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An Application to Latency-Probability Curves 
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It is assumed that when a subject makes a response after comparing a random 
variable with a fixed criterion, his response latency is inversely related to the distance 
between the value of the variable and the criterion. This paper then examines the 
relationship to response probability of (a) response latency, (b) difference between two 
latencies and (c) dispersion of latency, and also some properties of the latency distribu- 
tion. It is shown that the latency-probability curve is decreasing if and only if the 
hazard function of the underlying distribution is increasing and, by using a fundamental 
lemma, sufficient conditions are obtained for monotone hazard rate. 

An inequality is established which is satisfied by the slope of the Receiver Operating 
Characteristic under these sufficient conditions. Finally, a Latency Operating Charac- 
teristic is defined and it is suggested that such a plot can be useful in assessing the 
consistency between latency data and theory. 

I. INTRODUCTION 

Many authors have remarked that an analysis of the response times from a signal 
detection experiment can yield valuable information about the nature of the detection 

process (e.g. Carterette, 1966; Green and Lute, 1967; Laming, 1969). The method of 
such an analysis depends on the assumed detection and response time models, and 
on the response time statistic being observed, though the dependence on the former 
is more fundamental than that on the latter. The fact that detection models to be found 
in the above studies have at least one feature in common, namely, the random vairable 
which determines what response is made, is explicitly regarded as the outcome of 
a temporal process. Therefore, reaction time models can be derived from these detec- 
tion models in a very natural way. For instance, in the model studied by Carterette 
(1966) the decision variable at time t is N(t), the reading on a hypothetical counter. 
A response time model is derived naturally if it is assumed that a response is made 
when N(t) equals some critical value for the$rst time. The response time distribution 
would then be the first-passage time distribution of N(t) through the critical value 
(that Carterette does not use the first-passage time distribution is one reason why 
his approach is difficult to follow). 

303 
fQ 1971 by Academic Press, Inc. 

480/8/3-I 



304 THOMAS 

The detection model to be assumed in this paper is similar to that of Signal Detcc- 

tion Theory (see Green and Swets, 1966). It is assumed that X is a random variable 
which summarizes all of the information available to a subject on each (discrete) 
trial of a yes-no experiment (X is not necessarily a likelihood ratio.) The subject 

responds ‘Yes’ only if X exceeds a predetermined criterion c, and responds ‘No’ 
otherwise. For our purposes, X is regarded not as the outcome but as the starting-point 
of a temporal process, that of determining whether or bot S exceeds c. Such a process 
has been considered by Smith (1968) and is roughly as follows: 

(a) In order to determine whether X exceeds c, the required precision in deter- 
mining the value .r of X is greater if x is close to c than if x is very different from c. 

(b) Precision is directly related to the number of fundamental operations. 

(c) On the average, each fundamental operation lasts the same time. 

It follows from (a)-(c) that response time or latency is inversely related to 1 x - c I. 
The derivation of this latency model from the detection model is not as natural as 
in the previously mentioned studies because X is treated here as a ‘single sample’ 
rather than as the outcome of ‘repeated sampling’. 

Another factor influencing the present analysis is the latency statistic being studied. 
Some of the statistics that have been proposed are the latency operating characteristic 
curve (Carterette, Friedman and Cosmides, 1965), the tail of the latency distribution 

(Green and Lute, 1967) and the divisibility of the latency distribution (Laming, 1969). 
We will consider mainly the relationship between a location parameter of a response 
time distribution, e.g., the median, and the probability of the associated response. 
The use of quantiles rather than moments is due to two resaons. Firstly, many of 

the observed latency distributions have ‘high’ tails, suggesting that the median 
latency is a more reliable measure of location than the average latency. This is because 
of the possibility that if the empirical distribution were fitted by a theoretical ‘high’ 
tail distribution, this latter distribution may not have finite moments of any order. 
Secondly, to derive an expression for mean latency it would be necessary to know 
the functional dependence of latency on 1 x - c 1. However, Andley and Mercer (1968) 
show that the use of median latency removes this difficulty. Let m, be such that, 
given noise alone, Prob(X > m,) = l/2 Prob(X 3 c), and let t, be the latency asso- 
ciated with an X value of m, . Since latency is a decreasing function of 1 X - c I, 
an observed latency would be less than t, if and only if the associated X value exceeded 
m, , Further, given noise alone, X exceeds m, on half of the occasions that it exceeds c; 
therefore, observed latency is less than t, on half of the occasions when a ‘Yes’ response 
was given. In other words, t, is the median false alarm latency. 

Although the use of quantiles allows us to ignore the two problems mentioned 
in the above paragraph, a third question has to be answered, namely, whether the 
latency quantiles are well-defined. This question will be considered in the next 
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section. What is needed is a set of sufficient conditions for t, to be uniquely related 
to m, , for then questions involving t, could be replaced by questions involving m, . 

Rather surprisingly, the relationship between t, and Prob(X > c) depends on the 
hazard function of the distribution of X. The following is a heuristic argument which 
suggests the nature of the dependence. Let f(x) be the probability density function 

of X, and let R(x) = Prob(X 3 x); then f(x)/R(x) = T(X) is the hazard function. 
For a fixed small element d, the probability that c < X < c + d, given c < X is 
approximately r(c)d. Now there exists a latency t(d), depending on d but not on c, 

such that for c < X < c + d the associated latencies all exceed t(o). In other words, 
the proportion of the latency distribution to the right of the constant t(o) is directly 
proportional to Y(C), which suggests that the ‘center’ of the latency distribution increases 
with c of r(c) increases with c. 

We now formally establish the relevance of the hazard function, and then we will 
provide sufficient conditions for it to be monotonic. Although the properties of 
distributions with monotone hazard rate have been extensively studied by Barlow, 

Marshall and Proschan (1963), and examples of distributions with nonmonotone 
hazard rate have been given by Thomas (1967), the sufficient conditions for mono- 
tonicity have not been stated before. 

