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Abstract. We introduce the curting mumber of a point of a connected graph as a natural measure
_ «f the extent to which the removal of that point disconnects the graph. The curiing center of
the graph is the set of points of maximum cutting number. All possible configuraticns for the
cutting center of a tree are determined, and examples are constructed which realize them. Using
the lemma that the cutting center of a tree always lies on a path, it is shown specifically that
(1) for every positive integer n, there exists a tree whose cutting center consists of all the n
puints on this path, and (2) for every nonempty subset of the points on this path, there exists
a tree whose cutting center is precisely that subset.

The cutting number c(v) of a point v of a connected graph G has been
defined in the preliminary report { 2| as the number of pairs of points
{u.w} of G such that u,w # v and every u - w path contains v. C*bviously
c(v) > 0 if and only if v is a cutpoint of G. The cutting number of G is
¢(G) = max c(v) and the cutting center of G, denoted by C(G), is the
set of all points v such that c(v) = ¢(G). We shall determine all possible
configurations for the cutting center of a tree. Except for new concepts,
we follow the terminology of [11. '

The smallest tree with a cutting center is the 3-point tree of fig. 1(a).
The trees in figs. 1(b, ¢) have cutting centers which are the paths P, and
P; of two and three points, respectively. We shall see that these are the
smallest examples of the result that for every positive integer 2, there is
a tree T such that C(T) induces P, the path with n points.

* Research supported in part by a grant from the Air Force Office of Scientific Research.



8 F. Harary and Ph.A. Ostrand, The cutting center theorem for trees

. . P
. . : -
B — S ans e te e g
ug uj uy Uy u;—‘:ﬁ\
< &
' (©)

(a) (b)

Fig. 1. Trees with small cutting centers.

The following terminology will prove useful. For a tree T and a point
v of T, the (reduced) branches* of T at v are the components of the
subgraph T — v. Furthermore, if-we have singled out a particular sub-
graph S of T and v is a point of S, then the branches of T at v which
contairi points of S will be called S-branches and the remainder are the
other branches, where S will be indicated by context.

Let u, v. w be points of a tree T with p points. It is well known that
every pzir of points of a tree are joined by a unique path. Obviously u-
and w belong to the same branch of T at v if and only if the u - w path
does not contain v. Consequently, if in T the k branches at v contain
Py P2e .- Py points, then c(v)=(P3 L 2,",,(?). Note that we have
adopted the convention that ( }1) =0.

Let A be a subset of the point set V of a tree T. There is a unique
minimal subtree of T which contains 4, namely, the union of all paths
which join pairs of points in A.

Theorem 1. For every tree T, the minimal subtree containing the cutting
center C of T is a path.

For the proof of Thecrem | we need a lemma.

Lemma 1. Let T be a tree with p > 3 points, u and w points of T, P the
u - w path and v # u,w a point of P. Let r and s be the number of points
in the P-branches of T at v which contain u and w, respectively. !f

c(u) = c(w) > c(v) then 3s > 2(p - r).

Proof of Lemma 1. Let r=p —r —s.
If a point of T is not in the P-branch at u, then it is in the P-branch at

* This differs from the conventional definition of the branches of T atv (see [ 1] p. 35) as these
include, the point v itself. However, reduced branches are more useful here, ard so will be
called ‘‘branches” in this paper.
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v which contains u. Consequently there are at least p — r = 5 + ¢ points
in the P-branch at u. Likewise there are at least p — s = r + ¢ points in the
P-branch at w. Thus we have (1) which gives (2) by symmetry:

(1 cw) < P3h - ¢,
{2) W< P5h - ().

There are ¢ — 1 points in the other branches at v and c(v) is minimum
if they all belong to the same other branch, so

3 em2EihH - -G -1h.

By hypothesis ¢(v) < c(u),c(wWl and r2 — r+2< (r+ 1)?, s =5+ 2<
s+ l)2 because r, s 2 1. Thus (1), (2) and (3) yield
s+ <+,
Ar+H<(s+1)?,
which imply |
C)) 83+ D<A+ < s+ D).
It follows from (4) that
(5) 21<s,

The desired conclusion 35 > 2(p —r) is an immediate consequence of
(5) and the definitionoftasp — r —s.

