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Fechner deduced his logarithmic law from Weber’s Law by integrating the equation 
du = dx/kx. Since the work of Lute and Edwards, this method has been regarded as 
incorrect. Reexamination shows that the method can be reformulated and justified in 
a rigorous manner. 

Let O,(X) denote the increment in stimulus energy x that is required in order to 
produce the value s of a certain index of discriminability. (Example: if x is luminance 
and the discriminability index is the signal-detectability index d’, then d,.,(x) is the 
increment in x required to produce d’ = 1.5.) The function d, is called the Weber 
function (for discriminability = s). 

A just-noticeable difference scale (JND scale) is a transformation of the stimulus 

continuum, x + U(X), such that 

u[x + OS(X)] - u(x) = g(s). (1) 

That is, the u-scale difference between a stimulus x and the stimulus one S- JND higher 
is constant, g(s), independent of X; the u-scale difference between two stimuli separated 
by n s- JND’s is n . g(s); g(s) is the u-scale size of one S- JND. This formalization of the 
concept of JND scale is due to Lute and Edwards (1958), who pointed out that, in 
general, a JND scale does not exist; Eq. 1 can be solved only for special Weber 
functions. In particular, if the general linear form of Weber’s Law holds, 

A,&) = k&)x + k&h 

then there are no function-pairs (u, g) satisfying Eq. 1, unless k, is propertional to k, , 
i.e., unless 

O,(x) = k(s)@ + 4, (2) 

where x,, is independent of S. The conditions that must be satisfied by a general Weber 
function O,(X), in order for a solution (u, g) to Eq. 1 to exist, have been studied in depth 
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by Falmagne (1971) and Levine (1970). Th e s y  yh owed, among other things, that under 
the most commonly encountered conditions, the u-scale is unique (up to linear trans- 
formations) when it exists. 

I f  the Weber function is given by Eq. 2, then simple substitution shows that the 

functions 
u(x) = a + b log@ + x0) 

g(s) = b log[l + k(s)] 
(3) 

satisfy Eq. 1. In this case (Fechner’s Law) the u-scale can be obtained by integrating 
the reciprocal of the Weber function: 

The purpose of this note is to show that this formula can be generalized to other 
Weber functions. This is of interest both as a means of obtaining solutions to Eq. 1, 
when O,(x) is given in a closed functional form, and because Lute and Edwards 

explicitly asserted that Fechner’s procedure of integrating dx/Ax gives wrong results 
except in the case of Ax given by Eq. 2. In the discussion, I shall try to reconcile Lute’s 
and Edwards’ assertion with the present result, and shall point out what is special 
about Weber’s Law (Eq. 2). 

To begin with, observe that one cannot simply write 

for an arbitrary Weber function A,(x). For one thing, it was just pointed out that 
solutions to Eq. 1 do not exist for arbitrary Weber functions. Thus, any method of 
integration can be applied only where we already know that the criteria for existence 
of a solution to Eq. 1 are satisfied. Secondly, the right side of Eq. 4 is a function of S, 
while the left side is not. Indeed, the integration performed above led to the u-scale 
[I/k(s)] log(x + x0) which does depend on S. But multiplying by [l/K(s)] is a permis- 

sible transformation, amounting to varying b in Eq. 3; thus, for Weber’s Law, essen- 
tially the same scale was attained, regardless of the choice of s. For more general Weber 
functions, however, this need not hold. 

This last point leads to the idea of normalizing the integral, by fixing the zero and 
units so as to retain the same u-scale for every S, at least approximately. 

Thirdly, the right side of Eq. 4 is differentiable, so the left side must be also; 
we expect that a JND scale (u-scale) obtained by integration must satisfy some smooth- 
ness conditions. 

These considerations should lend some intuitive plausibility to the statement of 
the following theorem: 
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THEOREM. Let u be a real-valuedfunction on an open interval (a, /3), -cc < cy < /3 < 
+ co, with a continuous, positive first derivative Du; let g be a real-valued function, the 
range of which has 0 as a limit point; and for all x, s such that x E (ar, /3) and u(x) + g(s) 

is in the range of u, let 

A,(x) = u-‘[U(X) + g(s)] - x. 