II. SLOPE OF THE LATENCY-PROBABILITY CURVE 

Relevance of the Hazard Function 

Letf(x) and F(x) = 1 - R(x) be the probability density function (p.d.f.) and cumu- 
lative distribution function of X, respectively, and let h(l x - c 1) be the value of 
the observed latency T, when X = x and c is the cut-off. We make the following two 
assumptions: 

A2: R(x) is a strictly decreasing function of x,l 

A2: h(x) is a strictly decreasing function of x for x > 0. 

Al ensures that the quantiles off(x) are well defined. 
In order to generalize the previous discussion on median latency, we define me,a, 

for 0 < 01 < 1, by the equation 

R(mc,,) = cJW. (1) 

So that mc,a is the quantile of order (I - a) of the distribution of X, given X > c; 
the p.d.f. of this conditional distribution isf(x)/R(c), x 2 c. 

Let t,,, = X(m,,, - c). (2) 

1 Throughout this paper it should be assumed that x takes on values only in the range of X. 
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Then, from A2, 

that is, t,,, is the quantile of order 01 of the latency distribution. Therefore, Al and A2 

ensure that the latency quantiles and the quantiles of f(x) are well defined and are 
in a 1 - I correspondence with each other. The relationship between t,,, (location 
parameter) and R(c) (response probability) can now be expressed as a relationship 

between mC,& and c as follows: 

LEMMA 2.1. dtC,JdR(c) ,< 0 if and only if dmCs,ldc < 1. 

Proof. By Al, dR(c)/dc < 0, implying dc/dR(c) < 0, 
and by A2 and (2), 

dtc., 
d(m,,. - c) < ” 

Therefore, multiplying the preceding two inequalities, 

dc 

’ < dR(c) 
4.m dc __. 

d(mc.& - c) = d(m,,, - c) 
.& 

dR(c) ’ 

from which we obtain 

jLcM d(m, a - 4 

dW 
< 0 if and only if-e GO 

dm 
i.e. if and only if 3% dc <I. Q.E.D. 

It can be readily verified that dm,,,/dc is not necessarily less than 1, even if f (x) is 
symmetric about some x value. To see this, we consider the Cauchy distribution with 
p.d.f..f(x) = [rr(l + x2)]p1, which h as b een suggested by Laming (personal communi- 
cation) as a possible model for the distribution of X. [Laming’s reason for suggesting 
this distribution is that the convolution of any two distributionsf(x; ~~a,), f (x; p2 , CLJ 
of the family f (x; CL, 0) = {an[l + ((x - ~)/a)~]}-~ is f (x; pr + pa , or + u2) which 
is also a member of the family.] For this distribution m,, ,5 = 1 and m,r0r6, ,5 -= 1.1067, 
so that dmCs,,/dc is greater than 1 when c = 0. However, dm,,,/dc is related to the hazard 
function. 

THEOREM 2.2. dm,,,ldc < 1 fofor all c and a $f and only ay the hazard function 
f(x)/R(x) is increasing. 

Proof. From (1) mC,iy 2 c and on differentiation, 

&= f(c) f(c) R(m, A 
dc “m-mm* 
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Therefore, if f(x)/R(x) is increasing, 

f(c) < fh.J 
x(i)’ R(m,,,) ’ 

which implies that dm,,,/dc < 1. 

Suppose there exist x’ and x” (>x’) such that 

fo,,fo* 
W) R(x”) 

Choose ~1’ = R(x”)/R(x’). Then 

which completes the proof of the theorem. Q.E.D. 

Having established the relevance of the hazard function to the slope of the latency- 
probability curve, we now provide sufficient conditions for it to be monotonic. The 
next section contains mathematical details and the reader interested only in the rele- 

vance of these details to data fitting may wish to omit it. 

Suficient Conditions for Monotone Hazard Rate 

A fundamental lemma is needed. 

LEMMA 2.3. If  g(x) is an increasing (decreasing) function of x, then 

E[g(X) 1 a < X < b] is an increasing (decreasing) function of a and of b. 

Proof. 

k&9f (4 dx da, b) = E[dX) 1 a G x < bl = R(a) _ R(b) ) 

+.(a, b) _ f Ml if (x)[ g(x) - g(a)1 d4 
aa- [R(a) - WY 

a( <)O if g(x) is increasing (decreasing); and similarly for +(a, b)/ab. Q.E.D. 

Two special cases of the lemma can be obtained by letting a tend to -cc for fixed b, 
and by letting b tend to cc for fixed a. 

It can now be seen that the hazard function is monotone if there exists a function 
g(x) which is monotone and is such that 

f(x) = K jsg(y)f(y) dy, 
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for then we would have 

and a special case of Lemma 2.3 could be applied. 

THEOREM 2.4. Jf (i) f(x) tends to 0 as R(x) tends to 0 and (ii) -logf(x) is conaex 

(concave), the hazard function is monotonically increasing (decreasing). 

Note. If  there is no finite x’ such that R(x’) = 0, then (i) is automatically satisfied. 
If  there is such an x’ then (i) asserts that lim,,,,-f(x) = 0. 

Proof. Let g(x) = - (d/dx) log f  (x) = - (f’(x)/f (x)). 

Then g(x) is an increasing (decreasing) function if (d2/dx2) logf(x) < (>)O. 
Also 

_ bf’(x) 

&dX) 1 a G x G bl = 
1 a &(x) dx 

= f(a) -f(b) 
R@) _ R(b) R(a) - R(b) . 

Taking the limit R(b) + 0, for fixed a, we have by condition (i) 

E[g(X) / a < X] = f3, 
a 

the hazard function. 
The result follows by an application of Lemma 2.3. Q.E.D. 

Remark 2.5. Condition (ii) Theorem 2.4 is a necessary and sufficient condition 

for a family of p.d.f’s, f(x - e), to have monotone likelihood ratio in x (Lehmann, 
1959, p. 330). That is, if x > x’ and 0 > 0, then f  (x - 0)/f(x) >f(x’ - 13)/f(x’) if 
and only if -1ogf is convex. 

EXAMPLE 2.6. If  f(x) = (l/2/2) e-x2/a (normal), 

$ logf(x) = -1, 

and if 

f(x) = (1 ;eJz)2 (logistic), 

2 kf(4 = -YW, 

so that for both of these distributions the hazard function is increasing. 
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EXAMPLE 2.7. If  condition (i) of Theorem 2.4 is violated, the conclusion is not 
necessarily true. Consider 

1 1 
f(x) = log(l +g) (1 + x) ’ 

o<x<g. 