Proof of Theorem 1. Let T be a tree with p points and S the minimal
subtree containing its cutting center C. Suppose S is not a path. Then
there is a point v of degree at least 3 in S. Every S-branch at v has at
least one point of C. Thus there are points u,, u,, uy # v belonging to
C which are in distinct S-branches of T at v, containing r, s and ¢ points,
respectively. Since these three S-branches are disjoint, we have

(6) r+s+:<p.

But Lemma 1 implies
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Is>2Ap-n),
3t2 Ap-9),
3r22p-0,
which together yield
S(rts+1)2> 6p
which cleatly contradicts (6), proving the theorem.
At first we thought that the cutting center of every tree induces a path.
There are quite a few counterexamples to this statement, the smallest

known case being shown in fig. 2, in which the points in the cutting
center are v; and u;.

.
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Fig. 2. A tree whose cuftting center is not the set of points of a path.

We can now make the strongest possible assertion subject to the re-
striction imposed by Theorem 1.

Theorem 2. For every positive integer n and every non-empty subset C
of {1,2,...,n}, there is a tree T containing a path u;ujyuy...u, such that
the cutting center of T is {u;li € C}.

Proof. For n = 1, C is necessarily {1} and we may take T to be the tree
Py with 3 points with the point of degree 2 labeled u,; see fig. 1(a).

The proof for n > 2 requires some numerical machinery.

For a positive integer n, let 8(n) be the unique integer p 2 2 such that
(M B <n<Py).

We see immediately that

(8) Vin - 1<0(n)<y2n+1,
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9 0<n—-®h<om-1.
For a non-negative integer n, define ¢(n) inductively:

¢(0,=0,

(10)
¢(m) =06 +o(n M), (n>0).

The following lemma describes the asymptotic behavior of ¢, and assists
in the proof of Theorem 2.

Lemma 2.
(2. VIn<on)<2n foralln>0.

(b) },"115%17): 1.

Proof. The inequalities (a) are easily verified for 0 < n < 5. We complete
the proof of (a) by induction on n, taking n 2 6. Using (9), we know
n 2 (E8)0f n = (°{"), then by (10) we have

d(n)=8(n)=Y(1+/1+8n),

from which the desired conclusion is immediate. If n > (°{™), then (8)
and (9) imply

(1) 1<n-CM<Vn,

from which it follows by the inductive hypothesis that
(12) VI -(CM) <20/,

Combining (8), (10) and (12) yields

(13) V- 1+VI<pm<VIn+ 1+ 2V

Taking the first derivative, we find that the function 2n is increasing
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faster than 3v/2n + 1 for all n > 2, and for n = 6 we have 12> 1 + 3\/T2.
 Thus 3V/2n + 1 < 2n for all n > 6 and we see from (13) that

VIn<¢(m< 2n,

proving (a).
Combining (10) with (a), we get

(14) V<o)< Bin) + 2n--(°M) ,
and combining (8) and (9) with (14) vields
(15) VIn<om<3In+1,

which improves the bound of (a). Now repeating this process using (15)
rather than (a) gives

Vin<omSvIi+3J20/In+ 2,

and thereby

$(n) 33/7\/21'11-7
(16) l<\/—§1 T

obviously implying (b) and completing the procf of Lemma 2.
The property of the function ¢ which is of interest to us, and which

led to its concoction, is that for n 2 1 there is a finite sequence of
integers gy 2 g 2 ... 2 q, 2 2 in which g, = 8n) such that

[ 4
an Eg g =¢n),

H
(18) g(qé)=n.

This is easily established by induction on n. These same facts can be ex-
pressed in a somewhat more usable form. Recall the convention that

t}) = 0. It then follows immediately from (17) and (18) that for positive
integers m and n such that ¢(n) < m, there is a finite sequence of in-
tegers g, 2 q3 2 ... 2 q, 2 1 with g; = 8(n) such that
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(19) Z)iq,- =m,
=

t
(20) 23 @=n.

