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CALCULATED GAMMA RAY PHOTOFRACTIONS
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Monte Carlo calculations for the photofractions of well-type
gamma ray scintillation crystals are described. Leakage of
secondary gamma rays, bremsstrahlung and electrons is con-
sidered Calculated photofractions are tabulated for two common-
ly used well crystals. Comparisons are made between photo-

1. Introduction

Scintillation counting 1s a widely used technique in
the determination of absolute gamma ray emission
rates, primarily because of the reproducibility of the
detector efficiency. Sodium iodide crystals with care-
fully controlled dimensions and compositions are
readily available to most laboratories and can be used
as scintillation detectors of accurately known efficiency.
The perturbing effect of scattering from surrounding
media may be eliminated by counting only those
interactions which deposit the full gamma ray energy
m the crystal. The number of these events is pro-
portional to the area under the photopeak, 4, of the
pulse height spectrum from the detector. By letting the
factor f represent the fractional attenuation of any
absorber between the source and the crystal, the abso-
lute source strength N, is given by

No = 4,/(fear), 1)
where ¢, = fraction of source gammas totally absorbed
1 the crystal (absolute peak efficiency). Conventionally,
the absolute peak efficiency 1s written as the product

€ap = D EAT> @)
where ¢,r = fraction of source gammas that interact
at least once in the crystal (absolute total efficiency) and
p = fraction of interacting gammas that are totally
absorbed (photofraction), including all secondary
particles.

Here the effects of varying the source-to-crystal
geometry are reflected mainly in e, and the photo-
fraction has been shown to be only mildly dependent
on such variation. Values of the absolute total efficiency
have been previously calculated for crystals with the
two most common shapes: the solid right circular
cylinder') and the circular cylinder with coaxial

* Now at Westinghouse Astronuclear Laboratory, Pittsburgh,
Pa.

fractions for Nal, Csl and Cal; scintillation crystals. Absorption
and scattering within a homogeneous cylindrical source have
been considered and results are given for aqueous solutions of
monoenergetic sources.

cylindrical well?). Photofractions for solid crystals have
been given by numerous authors, e.g. Heath'), Zerby
et al.>*), Miller and Snow®) and Jarczyk et al.®).
Calculated photofraction values for well-type crystals,
however, have not been previously available and are
the subject of the present work.

2, Calculational procedure

Monte Carlo methods were used to simulate on a
digital computer the sequence of events which occur
when a gamma ray is incident upon a well-type scintil-
lation crystal. Each source gamma interacting 1n the
crystal generates a sequence of secondary gammas and
charged particles. The original interaction, together
with the fate of all secondaries, constitutes a single
“history”. Termination of each history occurs when
either the total energy of the incident gamma ray 1s
absorbed, or any secondary gamma (with energy
> 10 keV) or charged particle escapes from the crystal.
The possibility of leakage of each secondary electron is
taken into account, as are the bremsstrahlung photons
generated along the electron track. The number of
histories for which the total gamma energy is deposited
within the crystal is then divided by the total number 7,
of interacting source gammas to give the photofraction,
p. The predicted standard deviation of the photo-
fraction obtained in this way, is given by

o =[p(1—p)/ 11" 3)
2.1. SOURCE GEOMETRIES

Gamma rays incident on the crystal can be considered
either from isotropic sources or as finite beams in
which all rays are parallel to the axis of symmetry. The
isotropic sources are typical of small volume radio-
isotope gamma emitters and include points (on or off
the crystal axis), circular discs centered on the axis, or
homogeneous cylinders located along the axis. Self-
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absorption and scattering have been considered for the
cylinder source (sect. 3.2). Beams of parallel rays
incident normal to the well bottom can be used to
simulate collimated sources.