Then (d2/dx2) logf(x) = (1 + x)-” > 0. 
From (l), m,,, = (1 + @(I +gp - 1, 
which gives 

* = [-++$ 0 < c < g. 

Therefore, dm,,,/dc < 1 if log( 1 + g) < 1, that is, if g < e - 1. So that by Theorem 

2.2, ifg < e - 1 the hazard function is monotonically increasing. Ifg > e - 1, 

dm 
?>I when c=O 

=CX<l when c = g, 

and in this case the hazard function is nonmonotonic. 

EXAMPLE 2.8. The Cauchy distribution,f(x) = [z-(1 + x2)1-r, has been mentioned 
earlier when it was show that dm Jdc is greater than 1 when c = 0. It follows from 

Theorems 2.2 and 2.4 that the hazard function for this distribution is not monotoni- 
cally increasing; in fact, it is increasing for all x less than 0.425 and decreasing for x 
greater than this value. Also 

if and only if 1x12 1. 

Therefore, neither 

d f(x) -~ 
dx R(x) 2.3c’ ’ ’ 

nor 

implies the other as is seen by taking x’ = - 1.1 and 0.7. However, a partial converse 
to Theorem 2.4 can be proved. 

THEOREM 2.9. If  (i) f(x) tends to 0 as R(x) tends to 0, and (ii) f  (x)/R(x) is mono- 
tonically increasing (decreasing) for all x greater than some jkite value x, , say, there 
exists a sequence x1 < x2 < ... such that lim,,, R(x,) = 0 and {ui} is monotonically 
increasing (decreasing), where 

% = - & lOgf(X) llcz. = - f#. 
D 
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Proof. Since f  (x) -+ 0 as R(x) --f 0, by L’HBpital’s rule, 

(4) 

If  

then 

f(x) ->-f#, 
R(x) x 

Given xi , let 

By (4) there exists xi’ such that 

f(x) I f’(X) < & 
44 %? ’ 

for x 3 Xi!. 

Choose zifl > max(q , xi). Then xi+r > xi and 

%+1 = 
f  ‘(%+I) \ f  (%I) *, 

--9qgJ-z f  (Xi+d 

3 ui , 
since &I 

f(r) is increasing. 

The proof for decreasing hazard rate is similar. QED. 

EXAMPLE 2.10. In order to construct p.d.f’s with monotone hazard rate, one can 
start with any monotone function g(x), and then use (3). For example, if 

then 

f(x) = (l/2)(1 + x) e-s:. 

For the p.d.f’s to be symmteric, g(x) has to be antisymmetric. 
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LEMMA 2.11. Iff(x) andg( ) x are related by (3), then f(x) =f(-x) if and only 

ifg(x) = -g(-x). 

Proof. Differentiating (3) yields 

If f(x) = f (-x), then f ‘(x) = -f’( -CC), and from (5) 

g(x) = -A+4. 

Integrating (5) yields 

log f(x) = --K ~g(x)dx. (6) 

Thus 

logf(--x) = K /g(-x) dx 

= -K 
J 
‘g(x) dx if g(x) = -g(-X) 

= logf(x). 

Therefore f(x) =f(-x). 

Application to Latency-Probability Curves 

Q.E.D. 

The aim of the preceding results has been to provide simple sufficient conditions 
on f(x) for the latency-probability curve to be monotonically decreasing. It was first 
shown that the curve is decreasing if and only if the hazard rate of f(x) is increasing. 
Since the behavior of the hazard function is sometimes difficult to determine analyti- 
cally (consider, for exampIe, the normal distribution), simpler conditions were sought. 
These conditions were stated and discussed in the immediately preceding section, 

and the net result is the following theorem. 

THEOREM 2.12. If  f  (x) tends to 0 with R( x , and ;f -log f  (x) is convex, then the plot ) 
of response latency (quantize) against response probability is decreasing. 

This result is strong because it is true for a latency quantile of any order. It is now 
simple to derive the weaker result for mean latency. Let us denote the latency p.d.f. 
byp,(t), and c.d.f. by P,(t)@,(t) is a f  unction off (zc) and A(X), but it will not be neces- 
sary to make this dependence explicit). The quantiles t,,, , defined in (2), can also be 
defined by 

01 = (““PC(t) dt (7) 
*0 
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The mean latency 7C is given by 

Tc = j’ q+.(t) dt = i“ [I - PC(t)] dt, (8) 
0 0 

if the integral converges, and its dependence on c is now stated. 

THEOREM 2.1 32. Iff(x) tends to 0 with R(x), and if --logf(x) is convex, then 
the plot of mean response latency against response probability is decreasing. 

Proof, We have to show that dt,,,ldc < 0, 0 < 01 < I, implies that drJdc < 0. 
Writing 1 - o( for 01 in (7) we have 

a = 1 - PdL-a) 

By referring to Fig. 1 it can be seen that 

jr [I - PC(t)] dt = j-1 tc,l-a dol. 

FIGURE I 

Therefore, from (8) 

dr 2=- 
dc ; jr U - Pc(t)l dt = ; j: h-a da 

l a 
-I- 0 ac &,1-a da, 

if the integral converges, 
< 0, since, by assumption, the integrand is negative. Q.E.D. 

We now consider the possibility that the slope of the latency-probability curve is 
constant. From (2) we have 

&LX 
dc 

= A’(mc,a - c) 
( 
* - 1). (9) 

2 This theorem was first proved by Jerome L. Myers by a more direct method (personal 

communication). 
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Therefore, the slope of the curve will not equal a positive constant unless h(x) and f(x) 

are related in a very specific manner. For example, if h(x) = zb, b > 0, then the slope 
is constant only iff(g) is such that 

%,or = c + [wx(c + gcJ-l’b, 

where K, and g, are positive constants. Such a specific relationship between X(X) and 
f(x) is very unlikely, so that strictly decreasing linear latency-probability curves are 

also unlikely. 
However, it can be seen from (9) and A2 that latency is independent of response 

probability if and only if dm,,,/dc equals 1, and this motivates the following theorem. 

