) and |k"> both having four orbitals of the same symmetry. Two of
these have the same configuration p and q in both |j>and Ik"), whereas
the remaining two have configurations r and s-1 in |j> and r-1 and s

in Ik"). Therefore,

Rjkn [(pqr s-1) Sh- (pqr-ls) S'h']

=<xJ (par,s-1)5h| | L su(k) | [x, v 1 (par-1,5)s'h" )
k (c85)

where

-1
|xj(pqr,s—l)sh> = [ (aPs h b5 h,)55h, (75 0,05 s he) s hgish )
(C86)

and

- TR Potp 11 9atntyatnt (Lot . >
X 11 (Par-1s) s'h )- | (a"s 070 S;h3)S3h)(c” 78 h s h)Schessh
(c87)

All states can be arranged according to Ixj(pqrs—l)sh) and
anc(pqr—l,s)SWN )by transformation similar to (C84)., Hence the remaining
calculations will be limited to the determination of Rjk,,[(pqrs—l)Sh-(pqr-ls)
")

Using (C16) - (C17), one decomposes Rjk,,[(pqr,s—l) h-(pqr-ls)gh']
in terms of Rjk(pQ) and Rjk'(r’S)' Rjk(p’q) and Rjk'(rs) are, respectively,
similar to the Rjk(qr) given in (C21) and the Rjk'(qr) given in (C61),
except for the subscripts of various spin operators Si and irreducible

representations h Taking this into account, one can immediately write

i.
down the R Kt 88 follows:

3

Rjk,,[(pqrs-l) h-(pqr-ls)S'h'] = Rjk,,(pqrs,sh-s'h')
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0P q r s-1 .
<(a 5,8,b8,h)) 5.h, (cT5b % 5 h) s b b | stu(K)H

Patp 11 Qatmtyatnt rnE=lari 1 48 ity ottt atit
(x) | | (aPsjhsbIssnt) sint (¥ 5 hid®sthl) sght s s'h >

S,+5,+5.4S +5!+5"+h_+h!+h_+h!+h!+h'
cep L2363 I A R .99.9393.

] 1 1
(x)l(/(NlNlNo,N N,N,) W(N3N3No, NN'N

3372 6)

(x) GP(S h,-S'h!) <1/2a| | su| |l/2a>6

a 11 11 S

1] 1]
NNy NeNg

S.+S,+25_+S +S'+h!+h!+h!+h'D 9'D D
. D 18,+28548 48! 4h +hth e+ ' 9 91D D

4 ! | . ' 1]
(x) WNZNZNO,N3N3N1) WNBNBNO,NN Ne)

q L]
(x) GI(5,h,-85h) <l/2b||su||l/2b> GNlNi 6N6N€,

S,+5 _+S5+h +h +h
+ (1) 36 376 (rs)l/?_ 99,94'959696'

-1 -1
(x) <c,cr Sl';hl'; [} ch4h4>- <dSSéh§ @d,ds SSh5>



|—l
=
~

' i ININ!
(X)W (N NN ,NN'N ) A (N4N5N6,N4N5N6,NCNdNO)

\
(x) {1/2¢||sul|1/2d, 6N3N§ ~ (c88)

The matrix elements R are given in Table 3.5.

jk' 1



APPENDIX D

COUPLING COEFFICIENTS OF SPIN ORBIT MATRIX ELEMENTS
TO THEIR REDUCED MATRIX ELEMENTS

The purpose of this Appendix is to discuss the relationships
between the matrix elements of spin orbit interaction between a pair or

state and its corresponding reduced matrix element between the same

states.

The states which are suitable for calculation of spin orbit inter-
action are those behaving as the irreducible representations t of the
spinor group. The spin orbit matrix elements arising from |x ShjtT>

and lka h'J't't > of the two states |X Sh> and |st h >can be expressed
* (3.13)

N

| B ) P R |
<ijthT|Z|< su(K)|ka h'J't't >

= 1LY\, 1 1
<ijh|lZK su() | |x, "' YK, [, (SS'T,, h'he) 6, 6_, (01)

*
Considering (5.22) and (2.20) of Ref. 26 one has

<xSthT|Z [(g % ) Ty (sh ; Tl]Y Allx's'h'J't'T'>

= ( xShJtr| |z, et T h, T Allx's'm'aret
iaB & i )u B 1]y

(x) v(tt' A, ' y)