2.2. GAMMA INTERACTION PROCESSES

The general flow diagram for the Monte Carlo
computation is shown in fig 1. The appropriate source
geometry is sampled to select a single gamma ray
defined by seven variables: rectangular coordinates
(x, », z); direction cosines (u, v, w); and energy (E).
If the selected source gamma is incident upon the
crystal, the total distance, p, traveled in the crystal
medium to the first interaction 1s calculated from

p= —In r/,u, (4)
where
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Fig 1. Diagram for Monte Carlo calculation of photofractions
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r = random number obtained from a uniform distri-
bution on the interval 0-1,

u = total gamma ray cross section’) (without coherent
scattering) at energy E.

If this mteraction 1s found to occur within the crystal
boundaries, the type of event is chosen by random
sampling from the possible processes in proportion to
their individual probabulities’). For gamma rays the
only important interaction processes 1n the scintillation
medium are photoelectric absorption, Compton scatter-
ing and pair production. Rayleigh (coherent) scattering
has been 1gnored, as this process occurs only for the
lowest energies where photoelectric absorption pre-
dominates and only a shght change 1n photon mo-
mentum results.

If a photoelectric event 1s sampled, the entire gamma
energy 1s transferred to a single electron. The electron
is assumed to be emitted in a direction distributed
uniformly in azimuth and at an average polar angle®)
relative to the mcident gamma ray direction. Fluo-
rescent radiation and/or Auger electrons emitted in
filling the vacancy 1n the mner shell following a photo-
electric absorption are neglected. Treatment of the
photoelectron and subsequent bremsstrahlung are
discussed in sections 2.3 and 2.4, respectively.

When a Compton event is chosen, the differential
Klemn-Nishina cross-section for free electrons is sampled
by a technique of Kahn?) to obtain the pola angle of
scattering relative to the incident gamma direction.
The usual kmmematic relationships are then used to
obtain the energies of the scattered gamma and
electron. Azimuthal symmetry 1s assumed. Transfor-
mations are made to relate all secondary gamma and
electron directions back to the coordinate system fixed
in the crystal using the method of Kleinecke'®). The
scattered gamma and electron are further followed
through the crystal, as indicated 1 fig. 1.

If a pair production event occurs, the positron and
negatron are assumed to be emitted at a mean polar
angle given by Bethe and Ashkin'?) as

0= mOCZ/Ees (5)
where
moc2 = electron rest mass energy,
E, = electron kinetic energy (gamma energy minus

2mgc?).
The azimuthal angles for the pair are uniformly dis-
tributed, 180° apart. The pair electrons are treated
identically in slowing down and one is chosen at random
to be the positron for purposes of generating annihila-
tion radiation. Two 0.511 MeV annihilation photons
are assumed to originate at the end of the positron path
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and are followed in the same manner as primary gamma
rays.

2.3. ELECTRON LEAKAGE

An approximate method has been used to take into
account the possibility of escape through all the crystal
surfaces of photo-, Compton-, and pair-electrons. For
typical sizes of scintillation crystals, the fraction of all
such electrons which escape is quite small and a more
rigorous electron transport calculation is not warranted.
The probability of escape is assumed to be a function
only of the ratio p/R,, where p 1s the extrapolated
distance to the crystal surface and R, is the electron
“range”'12). A random sample is obtained from the
transmussion curve of fig. 2 for each electron path. An
electron is assumed to reach the crystal surface when

rs P(p/RO)’ (6)
where
r = random number,
P(p/R,) = transmussion probability (fig. 2),
R, = electron range corresponding to the initial

electron energy®>12).

The albedo data of Berger'#) have been used to approxi-
mately account for that small fraction of electrons
reflected from the crystal canning with only a slight loss
in energy. All other electrons reaching the surface are
assumed to escape from the crystal. Escape of any
electron causes the history to be terminated, since the
total source energy can no longer be absorbed in the
crystal. If eq. (6) is not satisfied, the electron is con-
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Fig 2. Electron transmission in Nal, ref.13).



264

sidered to be stopped within the boundaries and all its
energy deposited in the crystal.