THEOREM 2.14. Response latency is independent of response probability if and only 
iff(x) is exponentia2. 

Proof. We prove the stronger result that the following statements are equivalent: 

(ii) 

dm 
2 = K, , 

dc 
where K, < 1. 

dm ““=I 
dc 

for all 01. 

(iii) f(x) = pe-@“p > 0, x30 

=O < 0, 

for a suitable choice of origin. 
We prove this by showing that (i) implies (ii) implies (iii) implies (ii). Statement 

(i) implies that m,,, = K,c + h, . 

From (I), m,,, , , > c so that, since K, < 1, we have h, >, 0. Also since rnCal = c, h, = 0. 
Differentiating (1) we see that dm,,,/dc >, 0, which implies that K, > 0. 

There is no finite c’ such that Prob(X < c’) = 1, for otherwise (10) would be violated 
when c = c’. From (l), 

R(K,c + h,) = olR(c). 

Putting c = 0, h, ,..., h&K,“-’ + *-- + 1) in (II), we get 

R(h) = cJV), 
W,(K, + I)] = a2R(0), 

R[h,(Ken + ... + l)] = m+lR(O). 

If  

(12) 

K, < 1, ;+z (Kn + .a- + 1) = (1 - K&l, 
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which implies that Prob[X .s h,( I - KJ -‘I = 1, which is contradictory. Therefore, 

K = 1, which is statement (ii). 
Statement (ii) implies that 

from which we get 

and 

m,A = c + k, 

R(c + h,) = aR(c) (13) 

.f(c + hJ = d(c). (14) 

There exists a finite number a such that Prob(X 3 a) = I, for otherwise we would 
have, on integrating (14) from -co to co, 

l=ol for all 01, 

which is absurd. Let a = 0, which implies that 

and let 

They, from (13), 

.f(c> = 0, c < 0, 

dh, 1 

da a=l = F . 

R(c + 4) - R(c) 
h, =-= 

Q$ R(c). 

Taking limits of both sides as 01 ---f 1, we get 

dW ~ = -pR(c), 
dc 

R(c) = e-uc. 

Therefore, recalling (15), 

.fW = Pe-uc, c>o 

=o c < 0, 

which is statement (iii). Clearly, (iii) implies (ii). 

(15) 

Q.E.D. 
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The exponential distribution is the only distribution for which d2/dx2 logf(x) 
is zero, and the above theorem is one illustration of how special data predictions arise 

from its adoption. When we consider the second-order properties of the latency- 
probability curve in the next section, we will encounter another such illustration. 

III. SECOND-ORDER PROPERTIES OF LATENCY 

In the typical signal detection experiment there are four classes of latency corre- 
sponding to the four classes of responses, hits, false alarms, misses and correct rejections. 
The previous sections stated results concerning the rate of change of latency of one 
class, say false alarm, as the criterion c is varied. We now consider the rate of change, 

as c is varied, of 

(a) the difference between ‘typical’ latencies from two classes, e.g., that between 
median false alarm and median hit latencies, and 

(b) the difference between two latency quantiles from the same distribution, 

e.g., (te,a - t,,,,), 01 f  01’. A special case is the semiinterquartile range, which is a 
measure of dispersion of the latency distribution. 

The difference between ‘typical’ hit and false alarm latencies is simply expressed 
if it is assumed that the distributions of X given noise and signal plus noise have the 
same shape. Let f(x) and f(x - CL), p > 0, be the distributions of X given noise and 
signal plus noise, respectively. Then t,,, , as defined in (2), is the quantile of order 01 

from the false alarm latency distribution, and the quantile of order 01 from the hit 
latency distribution is 

L,, = qmc-u.a! - c + CL). (16) 

Therefore, 

; [tc,, - tc+,,J = h’(m - c) [+- - l] 

- h’(m,_, - c + p) [* - l] . 

One of the conditions influencing the sign of the right side of (17) is the sign of 
[&n,,,/& - am,-,,,/&], which is determined by the sign of %n,,,lac2. 

It will be shown later that the sign of the rate of change (tc,, - tc,,,) with c depends 
on, among other things, the sign of a2m,,,jac&. Thus a prerequisite for our discussion 
of the second order properties of latency is a study of the second derivatives of m,,, . 
The developement in the next section parallels that in section II. 
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Second Partial Derivatives qf rnc,% . 

Differentiating (1) we obtain 

and 

(19) 

(20) 

We now state some results concerning these derivatives. 

THEOREM 3.1. a2mc,Ja~2 has the same sign as -f ‘(m,,,). 

The proof of this is immediate. 

THEOREM 3.2. a2m,,,/acaa 3 0 if and only if the hazard function is inmeasing. 

Proof. 

d f(x) f”(x) ---=- 
dx R(x) R2(x) [ 

1 + f’(x) R(x) 

f”(x) 1 
which has the same sign as the right side of (19). Q.E.D. 

COROLLARY 3.3. If  f(x) --f 0 as R(x) + 0, and if --log f  (x) is convex, then 
a2m,,,jadh 2 0. 

Proof. The proof follows from Theorems 2.4 and 3.2. Q.E.D. 

THEOREM 3.4. If  -log f  (x) is convex and if f  ‘(c) 3 0, then a2m,,,/ac2 3 0. 

Proof. 

A& [- logf(x)] = f’2(x) ;{,s)f”(x) 

j& f  “;)(;(“) 
2X = f-“(x){R(x)[f (x)f “(x) - f  ‘2(4 - Y2(4 R(x) - f’(x) f  “(x)1 

GO if f’(x) > 0 and - log f  (x) is convex. 

Therefore, since m c,a > c, the right side of (20) is positive. Q.E.D. 

THEOREM 3.5. If  there exists a such that f’(x) f  0 for x > a, and if -f (x)if’(x) 
is convex for x > a, then a2m,,,lW > 0 for c > a. 
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Proof. As in the immediately preceding proof, we have to show that If’(x)R(x)]/‘j2(x) 
is a decreasing function, or, equivalently, that If”(x)if’(x)]/Z?(x) is an increasing 
function for x > a. Lemma 2.3 (with b infinite) would be applicable if it can be shown 

that 

f  2(x)lf’(x) = E[g(X) 1 x < X], 
R(x) 

where g(x) is an increasing function. 