- <XSth| 1ziu6[(;igi)a T, (Si)s Tl] Al |X's'h'J't'>

(w12 s s,

tt' 1t

118
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The <ijh||Z|< su(K)||ka'h'> was discussed in Appendix C. Here

we focus our attention on KJJ,.

spin orbit matrix coupling coefficient or simply S-0 matrix coupling

This coefficient may be also called the

coefficient. Moreover, it is written in several different forms as

occasion demands. These are:

- ' ' - SS'T]_
KJJ, z KJJ, (SS Tl’ h'ht) = KJJ, (h' he (D2)
The coefficient KJJ, is obtained from the formula (Ref. 26, p. 82)
1 (] = _ S-M"I'l _ h+e
KJJ, (ss Tl’ h'ht) E: (-1 [-1]
rMM'06
(x) V (88'1, -MM'r) V (hh'T,, -66'-r)
(x) <SthT|ShM6>'<S'h'M'6'|S'h'J't‘r> (D3)
The numerical values of KJJ, are given in Tables (3.9) - (3.12). The
cases where h = Al and h = h' = Tl are of particular importance for
evaluation of spin orbit matrix elements between ground state 6Al of

(3d)° 6S ions in crystals and charge transfer states and will be examined

in more detail as follows.

1. DETERMINATION OF KJJ, (8S'T., h'ht) for h = Al

Here, we consider the coupling coefficient which relates the

l’

matrix elements of the spin orbit interaction between the ground state
6 . . .
Al and charge transfer excited states to its corresponding reduced

matrix elements.
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We represent the above charge transfer excited state by |x'S'h'J'tT>
whére, as before, x', 8' and h' are, respectively, the electronic con-
figuration, spin, and irreducible representation of the cubic group of
this state and J', t and 1 are pseudo-angular momentum, irreducible
representation of the state in spinor group and its component, respec-
tively. Instead of the ground state 6Al, 5/2, the state IS Al J T> will
be used and the result will be applied to the particular case of
|6Al, 5/2 T>.

Considering (D3), we have

. . _ L\ S-M'+L b
Koo (88 Tl, h'A ) Z (-1) [-1] Vit e

rMM'66"'

ss'1)

An'T
(x) V le 1

: <s AlJtISAMi>°<S'h'M'6' [S'h'JtT>

Considering Griffithl7, p. 117, gives:

1
Alh Tl )

v i 6-r

als&ukp. 77)

\Y

ss'1| _ 28'+8-M [ 1 Vot l1a0
-MM'r’ = (-1) _\/(23+1) (1s'vu' 15" s1)
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Thus

S-M'+1

KJJ, (ss't h'Alt) = (-1) [-1]

l’

‘\/(T ) (zs+1) rz oriny " gy

66"

(x) <lS'rM' IlS'SM>‘<S AlJtT|SAMG><S'thvev IS'h'J'tT>
_l_ _l___ _ S+1 Z _ _MI
(T)) (28+1) (-1) (-1) <lS'rM'|lS'SM>
1

(x) <s A Jtt|s A1M6><S'T1M'r|S'h'J't'T>

'ZTr'iT(zs_-lrl) -1 S+1Z <SAJtT|SAM6> Z

Ml 'Ml

(x) <lS‘rM' |lS'SM><lS'rM' |1s'3'M' '><J'M' ' |J't'r>

(Tl) (25-:::1) (- l)s+l Z <SAJtT|S A M6><JM”|J tT z (- l)
M M'r

(x) <1SrM' |1S'SM><lS'rM' |1s'3'M’ '>

= 1 . 1 . < > IEVER] ' >
'\/(T Y e Z S AlJtTIS A, M6 <J M''|J"tr Syprt 1857181
1 oy 1

v 1 1 < . 1 1
"\/ (1) @S ) (oaseloap)(aulses) oy, (1) @s+D) SssPnmy
M
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Therefore

55T, -
Kyge n'ae| W,3(2s+1) Ss7 Ssg 6h‘Tl (D4)

Several important conclusions may be drawn from (D4):

(i) The spin orbit interactions couples the ground states only
to excited states |y 6T1 5/2tT>and|x 4Tli 5/2t%>

(ii) The matrix element is independent of t and, as a result
of this, ne splitting will occur from a second order
perturbation.

(iii) The matrix elements are independent of S' and thus, the

energy shift resulting from 4Tli and 6Tli depends only on
their reduced matrix elements.