We shall use the following construction in the proof of the theorem:
Let n 2 2 be an integer. There is a rational number a > 2 such that

A

Lemma 2 insures that there is a positive integer M such that .

Ql.)

Qn -2 (

4-‘-{-‘

(22 H<Var foralle2>2 M.

Condition (21) implies that

9 I
: ty . an-2 2 _ o nl () 2
I T S E) I

Consequently, there is a positive integer N such that

> )
(23 G- (um2 S 3)2) (—fﬁ

: )>M forallt > N.
i+1

Let a = a/b where a, b are relatively prime positive integers. Define

(24) p =aN+3,
(25) b, =abN? |

. (p+1)? - 2b,
(26) B = ‘“‘""“"’;l =,
(27) a] =p y

(28) ¢ =(*H-B)-b.

Obviously {23) implies
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(29 ) -2p"P>M.
By (2’4) and (25) we see that

(30 r >N,
(31 (p-3Y =ab,

\

We define g, and b, inductively fori > 2

(32) a;,y =0(b)) .

(33) biuy = (2p2~- 1y (2p..ia,.1) -c.

wh.ere we terminate the process at iy it b; < Ooriy =n.

Lemma 3.
(a). b; > (;"2?) - 20(p — a;) for2<i<iy,

(b p-a;<728 for2<i<iy,
(c). ip=n,

(d). ab;<(a; - 3)? for1<i<n,

-
(33
S

I

¢h)<a; -3 for1<i<n.

The parts of Lemma 3 of real interest to us aic {¢) and {e), and the
others are used only to establish their validity.

Proof.
(a). (31) implies that b, < (") Consequently,a; = 0(b)) < p = ay.
Combining (28) and (33) we get

(B4 bi=b+ B - (7% for1<i<iy,

and in pan\cular we see that b, < by. It follows easily by induction that
the sequences (a, j ;=1 and (b, )°, are non-increasing. Thus it is evident

s



F. Harary and Ph.A. Ostrand, The cutting center theorem for trees 15

that by > (%) for 2 < i < iy. Combining this with (34) yields
biz2®-Qp-Dp-q) for2i<iy,

from which (a) follows directly.
(b). For | €i<iy, (8)and (32) imply

1 -2 (1) - 2,
, - ) YR
(35) p-ay<p+l-V2 +1+\/1b 5 p+l

-

In particular,

(36) p-ay<p.
In view of (a), (35) implies

@+1)? - pp- D+4p(p-a) 3p+1+4p(p- a))
G p-ay < AR
p +1 . ptl

<3+dlp-a)<TNp-a) for2<i<i.

(36) and (37) yield (b).
(). By (a3, (b)and (29). b; > M for 1 <i < n and thus (c) is proved.
(d). By (31) we have ab, < (a, - 3)>. We complete the proof by
showing that the sequence ((q; — 3)* — ab;}.; is increasing.
By (34) we have

b by = (2";;“*‘") (2”2" %) for1<i<n-1.

Thus

ab; - abjy 2 2(b; —~ byyy) = (a; —a;41)(4p —a; — a1y ~ 1)

> (4 - ay41) (@ + 844y - 6) = (@; - 3 — (@jy — 3%,
so that
(a,-ﬂ - 3)2 - Qb‘4‘ > (a" e 3)2 - ﬂb" B
(e). We have seen that b; 2 b, > M for 1 <i < n. Then by (22) we

have ¢(b,) < Vab;, and hence by (d) that ¢(b;) < a; — 3 for
1<i<n
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We are now prepared to compiete the proof of Theorem 2.