If  

f2(X)= O” 
s f’(x) e 

AY)f (Y) dY, 

then 

g(x) = f  (x)f “(x) 
f  ‘7x) 

2 

Therefore, g(x) is increasing if -f (x)/f ‘( ) . x is convex, from which the result follows. 
Q.E.D. 

EXAMPLE 3.6. If  f(x) = (I/ ~‘2~) e-z2/2, -f(x)/f ‘(x) = l/x, which is a convex 

function for x > 0, and if 

f(x) = (1 ;-;-z)2 7 

f(x) --= 
f’(x) ’ + ex 2 1 ’ 

which is convex for x > 0. Therefore, for both these distributions, a2m,,,/ac2 > 0 
for c > 0, by Theorem 3.5. Also, by Theorem 3.4, a2mc,Jac2 > 0 for c < 0. Thus 
a2772,,a/ac2 > 0 for all c. 

THEOREM 3.7. The convexity of - log f  (x), x > a, does not imply the convexity of 
-f(x)/f’(x), x > a, and vice versa. 

Proof. We prove this result by providing two counter-examples: 

(i) The Couchy distribution. It has been shown earlier that -Iogf(x) is 

concave for x > 1. 
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However, 

which is convex for x > 0. 

(ii) The Beta distribution. Let 

l-(2$) 
f(x) = 7g, x+2(1 - x), 0 

- &logf(x) = ;x;12z;); > 0 

However, -f(x)/“(x) = x - x2, which is concave. Q.E.D. 

< :x < 1. 

for s > .42. 

The above theorem states that if m,,, - c is plotted as a function of c, the sign of 

the slope and the sign of the curvature are logically independent. However, it can be 
verified that the curvature is positive for most of the distributions commonly encoun- 

tered in modeling. 
As indicated earlier, the exponential distribution provides a limiting case. 

THEOREM 3.8. &n,,,/&2 = 0 for all c if and only if 

f(x) = ale-“,“, x 2 a3 

or 

f(x) = blxhs, 

for suitable a, , a2 , ua , b, , b, and b, . 

s 3 b, 

Proof. d/dx [f’(x)R(~)]/f”(~) = 0 if and only if F(x)~(x) = h, where K and h are 
constants. When K = --I, f(x) is exponential; otherwise f(x) is proportional to 
a power of x. Q.E.D. 

Application to Latency Curves. 

In order to determine the slope of the latency-probability curve in Section 2, we had 
to specify two sets of conditions. The first set was of conditions on f(x) such that the 
first derivative of (m,,, - c) was negative, and the second condition was that the slope 
of X(X) was negative. Similarly, to determine the second-order properties of latency 
we need to consider the second derivative of (mesa - c) and the curvature of X(x). 
In the preceding subsection, sufficient conditions were given for a%,,,/&2 to be 
positive. We can now use (17) to prove the following theorem. 
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THEOREM 3.9. If there exists a such that 

(9 f’(x) 3 0 for x<a 

<o x > a, 

(ii)f(x) tends to 0 as R(x) tends to 0, 

(iii) -log f (2) is convex for all X, and 

(iv) f @) -f(x) is convex for x > a, 

then if t,,, - tcPP,, increases with t,,, for fixed 01 and p(>O), h(x) is convex. 

Pyoof. Conditions (ii) and (iii) ensure that &,,,/a~ f  1 and at,,,/& 3 0 (Theorem 
2.4), and (i), (ii) and (iv) ensure that 8Gn,,,/ac2 3 0 (Theorems 3.4 and 3.5). Since 

a%, Ejac2 3 0, 0 3 am,,,jac - 1 3 am,-,,,jac - 1. 
Therefore, the right side of (17) can be positive only if 

h’(m,,, - c) 
[ 
%L - 1 II I 2 h’(m,-,,, - c + p) [* - l]] . 

Since h’(x) < 0, this holds only if 

I +hrr - 4 > I Vm,-,,, - c + dl. (21) 

Now 0 < m,,, - c < me-ML,a - c + p since am,,,/& < 1; therefore (21) is the condi- 
tion for h(x) to be convex. Q.E.D. 

Application to Dispersion of Latency. 

In many experimentalstudiesinvolving reaction time measurements it has been found 
that dispersion of reaction time increases as ‘typical’ (e.g., median) reaction time 
increases. The following results determine the conditions on X(x) under which disper- 
sion and location of latency are directly related. 

THEOREM 3.10. If  (i)f(x) tends to 0 as R(x) tends to 0, (ii) --logf(x) is convex and 
(iii) h(x) is concave, then t,,, - t,,,, , 01 > 01’, decreases as t,,, as tcSrr increases; i.e., 

a2t,,,jacaol G 0. 

Proof. Conditions (i) and (ii) ensure that am,,,/& < 1, at,,,/& > 0 (Theorem 2.4), 

and that azm,,,/acaa > 0 (Theorem 3.2). Let c > c’, 01 > 01’ and let Z,,, = m,,, - c. 
Now 

z c,LY’ > zc,‘Y Y 

z c’,a > zc,, 7 since 
am 

- < I, ac and 
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Since Z,, 

i.e., 

i.e., 

I.e., 

,I’ > 

THOMAS 

z,.,, ) if A(.%) is concave, 

0 < W,.,,) ~ q-c,,,) < qzc.,y,) ~ &T.,.,*), 

Q.E.D. 

Another form of this result is 

THEOREM 3.10(a). I f  the dispersion and location of (false-alarm) late&es are directly 
related, then h(x) is convex. 

We now prove that the dispersion measure t,,, - t,,,, is directly related to the 

variance of latency. The following lemma is needed concerning p,(t), the p . d f  of 
latency. 

LEMMA 3.11. If  (i) &,/ac 3 0 and (ii) 82t,,,/i3c& 3 0, then a/&p,[P;l(,)] < 0. 

Proof. Let c > c’ and a: > ac’. Then since at,,,/& > 0. P,(t) < P,,(t). 