The transmission probabulity for electrons (fig. 2) has
been calculated with the Monte Carlo program of
Wanio!?) for an 1sotropic, monoenergetic electron
source within Nal and includes the effect of back-
scattered electrons. Plotting the transmission probabili-
ty vs the normalized range, p/R,, yields a curve nearly
independent of electron energy over the region of
interest'** %), An 1sotropic, internal electron source
was used 1n calculating these data in order to simulate
the nearly random directions of incidence on the
crystal boundaries.

2.4. BREMSSTRAHLUNG ESCAPE

All electrons produced m gamma ray interactions are
assumed to generate bremsstrahlung photons according
to the average differential spectra of Zerby and
Moran'®). Based on these differential spectra, the mean
number of photons released with energy greater than
0.04 myc? has been calculated by Zerby?) and used in
the present calculation to represent the average number
of photons emitted while the electron is stopped. All
bremsstrahlung with energy less than 0.04 myc? are
assumed to be always absorbed in the crystal. The actual
number of photons generated 1s obtained 1n a random
manner by assuming that the probability for emission
1s given by a Poisson distribution consistent with the
calculated average. For each bremsstrahlung photon
released, a separate selection for energy is made from
the distribution above 0.04 myc* according to the
Monte Carlo procedure given 1n ref. *). The brems-
strahlung photons are assumed to have an 1sotropic
angular distribution and are distributed in a random
manner along the electron path. They are treated in the
same manner as prumary gamma rays, except that
further electron or bremsstrahlung leakage are not
considered. Escape from the crystal of any bremsstrah-
lung with energy greater than 0.04 moc? causes termi-
nation of the history, since total absorption of the
source gamma energy 1s no longer possible

2.5. SECONDARY GAMMA RAY ESCAPE

The secondary photons generated by primary
Compton interactions and pair positron annihilation
are further followed through the crystal, using the same
techniques described for the primary gamma rays The
coordinates of the next interaction point are calculated
and tested to determine whether this point lies within
the crystal boundaries. If it is outside the crystal, the
secondary photon has escaped and the history 1s
terminated. The interaction point calculation 1s compli-
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cated by the possibility of mntersection of the photon
path with the well volume. In those cases, 1t is assumed
that the gamma ray 1s unattenuated through the canning
and reflector on the well surface and that the well
volume is vacuum. Thus, if the gamina ray cuts through
the well and re-enters the crystal, the total distance
traveled 1s increased by the length of the path through
the well The case of absorption and scattering in the
volume source within the well is considered in sect 3.2
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Fig 3 Well crystal dimensions (inch).

3. Calculated results
3.1. PHOTOFRACTIONS FOR WELL CRYSTALS

Two widely used sizes of well crystals® were included
m the calculation of Nal(Tl) photofraction values. As
shown n fig. 3, the primary difference between the
two crystals is the diameter of the well Results are
given in table 1 The calculations were restricted to
point isotropic sources 02 cm from the well bottom.
The effect of various 1sotropic source geometries (1 e.
points, disks, cylinders) within the well was investigated
and gave a maximum difference of <69, from these
values with most geometries showing considerably
closer agreement. Simular mild dependence of photo-

* Available from Harshaw Chemical Company, Cleveland,
Ohio.
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TABLE 1
Well crystal photofractions isotropic point source on axis

Energy

(MeV) 7F8 8F8
0279 0.8590 + 0 0078 0.8365 + 0 0083
0412 0.6460 - 0 0107 0.6225 -0 0108
0662 0.4305 + 00111 0.4520 £ 00111
117 02775 + 00100 0 2650 £ 0 0099
2.75 0.1420 + 0 0078 01210 £ 00073
4.45 0.0785 + 0 0060 00815 + 0 0061
6 00 0.0445 + 0 0046 00515 £ 00049
8 00 0.0235 + 0 0034 00215 +£ 00032

10 00 0.0185 + 0 0030 0.0125 + 00025

fractions on geometry is also observed for solid
crystals')

The calculations were made for 2000 histories and
the indicated standard deviations were obtained from
eq. (3). When used with the &, values of ref. %), these
data permit calculation of peak efficiencies for the well
crystals shown. Since no tabulation of calculated
results can cover all possible experimental arrangements
that may arise in the laboratory, the specific calcu-
lations were limited to these two commonly-used
crystals. To permit extension to other cases, the com-
puter program, designated BURP-5, has been made
available through the Code Center of Argonne Na-
tional Laboratory, Argonne, Illinois.