Then for any x1 , x2 , x3 , x4 in (OL, p), with x3 # x4 , 

(5) 

(6) 

Note that Eq. 5 is equivalent to Eq. 1. 
The statement of the theorem is intended to include the assertions that both the 

integrals on the right side of Eq. 6 exist and that the indicated limit exists. 
The following line of proof was suggested by Michael Levine. 

Proof. Since u has a positive first derivative, it is continuous and strictly increasing. 
Therefore u-l exists and O,(X) is well defined. Furthermore, since Du is positive, for 
every y  in the range of U, Du-l(y) exists and is equal to l/Du[u-l(y)]. 

By the Theorem of the Mean applied to Eq. 5, for every X, s for which O,(x) is 
defined and nonzero, we have 

A,(x) = Du-l[u(x) + +, x)1 . g(s), 

where E(S, X) is strictly between 0 and g(s). 

(7) 

For any xi < x2 in (01, f3), choose 6 > 0 so small that u(xJ - 6, U(ZJ + 6 are in 
the range of U. Then for 0 < 1 g(s)1 < 6, x1 < x < x2 , we have O,(x) defined and 
satisfying Eq. 7. Moreover, since Du is continuous, it is bounded on the compact 
interval [u-i[u(xi) - 61, u-~[u(x~) + S]], and, hence, Du-l has a positive lower bound 
on the interval [u(xi) - 6, u(x2) + 61. It follows that, for 0 < j g(s)/ < 6, the integral 

exists and is equal to 

x2 dx I-- “1 As(x) 

1 
-1 

2.2 dx 

g(s) z1 Du-~[u(x) + 4s, 4 * 

Therefore, for x1 , x2 , xa , x4 in (01, p) with x1 # x2 and xa # x4, and for 1 g(s)\ 
sufficiently small, we have 

j:: $$/j:; &) = j:: Du-+(x7+ E(S, x)] /j:; Du-l[u(xT+ E(s, x)] e 
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It now suffices to show that 

exists and is equal to 

J ‘11 {j$lnO Du-l[u(x) + E(S, x)1}-’ dx 

for any x1 < x2 in (a,@. For this latter expression clearly equals 

J’ 

22 
Du(x) dx = 24(x2) - 24(x,); 

Jh 

and the theorem follows immediately. 
To achieve this, it suffices to show that I/Du~l[u(x) + E(S, x)] converges uniformly 

on [xi , ~a] to I/D-l[u(x)], as g(s) --j. 0. We have 

Du-‘[u(x)] - Du-l[u(r) + t(s, x)] 
w[u(31+ E(S, x)] - D&x), = 7w[U(X) + E(S, x)] Du-‘[u(x)] I 1 . 

Let 17 > 0 be arbitrary. Let 6 be chosen as above and let the positive lower bound of 
Du-l in [u(xJ - 6, u(xa) + 61 be p. Since Du-l is uniformly continuous on this interval, 
we can choose [ > 0 so small that for 1 yr - yz j < [, 1 Du-‘(y,) - Du-l(y,) 1 < p2. 
Then for 1 g(s)/ < inf(6, E}, we have 

1 1 2 

Du-l[u(x) + E(S, x)] - Du-‘[u(x)] < Du-l[u(x) + $, s)1Dz+(x)] ’ ” 

uniformly for x: in [x1 , x2]. This completes the proof. 
Note that the key to this proof is the normalization, which permits the factor g(s) 

to cancel out of the expression for d,(x). 
I f  we define 

u,(x) = s K dY 
*,dBo’ 

then the theorem asserts that for any X, x’, 

44 - 4%) 
44 - 4%) 

= lim U,(x) - u’(x1) 
g(s)+0 u&x’) - u,(xJ * 

Thus, in a sense, the function u, , obtained by integrating the reciprocal of A, , is an 
approximation to the function u. The sense is the one that matters: all one can hope to 
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know, since u is only an interval scale, is a ratio of differences, [U(X) - u(x,)]/[u(x’) - I] 
and the ratio of differences of us-scale values approximates that of u-scale values. 

To put matters still another way, suppose that we fix the zero and unit of the u-scale, 
at x1 and x2 , respectively. Then our theorem asserts that 

1 
s 

’ dr U(X) = lim __ ___ 
g(s)-10 C(s) q d,(y) ’ 

where 

C(s) = f’ dylA,(y). 
21 

Thus, we can define a normalized approximation 

1 x 
@s(x) = co I ~1 dW,b) 

such that Z&(X) -+ ZJ(X) pointwise as g(s) -+ 0. 