The next important coupling coefficient to determine is between

1 1!
IxiSh> and lx iS h > where h, h' have Tl’ symmetry.

2. DETERMINATION OF K h'ht) for h=h' =T

g0 (SS'T

1 1

The coupling coefficients relating a matrix element of the spin
orbit interaction between a pair of charge transfer excited states whose
irreducible representation in the cubic point group is Tl will be analyzed
in this section. The importance of considering this coefficient is

apparent from (D4):

1 = .
K o (SS'T}, b Ajt) W/1/3 (28+1) 8o * Bgry Byup

l’

which indicates that the ground state 6Al couples to charge transfer

excited states of T1 symmetry alone and is not split by that. Conse-

quently, a splitting by spin orbit interaction of the ground state 6A1
1

of the complex [Z 1&4]—n may occur through higher than second order
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perturbation and through the intermediary states, two of which, at least,

must have symmetry Tl' Therefore, determination of K_., related to such

states of T

JJ
1 symmetry deserves particular attention and we begin by

. 1 .
studying KJJ, (ss Ty TlTlt) as follows (D3):
] |
ss'T; | SHHL L TpH0 [ss'1 TyT1t
K. .y = (-1) [-1] V| v
JIA T It \ ! 98" -r
\ rMM' 66" \ M
/ . ' 1At ]t {
(x) z\Str;lJtTISTlMe> (s'TM'e'|s'T " tr)
where
ss'1 (TlTlTl 111
v /1 r1Mm! . =
v —MM'r) B \/ 25+1 <S 1M rlSM>’ v \-00'r Vieorr

(sht |shme) =Z {shte|am' vy <JM"|SlM6>

M'l
<S'h'M'6'|S'h'J't’r>= Z <S'h'M'6'|S'J'M"'> <J'M""|S'1J't'r>
M"'
Thus
$8'Ty 58'1 ) 111 |
K..' = Z . Z v v 2J+1) (23'+1)
ITATTE] ettt pree  \MM'T —eer} Vier) ¢
st | s
(X) V MlelMlll V M:""'EM"

(x) '<SlJtT|}M' '> <J'M' " [lS'J'tT>
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Z Z 531 111 sm' 7 s1J
—ger | ViMrormrr] Y m-en'
MI|| MM"
60"

) V@0 i+ (siee|au H(am' s er)

_[111

1
2J+l) <s‘]'Jl GM' 'Ml e

) Y (23'+1) (23+1)

)

Ml |M||l

Wlssty

(x) (S]_Jtt | o J'tt)

111

Z (ss J) (ae|am Yo 1|3ty 8 50 = W(SS,J) -



APPENDIX E
FOURTH ORDER PERTURBATION

This Appendix gives the formulae necessary for the evaluation of
the fourth order correction to the energy of the degnerate state 6A1 of
the complex* [Z A4]_n'. In Chapter IV it was shown that the fourth order
is the lowest order of spin-orbit perturbation of 6Al by charge transfer
states which can lift the degeneracy of 6Al and contribute to the cubic
field splitting 3a. Therefore, to determine 3a one must employ fourth
order perturbation formulae.

These formulae can be obtained from the general expressions of nth

order perturbation given by Corson™’
g ) gf o5 (a8 |v|ud k) (udok|xt8, n-1)
n jk
n-2
- Z E\)(S) B (a5 8|k % nv) j 4 (E1)
=2
where |Hr’S>, IHJ’k> are respectively the ground and excited states being
(s)
n

and IHJ’k> designate the sth and kth degenerate states belonging to the

. . r,s
involved in evaluation of E Hr, the superscripts s and k in |H ’ >

energy levels B" and HJ,

*

+See Appendix A
E. M. Corson "Perturbation Methods in Quantum Mechanics of n-Electron,"
Hofner, New York (1951) p. 75
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<Hj,k‘Kr,s. n>= _}: Cad oy ) (e 28, n1)
’ w - ut
L,m

n-1 :
£ (&) gt (HJ’ler’S; n—v>

+ z v 5 itr (E2)
v=1
and
<Hj’k|1<r’s,1>= @ - w7t <Hj’k|V|Hr’s> . (E3)
Substituting in (E1l) - (E2) one obtains the desired En(s). The 6Al

!
ground state of the complex [I A4] n, behaves as angular momentum J = 5/2.