Since a2t,,,lacaol > 0, 0 < tc3,T - t,,,,, < t,,, - t,!,, . 
Letting (Y’ --f (Y, the last inequality implies that 

P&C,*,) 2 P&J> 

which, since P,(t,,,) = OL, implies 

Pev71(41 3 PcK1(41, 

I.e., 

$Pcm)l < 0. Q.E.D. 

THEOREM 3.12. The dispersion t,,, - t,,,,(oc > 0~‘) and variance of latency are 
directly related. 
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Proof. We let uC2 denote the variance of latency. We have to show that if at,,,/& 
and a2t,,,/iMa are both positive, uC2 increases with c. 

UC 2 = 
s 
; (t - T,)“p,(t) dt, where Tc 

= j,” t2p,(t) dt - [j,” [I - Pc(t)l dt]‘. 

Now 

jm t2pc(t) dt = 2 jm t[l - PC(t)] dt = 2 jm [I 
0 0 0 

s = tpc(t) dt 
0 

pc(t)l jt ds & 
0 

and 

[j,” [I - PC(t)] dt]l = j,” [I - P&)1 dt jm [I - P,(s)1 ds 
0 

= 2 j= [l - PC(t)] I” [l - P,(s)] d.7 dt. 
0 0 

Therefore, 

UC 2 = 2 [ jm [I - PC(t)] j’ P,(s) ds dtf. 
0 0 

Let u = P,(t), v  = P,(s). Then 

du 

dt = Pc[p;‘wl 
and 

dv 
ds = pJP,-l(v)] . 

Therefore, 

By Lemma 3.11, the derivative of the integrand with respect to c is positive. Therefore, 

if the integral converges, 

Q.E.D. 

Extension to Negative Responses 

All of the analysis so far has been concerned with the latency of false alarms and 
hits, which occur when the value of X exceeds the criterion c. The analysis of negative 
response latencies, i.e., miss and correct rejection latencies, is similar to that of positive 

responses. 
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Let MC,, be defined by 

and let 

T,,, = A(c - M,,,J. (23) 

Then T,,, and T,-,,, are the quantiles of order CY of the correct rejection and miss 
latency distributions, respectively. 

Applying Lemma 2.3 (with a - -so) it can be shown that 

(i) if -logf(x) is convex, thenf(x)/F( ) . d x IS ecreasing (cf. Theorem 2.4) and 

(ii) if f(x)/f’(.z) is convex for TV < a, [f’(x)F(x)]/f”(.z) is decreasing for .X b a 
(cf. Theorem 3.5). 

Hence, by differentiating (22) it can be shown that 

and 

from which it follows that 

(a) if Tc-u.a - T,,, decreases as T,., decreases, h(x) is convex (cf. Theorem 3.9), 

(b) if the dispersion and location of (correct rejection) latency are directly related 
then X(x) is convex (cf. Theorem 3.10 (a)), and 

(c) the dispersion, T,,, - T,,,, , and the corresponding variance are directly 

related (cf. Theorem 3.12). 

IV, SOME PROPERTIES OF THE LATENCY DISTRIBUTION 

It was indicated in Section 2 that it was necessary to assume that /\(zc) is strictly 
decreasing in order to ensure that the latency quantiles were well-defined. One way 
of seeing this is to suppose that 

and 
X(x) = 0 x > x0, 

Prob(X > x0) > 0. 
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Then, denoting latency by T, 
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Prob(T = 0) = Prob(X > x,,) > 0, 

so that pC(t) would have a discrete mass at the origin. Therefore, A2 ensures that pC(t) 
has no discrete masses. 

Another desirable property of p,(t) is that P,(t) should be less than 1 for all finite t, 
i.e., the range of T should be semiinfinite. I f  h, = lim,,, h(x) is finite, then 
Prob( T > A,,) would be zero, so that a necessary and sufficient condition for the range 

of T to be semifinite is that 

h&(x) = co. (24) 

A third property of latency distributions is the empirical one that they have ‘high’ 
tails. A useful measure for deciding whether or not a distribution has a high tail 

is the convexity of -logp,(t), a measure which has been central to the analysis in 
this paper. To see the relevance of -logp,(t), suppose that, for n > 0 and large t, 

pc(t) N At-‘“. (25) 

Then 

-log?,(t) N - log A + n log t, 

and 

$ [- logp,(t)l - - $ < 0. 

Now suppose that 

Then 

and 

PC(t) - Act”. 

- 1% IL(t) - - log A + t”, 

$ [- 1% PM - n(n - 1) F-2 3 0 if n>l. 

(26) 

Distributions of the form (25) are said to have a high tail, whereas the exponential 
types in (26) (n 3 1) are said to have a low tail. The above argument shows that 
a sensible definition of a low tailed latency distribution is one for which -logp,(t) is 
convex. 

We now investigate the convexity of -logp,(t) f  or simple choices of h(x) andf(x). 
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The point we hope to make is that it is “easier” to derive a model for a high tailed 
latency distribution than a low tailed one. Now 

P,(t) = Prob(T + t) 

= Prob[X - c > h-r(t) 1 S > c] 

= qc -t W)l 
NC) . 

Therefore, 

1 
m = j X’(x)! 

f[c + W)] 
w . 

EXAMPLES 4.1. 

A(x) = x-b, b > 0, x > 0. 

1 f(c + t-lib) 
I@) = t’l+b’lb 

R(c) * 

$logp,(t)a’ \b(lxT b, + @&)i;::+.;;’ + &logf(c +x)1, 

where t = xpb. For most distributions commonly encountered, 

lim “(’ + x) = O( 1) 
x+0 f(c + x) 

and 

hi & logf(c + x) = O(1). 

Therefore, since t -+ cc as x --f 0, for large t 

$ log p,(t) = O(W), 

i.e., -logp,(t) is concave for large t for these distributions. 

Incidentally, 

if 

i.e. if 
$+_mm x”“f(c + x) = 0, 

(27) 

(28) 

(29) 

which is satisfied iff(x) is of the type given in (26). 
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I f  h(x) = X-1/2e-r, it can be shown that for large t and distributions satisfying (28) 

and (29), 

g l%P&) = OP), 

so that -logp,(t) is again concave. 
We conclude this section by giving a necessary and sufficient condition for mean 

latency to exist. 