DISCUSSION 

There are two cases to discuss, First, in the situation where d Jx) is given as a func- 
tion of s and x, then clearly, it makes sense to calculate the normalized integral g,(x) 
as above and to evaluate the limit to obtain u(x). To illustrate, consider the Weber 
function 

A,(x) = k(s)(x + xc@ + ik(s)Z. (8) 

We calculate the integral of dx/A S(x) by substituting for X, introducing a new variable w,: 

x = [ws - Sk(s)]” - x0 ) 

dx = 2[wS - $k(s)] dw, . 

We obtain 

I dx 
s 

2[w, - tk(s)] dw, -= 
A s(x) k(s) ws 

As we let k(s) -+ 0, the first term dominates, and the normalized ii, is approximately 
a linear function of w, . In turn, w, converges to (x + x0)*. If we substitute 

u(x) = (x + x& 

we find that Eq. 1 is satisfied with A,(x) given by Eq. 8 and withg(s) = &k(s). 
For Weber functions less contrived than Eq. 8, it may be necessary to resort to 
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numerical integration and to numerical approximation of the limit-which may 
amount merely to choosing a sufficiently fine JND size (index s) and hoping that the 
resulting integral is close enough to the limit. The estimated u-scale can always be 
checked by substituting back in Eq. 1. 

The special feature of the Weber-Law case (Eq. 2) is that no passage to the limit 
is needed: the ratio of US-differences is independent of s. 

For this first case, where O,(x) is given as a function of s and x, there is even a 
generalization of Fechnerian integration to a case where Eq. 1 is satisfied only 
“approximately” as O,(X) -+ 0. This was pointed out to me by M. Frank Norman. 

If  we replace Eq. 1 by 

4% + J,(x)1 - 44 = g(s) + @s(4), (1’) 

we can calculate u as the integral of the normalized limit of l/A,(x). More precisely, 
Norman (personal communication) showed that Eq. 1’ has a solution (u,g) with u 
continuously differentiable and with Du(y) # 0 (for some fixed y) if and only if 

exists and is continuous; and u is then the integral of this limit. (A, is assumed strictly 
positive.) 

The second case to discuss is where A,(x) is given as a function of X, for some fixed 
value s of the discriminability index. This is the typical case when the Weber function 
is estimated from data, rather than specified fully either by a theory or an overall 
generalization from data like Eqs. 2 or 8. Typically, the data yield estimates of a few 
points on each of several psychometric functions around different stimulus values 

Xl e ... < x,; thus we have estimates of dSZj(xi), j = I,..., mi . Frequently, the 
criterion values sij are different for different standard stimuli xi: the comparison 
stimuli near xi are chosen in advance by the experimenter, and the performance of the 
subject on the jth comparison stimulus near xi determines the value sij such that 
Asij(xi) = xj - xi . One must interpolate to estimate A,(xJ for some fixed S, inde- 
pendent of i. One can do this for several values of S, but not for values such that A,y 
becomes arbitrarily small (relative errors become too large). The estimation of A,(xi) 
for fixed s is facilitated in the currently popular up-and-down methods, where com- 
parison stimuli are made to hover near a particular value of s. Once A,(xJ is obtained, 
for i = l,..., n, we can interpolate to obtain an estimate of A,(x), x1 < x < x, . 
There are two methods of estimating u from A,: integration of dx/A,(x) or Lute and 
Edwards’ “graphical” method. These must be compared. 

The Lute and Edwards method simply cumulates JND’s: assuming A,(x) > 0 
for all x, lety, = x1 , yr = y0 + d,(y,),... 

Yi = YG1 + A,(Y~-1). (9) 
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Set u(y,) = i [this normalizes u(y,,) = 0, u(y,) = 11; interpolate to get u-values for 
intermediate values of X. This method directly utilizes only the values of A, at y,, , 

y1 ,..*,yi ,...; but since these values, in general, are not measured empirically the 
method utilizes the empirical values O,(xi) to determine a smooth curve giving the 
ordinates at the yi values. Sources of error in the method are: (1) error in determining 

O,(xJ; (2) error in interpolating to get A,( yJ; (3) error in interpolating to get 24(X) for 

yi-r < x < yi . Note that, given the curve A, , there is no further error in determining 
u at the points y0 , yr ,..., yi . . . . and error source (3), for points between the yi , may 
be rather trivial, if the points yi are close enough together so that linear interpolation 
suffices. 