The irreducible representations of J =15/2 in the cubic double group
are E'' and U'. Thus
g (8) 6y
n

1° E(n)(s); s =U'"or E" (E&)

For determination of the cubic field splitting, 3a, up to fourth
order perturbation, a much simpler formulétion is enough as will be seen
below. 3a is the difference of the energy corrections E(A) (U') and
e @,

3a=® @y - t® @, (E5)
and fourth order perturbation is the lowest one giving rise to such splitting.

Thus all terms containing Ev(s) i o= E(V)(s) will vanish and the only

contributing terms to (E5) are obtainable from the general formula
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£ () - £ (s) = E4(S) it - (5T

4
=Z[<HI’S|V|Hj’k><Hj’k|Kr’S,3>
jk
_<Hr’S!VIHj’k><Hj,k r,S >
|&k™27 3 (E6)
where
<Hj,k|Kr,s’3> ) _Z (o X |y [t ™) o™ KT8 2)
" w - gt
n-1 . (s) .x /.5,k ,T,s
+Z N B (B T|K ;3-v>
3 , (E7)
vel HY - H
and
<H2,m|Kr,s’2>___ s C*om | #P> DP9 v [T )
Psq (Hp - Hr) (Hr - H'Q')
g ® Hr<Hp’qJKr’S,1>
i : (E8)

- u*
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Substituting in (E6) and eliminating terms having E(S) one immediately
finds that:
1 . .
3a = - Z {<Hr’U |V|H3’k><H3’k|V1H’Lm><Hmlvlﬂpq>

jk;m,pq
(x) <Hpqu|Hr’U'> [(Hj - @ - v P - Hr)]_l
‘<H“F'Wh9*><§JWWHm>Q¥Wme>

Go (#P9 T Had - 1 @ - wH P - Hr>]'l} (E9)

or more simply

3a = - Z (EjEREp)_l{V(rU',jk) V(jk,4m) V(&m,pq) V(pq,rU")
j4p,kmq
- V (rE'',jk) V(jk,m) V(&m,pq) V(pq,rE"{} (E10)
where

(] .
v(rU',jk) =<HrU |v|ud ’k>
and

E, =H -H; 1i=3,2,p (E11)
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Since spin erbit interaction is diagonal in U' and E'' we can

substitute for K m and q in (E10)

JkU', JmU', ceeses JqE" ‘ - (E12)



APPENDIX F

SPIN-QRBIT MATRIX ELEMENTS BETWEEN
|x ShM6) AND |x'S'h'M'6') FOR S = §'

In this Appendix we consider a different method of finding spin-
orbit matrix elements which is applicable to pair of states of the same
spin value, S = S'. This technique is particularly useful for the
evaluation of the contribution to the cubic field splitting 3a from the
spin sextuplets of charge transfer states. Since S = 5/2 for all states
it can be considered as a constant and integration to be carried out
over the orbital part of spin-orbit Hamiltonian only. Thus, instead of
bases of the spinor group, |JtT>, we choose the bases |h9> of the single
valued cubic group for the evaluation of the matrix elements.

Following (9.26) of Ref. 16 and considering the fact that for
S = 5/2, there is only one state lhe} for any of the charge transfer
states given in Table 3.2 one can describe the spin-orbit matrix elements

in the ]ShMe} scheme as follows:

{x Shyo | y ci_&i-_s_i|x'Sh'M’6'>
1

.-.Z {x ShM6|ci&i|x'Sh'M6'>-<x Sh'Me'|§i|X'Sh'M'e') (F1)

i
The vector gé in (F1) can be replaced as follows*

5(s + 1) (x sh'Me'|s"[x'sn'M'6")

___<X Sh'M6" |_S_|X'Sh'M'9')<X'Sh'M'6' |§1‘§lx'5h'M'6'> (F2)

*
E.U. Condon and G.L. Shortley, "The Theory of Atomic Spectra," Cambridge
University Press (1959) p. 61
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where

(1/2)(3/2) + (1/2) [S(s + 1) - (1/2)(3/2) - (S - 1/2)(S + 1/2)]

a/2)(s + 1). (F3)
Substituting in (Fl) and (F2) one finds

_(1/2) (s+1)
T S(S + 1)

