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Abstract. We intrnduw the cutting number of a point of a connected graph as ;i natural measure 
<tif the extent to which the removal of that point disconnects the graph. The ctirtingcenter of 
the graph is the set of points of maximum cutting number. 4ll possible configuratrons for the 
cutting center of a tree are determined, and cxslmpkc 3~ constructed which realize them. Using 
the lemma that the cutting center of a tree always iie~ on a path, it is shown specifically that 
(1) for every positive integer n, there exists a tree whose cvtting center consists of ali the n 
points on this path, and 42) for every nonempty subset of the points on this path, there exists 
a tree whose dztfing center is precisely that subs&. 

The r*irtPirrg rzlrnlbcr c(v j of a point v of a connected graph G has been 
defined in the preliminary report [ 2 1 as the number of pairs of points 
{u,w) of G such that u,w f v and every u - w path contains v. Obviously 
c(v) > 0 if and only ifv is a cutpoint of G. The cutts’ng number ;Jf G is 
c(G) = max c(v) and the d:td tting center of’ G, denoted by C(G), is the 
set of all points v such that c(v) = c(G). We shall determine all possible 
configurations for the cutting center of a tree. Except for new concepts, 
we follow the terminology of [ 11. 

The smallest tree with a cutting center is the 3-point tree of fig. l(a). 
The trees in figs. I(b, c) have cutting centers which are the paths P2 and 
P, of two and three points, respectiqply. We shall see that these are the 
smallest examples of the result that for every positive integer tt, there is 

il tree T such that C(T) induces P, , the path with n points. 

* Remarch supported in part by a qant from the Air Force Oftice of Scientific ReSR;Ircir. 
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Fig. 1. Trees with small cutting centers. 

The following terminology will prove useful. For a tree T and a point 
v of T, the (reduced) branches* of T zt v are the components of the 
subgraph T - v. Furthermore, @we have singled out a particular sub- 
graph S of T and v is a point of S, then the branches of T at v which 
contain points of S will be cahed S-branches and the remainder are the 
other branches, where S will be indicated by context. 

Let u, v. w be points of a tree T with p points. It is well known that 
every pair of points of a tree are joined by a unique path. Obviously u’ 
and w belong to the same branch of T at v if and only if the u _ w path 
does not contain v. Consequently, if in T tp &$anches at v contain 
p1, pz4 ‘*-9 pk points, then c(v) = (p2 ‘) L C,,r ( 2 ). Note that we have 
adopted the convention that {i) = 0. 

Let A be a subset of the point set V of a tree T. There is a unique 
minimal subtree of T which contains A, namely, the union of all paths 
which join pa&s of points in A. 

The&em 1. For evtiry tree 
center C of’ T is a path. 

T, the minimal subtree coritainirtg th4 cvbttirzg 

For the proof of Theorem 1 we need 3 lemma. 

Lmnma 1. Let T be a trele with p 2 3 points, u and w points of‘T, P the 
u m w path and v # u,w a point of P. Let r and s be the mmber of points 

in the P-brunches of T at v which contain u and w, respective&. Jf 
c(u) = c(w j > c(v) then 3s 2 2(p - I). 

RooEofLemmai+et~=p--r--s. 
If a point of T is not in the P-branch at u, then it is in the P-branch at 

l Thfs dqets from the conventknal defmition of the branches of T at v (see [ 11 p. 35) as these 
include. the point v itself. However, reduced branches are more useful h’ere, and so will be 
called %arsc hes’” in this paper, 
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v which contains u. Consequently there are at least p - I = s + I points 
in the P-branch at u. Likewise there are at least p - s = r + t points in the 
P-branch at w. Thus we have ( 1) which gives (2) by symmetry : 

(2) c(w) 5 cpc 9 -’ v+j’) l 

There are t -- 1 points in the other branches at v and c(v) is minimum 
if they all belong to the same other branch, so 

c(v)> tppl -- (~s-cl,--(‘,-9. 

By hypothesis c*(v) 5 c(u j,c(w) and r2 - r + 2 < (I + I. j2, s2 - ,y + 2 < 

(J + I)* because r, s 2 1. Thus ( i ), (2) and (3) yield 

2t(s+ I)< (r+ I)? , 

2r(r + I I< (s + I )2 , 

which imply 

(4) 8r”(s+ I)< 4t’(r+l)‘$ < (s+ ij4 . 

It follows from (4) that 

The desired conclusion 3s 2 2(p - r) is an immediate consequence of 
(5) and the definition of t as p - r - s. 

Proof of Theorem 1. Let T he a tree with y points and S the minimal 
subtree containing its cutting center C. Suppose S is not a path. Then 
there is a point v of degree at least 3 in S. Every S-branch at v has at 
least one point of C. Thus there are points ul, ~2, u3 f. v belonging to 
C which are in distinct S-branches of T at v, containing r, s and t points, 
respectively. Since these three S-branches are disjoint, we have 

w r+s+r<p. 