If  we carry out the first steps, through estimation of O,(X) as a smooth curve, as in 
the Lute and Edwards method, then integration can produce an additional source 
of error. To see this, let y,, , yr ,..., yi be as above (Eq. 9), so that the correct values are 
u(yJ = i. Integration [normalized so u( y,,) = 0, u(yi) = I] gives: 

In the last two expressions, we let %[ be any value of x between yl-r and y! , where 
l/A,(x) assumes its mean value over that interval, i.e., %/ is defined by 

A,(q) = ’ j” 
Ye -Ye-1 .%-I 2% . 

The existence of such an %! is assured by the First Mean Value Theorem for integrals. 
I f  the percentage variation in A,(x) on each interval (y!-r, ye) is negligible, then 

A dye-,)!A s@e> * 1, G = l,..., i, 

and the expression in Eq. 10 reduces to u(y,) = i, coinciding with the Lute-Edwards 
value. In fact, for the case where A, is an increasing function of x for each s, the above 
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fractions tend to unity1 as g(s) 4 0. For this case, the percentage error in u,<(y) cannot 
exceed the maximum percentage deviation of O,Jy + d,<(y)] from d,(y), over the 

interval from y0 to y. 
I f  the terms in Eq. 10 are appreciably different from 1, then there can be a propor- 

tionate error in estimating I by integration. The case where Weber’s Law (Eq. 2) 
holds is instructive, however. There, 

independent of L. This fraction does approach unity as g(s) and K(S) -+ 0, but since 
its value is independent of P, it cancels out of Eq. 10, leaving I = i as required. 
Thus, there is appreciable error introduced by the integration method, in determining 
u(y,), only when both d, is far from linear (Weber’s Law) and at the same time d, 

varies widely over some intervals [y, y  + d,(y)]. 
Another instructive case is the Weber function given by Eq. 8, corresponding to the 

square-root scale. Here we obtain 

AdYe-1) -= vi A ~ 
As(%) s 

__ - 
Yf-, Ad4 ’ - 1 log (1 + (ypel + rg2+ k(s)2/4 1 . 

The logarithmic term goes to zero as y(-r becomes large, so asymptotically, the 
numerator of Eq. 10 is i and the denominator is 

1 - ilog (1 + k(s)/2 ( 
yo + x0)+ + k(s)V4 1 ’ 

Thus, the percentage error decreases as yi increases, approaching an asymptote 
determined by y,, . The asymptotic percentage error decreases as y0 increases or as 
k(s) - 0. Even for k(s) = 0.1 and y,, + x,, = 1 .O [note that the units of k(s) and x are 

linked in Eq. 81, the asymptotic error is only about 2.5%. 
Note that as g(s) becomes small, the Lute and Edwards method is tantamount to 

numerical integration of I/AS(x). For g(s) large, their method is probably still to be 
preferred. The real advantage of integration emerges when A,(x) is specified in closed 
form as a function of both s and X, either by a theory or as a generalization about a 
broad class of data. 

1 For the proof use Eq. 5, differentiability of DC’, and’L’Hospital’s rule: 

lim AJY + ~dY)l = lim zi-‘[4Y) + MS)1 - Y _ 1 
LT,s,+o ‘-C(Y) ~(~IMl u-‘[u(y) + g(s)] - y 

_ lim 2 Du-Y~Y) + &z(s)1 _ , 
L?,*,+o Du-‘[~Y) + g(s)1 

= 1. 
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In concluding, I wish to comment that the return to Fechnerian integration should 

not be regarded as a repudiation of the functional-equation approach. The integration 
gives only meaningless results, unless a solution to Eq. 1 exists. For example Eisler 
(1963) pointed out that the integral s&/d,(x) has the Weber-Law property of being 
independent of s (except for a scale change) whenever 

~.A4 = 44 f(x). (11) 

This is true, but the resulting u-scale does not solve Eq. 1. Indeed, using Falmagne’s 
criteria, it is easy to show that when Eq. 11 holds, there is no solution to Eq. 1 unlessf 
is linear (back to Weber’s Law). 

The question of existence of a solution can perhaps be answered by integrating and 
substituting the integral back in the functional equation, but it cannot even be raised- 

as it was not raised by Fechner-without the formulation provided by Lute and 

Edwards. 
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