<x sh'Mo'[s*|x"sn'u'e" ) <;\f Sh'Me'|§|x'Sh'M'6'>

= <x Sh'Me" | (28)_1_S_|Sh'M'e'> (F4)

and

<x ShMG{Z gi_&iiilx Sh'M'6'>
i

= (25)71 <x ShM6I§|x'ShM'e> Z(X ShM'elci£i|Sh'M'6'> (F5)
i

To obtain the cubic field splitting from these matrix elements one carries

a fourth order perturbation calculation on one of the components of §
such as SX and selects those states |h9> which would result to a non-
vanishing term bsxé. Comparing this term with the spin Hamiltomian given
in (2.1) one immediately finds that the contribution from the spin

sextuplets of the charge transfer states to 3a is

[3a (o, M]_ = 18 Z b, (F6)
3
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where j covers all fourth order perturbation channels giving rise to

terms of bjSX4. Our initial results!® were obtained by this very simple
technique. The disadvantage of this method is its limitation to a fixed
manifold of spin S and, consequently, it is not applicable to spin quad-
ruplets and doublets of the complex [Z A4]_n' which has a ground state
spin § = 5/2. Moreover, in this technique an apriori knowledge of the
spin-Hamiltonian is necessary which is in contrast to the method described

in the text.



APPENDIX G

COVALENCY DEPENDENCE OF THE CHARGE TRANSFER CONTRIBUTION
TO THE CUBIC FIELD SPLITTING 3a (o,I)

In this Appendix, we examine the dependence of the cubic field
splitting, 3a(o,l) on the covalency of the molecular orbitals involved.

Recalling (4.6) one has

3a(o,m) = 3a(4) = .ii c, cd4—i ;pi (G1)
i=0

Here, Cd is the spin orbit interaction constant of the d orbitals of
the S-state ion (e.g. Mn2+), gp is the spin orbit interaction constant
of the p orbitals of the surrounding ligands [e.g. S in ZnS:Mn] and Ci
are functions of the coefficients of linear combinations of atomic d
and p orbitals.

Now, a question arises on the nature of the coefficients C, in the
limit of ionic approximation where the coefficients of ligand orbit;ls
vanish.

To investigate this we examine 3a(o,m;t, =+ ea) of (5.21) and

1
3a(G,ﬂ;tb -> ea) of (5.25). The first one is

3a(o,msty > e,) = - (9/1250)[612(61 + el)]'l 62 cp4 (G2)

Comparing (G2) with (Gl) one finds for 3a(0,n;tl+ ea)

133
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and

c, = —(9/1250)[612 (8, + sl>]‘l 8 (¢3)

where 61 and 61 + e are energies required for a ligand to metal electron
transfer as shown in Fig. 5.3 and B is the covalency of the de orbitals
of the S-state ion as described in (3.16). For an S-state ion in a
II-IV compound with higher ionicity Gl increases whereas 82 decreases.

Thus at the ionic limit where 82 -+ 0 one has

Lim C, » 0 (G&)
B2 > 0
and consequently

Lim 3a(o,m;t

B2+ 0

17 ea) =0 (G5)

Now we examine 3a(0,ﬂ;tb > ea). The coefficients Ci of this term

are given in (5.25) as follows:

¢, = [asr625)08," 26" + ;17 6 o Ik

¢, = [asse2sys, 26, + e, 176 a2 P -2 VB a sk W] N
c, = [asrs2syts, 26, + e, 017hs o Pz v 62 2D

c, = [ asre2sy1e, 25, + ;0178 ¢ -(B1D) @ 1]
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and

%" [(18/625)[51'2“1' +e MO ]82

At the ionic limit both B and A approach to zero whereas 61' and

§.' + ¢.' increase. Thus

1 1
Lim Cli+ 0; i=0,1, ..., 4 (G6)
By A >0
and consequently
Lim 3a(0,1r;tb > ea) + 0 (G7)
BsA > 0

The vanishing of 3a(o,1r,ta > ea) and 3a(o,m,t, > ea) follows from the

b
fact that in each term contributing to 3a(o,m) of (Gl) there is at least

one spin orbit matrix element of the type tat , and tat where

1° 5% b

, t

ab = <i/2 allz &+s||1/2 b> 3 a, b=e

a’ 10ty &

The reduced matrix elements ab are given in Table 3.13. It is
evident from this Table that all such reduced matrix elements contain
B and or A+ Both of these vanish at ionic approximation and consequently
all contributions to 3a(o,m) of (Gl) vanish at the ionic limit as

expected.
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