Proof of Theorem 2 (continued). For n 2> 2 let C be a non-empty subset
of {l,....n}. Letp.c, ay,ay,....a,. by, b,. ..., b, be the integers deter-
mined by n in the preceding construction. We may suppose without
loss of generality that 1, n € . Let P be a path with points u;,
1<i< n, and edgesu;u,,,. 1 <i< n-1. We shall enlarge P by adding
additional branches to each point u; to obtain a tree T with 2p points
such that ¢{T) = ¢ and the cutting center of T is {u;li € C}.

By Lemma 3 we have ¢(b;) < a; — 3. Thus by (19) and (20) we have
for each | < i< n afinite sequence of integers ¢;; 2 qpp 2 ... 2 ¢;,, 2 |
such that ¢,; = 0(b,) and

5
(38) kE-l"”‘ =g -3,

]

39 L k=,

Forig Clets;=¢;+1andq; =2 Fori< C lets;=1,+2and
dis;-1=4;5;= 1. Then by (38) and (39) we see that

8
301 g‘l:k =q; —~ 1 for1<i<n,
Si
(41) g(qék)=b,~ forie C,
| 5
41 L Ey=p forigC.

We shall now add additional branches to each u;. Each added branch
will be a path joined to u; at an endpoint of itself. Tou; we add s,
branches; one with p points and one each with g, points for
2<k<s. For2<i<m-1,tou; we adds; ~ 1 branches; one each
with g, points for 7 < k < 5;. Tou,, we add s,, branches; one each with
qui pointsfor 1 < k<s,.

Now we shall do some counting. First the total number of points in
the other branches at u; relative to P, i.e. in the branches added at u;.
At u; we have
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S

p+'§2q,k =p+ay - l—-qy=ptay-1-ay=CIp-1-a,.

For2<i<n~1wehaveatu;

51
2
Lt qi =a; = 1 -qn=a;— 1 —dyy .

At u, we have
Sn

Z( =q, - 1.
k=1 Ink "

We note that T has the » points of P and ali the points of all the other
branches. Thus the number of pointsin T is

n-1

n+@p-1-ax)+ Zz(ai*»! ~aq)ta, -1=2p,
i= ‘

as was claimed earlier.

Next, for 1 < i< n - 1, we count the points in the P-branch at u;
which contains u,,. This contzins the point u; and the points of the
other branches at u; for * + 1 <j< n,s0we get :

-1

n-~
(n--i) +1§| (@~ 1 -Gy)ta,~1=a,,7q, .

Finally, for 2 < i < n, the P-branch at u; which contains u; will have
all points of T except those in the P-branch at u;_; which contains u,, .
Thus it has 2p — a; points.

Now we are prepared to calculate cutting numbers. The point u
has a P-branch with g, points, other branches with q; points,
2 € k < sy, and another branch with p points. Thus

5y Sy
@3 )=y - @) - D =g - -2 Eh.

For 2 < i< n — 1, u, has P-branches with 2p — g; and g;; points and
other branches with q;; points 2 < k < s;. Thus
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Sl

(2’;"""‘; A.J (q"‘) for2<i<n- }.
k \

44) cu)=(FN -

L‘*S“Y’ u, has a P-branch with 2p - a, points and other branches with
@i points, 1 S k<5, 50

Sn

@5) clu)=87Y - (T - ,{3,(";*)_

Thus foreach 1 < i< n, (41), (45)and (32) imply
(46)  cup=CB Yy - By _p = fiec,
@47 qup=BY (B ply=c -1 g

If v is a point of T not in P then v is of degree either one or two. In the
former case, c(v) = 0. In the latter case, v has two branches with a total
of 2p— 1 points, so c(v) =5(2p—1-5) forsome 1 <s< 2p - 2. Note
that

48 2p—1--5)= p(p-*1),
{48) |5T§:~ s(2p 5)=pip-1)

and

49 =Y -@)-by=( - B) - -;~—-«>(2P - @) - ta(p--3)
By (24) we have p > 3. which implies
(50) pp-1)< (BN - B) ~ -3

Clearly (48)-(50) imply
(51 (v)<e forvg P.

Then we see by (46), (475 and (51) that ¢(T) = ¢ and the cutting center
of Tis {u;ji€ C}.
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