THEOREM 4.2. If x* is such that, for x* < x, f  (3) is strictly positive and bounded, 
then PC(t) has a jinite mean .for x * < c if and only if Ji X(x) dx converges for arbitrary 

-q :. 0. 

Proof. 

1 
m E’(T)= R(c) s 

h(x) f  (c + x) dx o 

= & 1 j+)f(c + 4 dx + j: h(x)f(c + 4 d+ 

Let fm and fM be the minimum and maximum values, respectively, off (c + x) for 

x > 0. Then 

i&i: W dx < WY < R(c) I L ‘f,u ,: A(x) dx + +I) % + d/. 

from which the result follows. Q.E.D. 

Remark 4.3. If  X(x) = xpb, mean latency exists if and only if 0 < b < 1. 

V. RECEIVER AND LATENCY OPERATING CHARACTERISTICS 

The plotting of Operating Characteristics is often a useful way of comparing data 
with theoretical predictions. The Receiver Operating Characteristic (ROC) is the plot 

of the hit rate, p&c), against the false alarm rate, pFA(c), as the criterion c is varied. 
In view of the distinction which has been drawn between those distributions for which 
--log f  (x) is convex and the remainder, it is of interest to discover whether the ROCs 
yielded by the two classes of distributions are different in any way. 

There have been at least two types of Latency Operating Characteristics (LOC) 
proposed in the literature. One kind, proposed by Carterette, et al. (1965), is the plot 
of the proportion of hit latencies longer than y  against the proportion of false alarm 
latencies longer than y, as y  varies from 0 to co. The other kind, proposed by Norman 
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and Wicklegren (1969), Moss, Myers and Filmore (1970), Myers and ‘l’homas (1970) 
is similar to the first kind, except that it plots ~nco~~&io~zal frequencies of latencics 
and uses all four classes of latencies in a single plot. Both kinds of LOC can be plotted 
using the latency data from a single criterion setting, and the plotting procedure 
involves separating the latencies into four classes. 

A third type of LOC is the plot of median latency, given that the signal plus noise 

was presented, against median latency, given that noise alone was presented, as c is 
varied. This plotting procedure requires only that latencies be separated into two 
classes, those obtained from signal plus noise trials and those obtained from noise 
trials. However, data from different criterion settings are required. Since latency is 
a function of 1 x - c !, it is to be expected that median latency, given noise, say, would 
depend on c. 

The ROC 

Let f(x) and f(x - p) be the distributions of X given noise and signal plus noise. 
Thenp,(c) = R(c - CL) andPFA(c) = R(c). The slope of the ROC is.f(c - p)if(c) I /3 
(Green and Swets, 1966). 

THEOREM 5.1. If  (i) f(x) = f(-x), (ii) j(x) tends to 0 as R(x) tends to 0 and 
(iii) -logf(x) is convex, 

then either 

l-pH(c) >p>1 
PFAW 

OY 

1 - PIA4 < p < 1 
PFAW ’ . 

Proof. By Remark 2.5, p is a monotonic function of c if condition (iii) is satisfied. 
Therefore, p > 1 if and only if c > p 1 2. If  c > p 1 2, c > p - c. Therefore, by 

Theorem 2.4, conditions (ii) and (iii) imply that 

f(c) > f(P - 4 = f(c - PI 
R(c)’ % - 4 W - P) 

by condition (i). 
Therefore, 

1 - PHM 
PFA (4 

= FCC - I4 > f(c - PL) = p > 1 
R(c) f(c) 

Q.E.D. 

Similarly for c < p / 2. 
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This result was established for the normal distribution by Thomas and Legge (1970). 
For this distribution it can be strengthened. 

COROLLARY 5.2. If  f  (x) is the normal density and if p > 2, then the solutions of 
the inequality 

l-P& >p” p>1 
PFA(4 ’ ’ ’ ’ 

satisfy 

Proof. The proof is established by noting that 

d 1 -PI&) 
[ 4 - f “(P I 2) 

q- PFA(4 !3=1 w/J I 2)f’CP I 2) ’ 

and that, when f(x) is normal, f’(x) = -xf (x) and, for x > 0, 

f (x)(x-’ - x-3) < R(x) <f(x) x-1 (Feller, 1962, p. 166). Q.E.D, 

When a complete ROC is available, a test of the symmetry off(x) is to see whether 

the ROC is symmetric about the negative diagonal. By Remark 2.5, a test of the 
convexity of --log f (x) is to see whether the slope of the ROC is monotonic (it should 
be remembered that response criterion is thought of as a value on a ‘magnitude of 
sensation’ axis, not on a likelihood ratio axis). Theorem 5.1 provides a test for the 
assumptions of symmetry and log-convexity, but this test can be applied even if 
a complete ROC is not available. One need have only a ‘cluster’ of two or more 
operating points (p,,(c), pH(c). Noting that /3 is the slope of the ROC, the test consists 

of comparing the empirical ROC slope with [ 1 - P~(c)]/J~~(c). The statistical proper- 
ties of this test depend on the technique used in estimating the ROC, and will not 
concern us here. 

It is interesting to note that condition (30) is not satisfied by ROCs that consist 
of two limbs, such as those generated by the threshold model of Lute (1963). To see 
this, let the equation of the lower limb of the symmetric ROC be 

y  = Kx, o<x<J- 
K-Cl’ 

K> 1. 

Then, for 

K> I-‘>1 ___ 9 
X 
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i.e., the slope (>I) of the ROC is greater than (1 ~ JJ~)/$~.~ . Therefore, comparing 
the empirical ROC slope with (1 --- pH)/pFA is conceivably a good way of distinguishing 
between Lute’s threshold theory and Signal Detection Theory. 

The LOC 

Let us denote by L,(c) the typical latency on signal plus noise trials, and by L,(c) 
the typical latency on noise trials. Then L,(c) is a function of hit and miss Iatencies 

t,-, and T,-, , and L,(c) is a function of false alarm and correct rejection latencies 
t, and T, . I f  c > 42, from the inverse relation between latency and probability 
established earlier, it follows that t,_, < t, and T,-, > T, , and it is not clear whether 
L,(c) is greater or less than L,,(c). In this section we will show that the difference 

between L,(c) and L,(c) is a function of c and that, for symmetric distributions, 
L,(c) <L,(c) if and only if c < y  / 2. In other words, for symmetric distributions if 
and only if the probability of a correct response, given signal plus noise, is greater than 
that of a correct response, given noise, (positive bias), then the latency on signal plus 
noise trials is less than the latency on noise trials. 