But Lemma 1 implies 
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3s > 2(p - r)1 , 

3t 2 Z(p-4, 

3Q 2(p-0, 

which togc ther yield 

S(r+s+t) 2 6p 

which clearly contradicts (6), proving the theorem. 

At first we thought that the cutting center of every tree induces a path. 
There are quite a few counterexamples to this statement, the smallest 
known C~?SC being shown in fig. 2, in which the points in the cutting 
center arc q and us 

Fig. 2, A tree whose cutting center is not the set of pints of a prth. 

We can i;~ow make the strongest possible assertion subject to the r-e- 
striction imposed by Theorem 1. 

Theorem 2. Fw every positive integer n and every bson-emp ty subset C 
of iI, 2, . . . . n), there &a tree T containinga path uiu2u3.+, suclh that 
IIIPCUbSifl~CePlt@43f Tis{+[iE Cl* 

Roof. For n = 1, C is necessarili ‘{ I) and we may take T to be the tree 
Ps with 3 points with the point of degree 2 labeled u1 ; see fig. l(a)- 

The proof for n 2 2 requires some numerical machinery. 
For a positive inteer N, let O(n) be the unique integer p 2 2 such that 

We 15ee immediately that 
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(9) 05n-(e~t)5B(n)- 1. 

For a nonnegative integer n, define @(n) inductively: 

b(n) = O(ti j + #(rr - (*p))) , (n > 0) . 

The following lemma describes the asymptotic behavior of @, and assists 
in the proof of Theorem 2. 

Proof. The inequalities (a) are easily verified for 0 5 N < 5. We complete 
the proof of (a) by induction on n, taking N 2 6. Using (9), we know 
112 q+. If !1 = ( ‘$“)j. then by ( 10) we have 

- t#l(rr) = 0(n) = l,ir(l +J-i+$nj, ., 

from which the desired conclusion is immediate. If n > (6f’j, then (8) 
and (9) imply 

from which it fohows by the inductive hypothesis that 

Combining (8), ( IO) and ( 12) yields 

(13) ~--1+~%@(n)(r&5+1+2&?5L 

Taking the first derivative, we find that the function 2n is increasing 
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faster than w.% + 1 for all n > 2, and for n = 6 we have 12 > 1 + &/fT. 

Thus &6 + 1 < ‘Zn for all II 2 6 and we see from ( 13) that 

proving (a). 
Combining ( 10) with (a), we get 

and combining (8) and (4) with ( 14) yields 

which improves the bound of (a). Now repeating this process using ( 15) 

rather than (a) gives 

obviously implying Cb) and completing the procf of Lemma 2. 

The property of the function @ which is of inuerest to us. and which 
led to its conco&ion, is that for jt I 1 there is a finite sequence rsf 
integers qt 2 42 2 . ..-2 4, ‘2 2 in which q1 = @in) such that 

t 

This is easily estabfished by induction on n. These same facts can be ex- 
pressed in a somewhat more usable form. Recall the convention th;tit 
(4) = 0. It then follows immediately from (I 7) and ( 18) that for positive 
integers m and n such that @(n) 5 m, there is a finite sexpence of in- 
Qqpsqj z q2 2 . . . 2 qt 2 I with q1 = 6(n) such that 
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(20) &y, = It . 
i=l 

We shall use the following construction in the proof of the theorem: 
Let o 2 2 be an integer. There is a rational number Q > 2 such that 

Cl) Tn--2 1 _L‘ <__ 
( 1 

I b 

a 4‘ 

Lemma 2 insures thet there is a positive integer M such that 

(23 #Q) < &i- for a11 r 2 M . 

Condition I Z I ) implies that 

lim f$) -. FM2 (t+lJ2 
p-or E (. 

_ i +3)2) ($J] = m . 

Consequent!y, there is a positive integer N such that 

(23) (i,- F2 
( 
(r+l)” --* 2 tr_3)2) ($1) > M for all t 1 N. 

a 

Let Q = a/b where a, b are relatively prime positive integers. DeGne 

(24) p =aiW3, 

(25) b, = ab# , 

(2W P 
(p-+1)2 - 26, 

= -._._ _____ ___..v 
p+l ’ 

Obviously C 23) implies 
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By (24) and (25) we see that 

where we terminate the process at i, if bi,, C 0 or i, = IL 

for 2 < i <: i, , 

j?w 2 < i < i, , 

for I 5 i < ?I . 

Ibe parts of Lemma 3 of real interest to us arc fc) and (e), and the 
ot,hers are used only to establish their validity. 

hoof. 
(a). (3 I) implies that b, f (5). Consequently, a2 = 8(61) <= p = aI. 