A limited investigation was made of the total absorp-
tion characteristics of CsI(TI) and Cal,(Eu) for a well
crystal corresponding to the 8F8 dimensions. In fig 4,
the results are presented in the form of the ratio of the
calculated photofraction to that of Nal(T1) at the same
energy. The Monte Carlo program contains electron
and bremsstrahlung data for Nal only and some error
15 introduced in the results for other materials at
energies above 1 MeV. It is apparent that a CsI crystal
will exhibit about 1.5-2.4 times the photofraction of
the same size Nal crystal over the energy range of most
laboratory interest. The comparison given here is based
on equal crystal dimensions and the greater density of
Csl (4.510 g/cm?®) over Nal (3.667 g/cm?) accounts for
a major part of this advantage. Only small Cal,(Eu)
crystals (1-2 cm? x 3 to 6 mm thick) have been produced
to date'”), but in order to provide a comparison, a
hypothetical Cal, crystal with 8F8 dimensions was
considered. Less than a 10%, advantage for Cal, over
Nal is indicated over the energy range considered.

3.2. ABSORPTION AND SCATTERING IN VOLUME SOURCES

For some gamma ray sources distributed over a
finite volume, self-absorption and scattering effects may
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significantly reduce the effective detector efficiencies.
In a review of the current literature, ref. '®) was found
to give the only calculated results in which source
interactions were considered and 1s limited to solid
crystal detectors. An investigation of this effect on total
efficiencies of well crystals 1s described below.

The absolute peak efficiency for an ideal source
defined as one with zero scattering and absorption
cross sections, has been designated as g,p. Also &'4p is
defined as the absolute peak efficiency for the same
source geometry assuming non-zero cross sections.
Analogous definitions are made for the photofractions
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p and p’ and absolute total efficiencies, ¢, and &' 41. By

definition

¢',r = fraction of source gamma rays that escape the
source without scattering or absorption and
interact at least once in the crystal.

1
Epp = v f f (1—e"™e™dadv,, (7)
s 0 Ve

where

V., = source volume,

y = path length n the source extrapolated in the
direction of emission of a source gamma ray,

x = path length 1n the crystal,

7(E) = total cross section of crystal,
u(E) = total cross section of source,
2 = mean solid angle subtended by the crystal at
the source.
If the photofraction p’ is calculated for only those
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rays which escape from the source unattenuated in
energy, then the absolute peak efficiency 1s given by

€ap=1p "€ (8)
where
p’ = ohotofraction given by the ratio A'//’,
A’ = number of gamma rays that deposit the total
source energy 1n the crystal,
number of gamma rays interacting at least once
n the crystal.
Scattering and absorption within the source will affect
both the photofraction and the total efficiency, but 1n
many cases the change 1n photofraction will be negli-
gibly small If we ignore the possibility of gamma rays
scattered in the crystal re-entering the well and inter-
acting 1n the distributed source, then the approximation
that p’ = p is, at worst, equivalent to considering the
photofraction for all points within the source to be
equal As discussed in sect. 3.1, the latter approxi-
mation is generally good to within a few per cent for
sources within the well and we have consequently
Iimited consideration of source self-absorption to its
effect on e4r. Eq. (7) was numerically evaluated by
Gaussian quadrature for the case of a homogeneous
aqueous solution completely filling the well of an 8F8§
size Nal crystal Results, together with those for the
equivalent transparent source, are given in table 2.
When used with the photofraction data of table 1,
approximate values of the peak efficiency ¢',p can be
obtamned for this geometry The computer program for
solution of eq. (7) for any well-crystal 1s designated
BURP-2 and 1s also available from ANL Code Center.
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The authors are indebted to Dr. C. Zerby and K.
Wainio for data used in the calculations and to Dr. G.
Gyorey for suggesting this investigation.
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