Let L,(c) and L,(c) denote median latencies, and let T denote the latency on a noise 

trial. Then 

Prob[T < A(c)] = Prob(X < c),Prob[X < c - x 1 X - c] 

Let V, be the solution of 

then 

and 

+ Prob(X > c) Prob[X > c + x 1 X > c] 

= F(c - x) + R(c + x). 

F(c - x) + R(c + 2) = l/2; 

L,(c) = Qc) 

L(c) = J&C-,). 

We have now to investigate the dependence of V, on c. 

h(c, v,) = F(c - v,) + R(c + v,) = l/2. 

Therefore, 

dv c= ah ah -- __ 
dc I ac av, 

= f(c - JJc> - f(c + VJ -__ 
f(c - v,> +f(c T-F 
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For simplicity, we consider the case where the range of X is infinite andf(x) = f(-x). 

Then v, decreases if c < 0 and increases if c > 0. Fig. 1 shows the LOC in this case. 
Since ve is a minimum when c = 0, the maximum value of L,(c) and L,(c) is h(v,). 
L,(c) = L,(c) when c = p / 2 and L& 1 2) is a decreasing function of p, since A&) is 
decreasing for c > 0. Finally, if and only if c < p 1 2, L,(c) 3 L,(c) and Prob(Hit) > 
Prob(Correct Rejection), as asserted earlier. 

This prediction was tested using the data of Carterette, et al. (see their Table I, 
1965). Under the assumption thatf(x) = f(-x), c < p 1 2 if and only ifp, + p, 3 1. 
Five of the six cases where p, + p, < 1 yielded L,(c) > L,(c), and eleven of the 
twelve cases where p, + p, > 1 yielded L,(c) <J&(C). Thus these data agree very 

well with the theory. 

VI. CONCLUDING COMMENTS 

This paper has attempted to relate the observable latency in a signal detection experi- 
ment to a detection model by considering, on the one hand, properties of the detection 

model and, on the other, properties of an unobservable, elemental latency. The detec- 
tion model considered is similar to that of Signal Detection Theory, except that the 
underlying random variable X is not assumed to be a likelihood ratio. The distribu- 
tions of X given noise and signal plus noise are assumed to have the same shape, 

.f(x) andf(x - CL), respectively, so that the properties off(x) are a sufficient description 
of the detection model. The unobservable latency is the time taken to determine 

whether or not X exceeds a criterion c and is given by A(1 X - c I), a function of 
1 X - c 1 only. The sign of the slope and of the curvature of A(x) are the two properties 
of this latency which we have considered. 

Observable latency can be analysed in many ways in order to test its consistency with 
theory, and we have selected only a few of these ways. For most of the paper we 
considered latency conditional on signal and on response, e.g. false alarm latency, and 
in the previous section we considered latency, conditional on signal only. For latency 
conditional on signal and response, we considered first order properties, namely, the 
slope of the latencyprobability curve, and second order properties, namely the slope of a 
latency differenceprobability curve, and that of a latency dispersion-probability curve. 

The main result on first order properties of latency is that (i) if -logf(x) is convex 
and if h(x) is decreasing then the latency of a response decreases as the probability 
of the response increases (Theorem 2.12). Neither f(x) nor h(x) can be observed, 
but it is possible to derive some of their properties by considering response probabilities 
and ignoring latencies, and by considering latencies and ignoring response probabilities. 
The ROC and LOC, respectively, are useful statistics for such an analysis because 

(ii) the slope of the ROC is monotonic if and only if --logf(x) is convex 
(Remark 24, 
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(iii) iff(“v) =f(-s) and if -logf(, ) t’ IS convex then the slope (Theorem 5.1) 

of the ROC at the point (u, z.1) lies between 1 and (1 -- zl)/u, 

FIG. 2. The Latency Operating Characteristic for symmetric distributionsf(x) andf(x ~ II), 
and two values of CL, p1 and rz( < pl). 

(iv) if X(x) is decreasing then the LOC isa closed loop (Fig. 2). Therefore, it is 
suggested that the ROC and the LOC should be plotted and used as crude checks of 
the assumptions of the detection and latency models, before the relationship between 

data and theory is assessed. The main results on second order properties of latency are 
[assuming -logf(x) is convex and h(x) is decreasing]: 

(v) if f(x) I~‘(x)(x > a) is convex, and if the difference between false alarm 
and hit latencies decreases as hit latency decreases, then X(x) is convex (Theorem 3.9) 
and 

(vi) if dispersion of latency is directly related to typical latency then h(x) is 
convex (Theorem 3.10 a). 

The distribution of observable latencyp,(t) is that of a transformed random variable, 
and we have determined what properties this transformation h(x), must have for 
the latency distribution to have certain stated properties. Assuming that the range 
of X is infinite, we have found that 

(vii) pc(t) is continuous at t = 0 only if A(x) # 0 for all finite x. 

(viii) lim,,,p,(t) = 0 if limzim aJ’+tf(c + x) = 0, where h(x) = .&‘, c5 > 0, 

(ix) p,(t)0 for all finite t only if lim,,, X(x) = c0, 

The problem of accounting for latency distributions with ‘high’ tails has been consi- 
dered by McGill and Gibbon (1965) who proposed the general gamma distribution, 
and by Snodgrass, Lute and Galanter (1967), who proposed the double monomial. 
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In the present context, the high tail arises fairly naturally because of the interpretation 
of latency as a transformed random variable. 

The proofs of many of the results in this paper depends on the fundamental 
Lemma 2.3. This Lemma is a tool for establishing inequalities involving F(x) and 

1 -F(x), as was illustrated in Theorems 2.4 and 3.5, and, therefore, it should be 
useful for simiiar analyses of detection-latency models which give rise to truncated 
distributions. 
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