Co’nlbining (28j and (143) we get 

(34) bi=b,+(%)---(*;‘i) for 1 <isi v 

and in partkular we see that b2 < b, . it follows easily by induction that 
the sequences (a$& and (bide, are non-increasing. Thus it is evident 



FQ fiarav and Ph.A. Ostrand, The cutting center theorem for trees 15 

that h, 2 ((12) for 2 < i < i,. Combining this with (34) yields 

from which (a) follows directly. 
(b). For 1 <, i < i,, (8) and (32) imply 

(35) p - a,+1 < p + I -- J-z!!.= 
(p+1j2 .- ?bi< (/3+tj2 - 2Iri _ 
- --. ----_-- .* ,- - _- 

p+l+dT& --jltl * 
. 

In particular, 

(36) I’. c’+p. 

III view of (a), (35) impks 

(33) 
@+Ij2-~~.p@--I)94p(~A-ai) 3ptI+4p(p--u,) 

p - (j,, < - -.-.-a’- - - 
_ -._ = _- _._ __ _, _____,_-.-- _-_s 

pi- 1- --- , p+t 

(cl. By (a), i_bj and (29,). hi > M for 1 <, i < ~1 and thus (cj is proved. 
t-d). By (3 1) we have arb, <- (cl, -’ 3j2. We compicte the proof by 

showing that the squen~e i(q - 3j2 -- ~h,($ is increasing. 

By (341) WC have 

bj ” bi,+l = ( 2”; “i* A j ___ (2p2 ai) forl<,i<n-- I * 
‘r 

(a i+l -- 3)’ -- ab,+lr Cai - 3)2 - abi - 

(e). We have SXII that bi 2 b, > M for 1 < i 5 n. Then by (22) we 
have $(!I,) 5 &$, and hence by (d) that @(bi) 5 ai -- 3 for 
I<i<n. 
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We arc now prepared tlo complete the proof of Thcorpm 2. 

Roof of Theorem 2 (continued). For 112 2 let C be a non-empty subset 
of fl, . . . . 11). Lctp. c, al, a2, . . . . Q,, h,, bz, . . . . b, be the intcgcrsdetcr- 
mined by N in the preceding construction. We may suppose without 
loss of,gcnerality that 1, tr E C. Let P be a path with points q, 
1 5 i < n, and edges IJ~u~+~. 1 5 i < II- 1. We shall enlarge P by adding 
additional branches to each point ui to obtain a tree ‘T with 2p points 
such that c(T) = c and the cutting center of T is (Ui ii E: Cl. 

By Lemma 3 we have @(bi) 5 +q .- 3. Thus by ( 19) and (20) WC have 
for each 1 5 i < n a finite sequence of intcgcrs qil> Q,-Z > . . . > qi,r, > 1 

Such that yI1 = O(h,) and 

For i 8 C, Cd .s~ = ti + I alnd qj,si= 2. For i f C, let si r t, + Z and 

GO 51” I = %, q = 1. Then by (38) and (39) we see that 

si 

(401 c (irk = ai - 1 for 1 < i 5 )I , 
k=J 

Wc shall now add additional branches to each ui. Each added branch 
will be a path joined to Ui at an endpoint of itself. To ~1 we add s1 
branches; one with p points and one each with qlk points for 
2<k<sl.Fof2<i~r7-l,tsuiwcaddsi- 1 branches;onecach 
with qik points for _ 2 < k 5 Sje To uH we add s, branbhes; one each with 
qnk points for 1 5 k 5 sn. 

Maw we shall do some counting. First the total number of points in 
the other branches at ui relative to P, i.e. in the branches added at ui. 
At u1 we have 
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ForZ!<i<rt- 1 wchaveatui 

:2y L 1 i k = Ui .- 1 _- Qi* = 41 -- 1 -.’ Ui+l . 
s 

At u,, we have 
$?I 

c 
k=l 

(Ink = a, - 1 . 

We note that T has the II points of P and ai! the poiints of all the other 
branches. Thus the ntimbcr of points in T is 

n-l 

t1 + (2p -- 1 -U2)+ g(Ui--I -U,,l)+ff,, - 1 =2P,, 

as was claimed earlier. 
Next, for 1 L i 2 tI .-- 1, we count the points in the P-branch at ui 

which contains u, . This corrtgins the point ui and the points of the 

other branches at ui fot * + 1 < j < ft, SO We f$C? 

n -’ 1. 

(n-4) + c i=i~, (Ui -- I .-- Pi+1 ) + 4” -_ I = Ui.j.1 = qj1 ’ 

Finally, for 2 < i < tl, the P-branch at’q which contains ul will have 
all points of T except those in the P-branch at u~_._~ which contains u,. 
Thus it has 2p - ui points. 

Now we are prepared to calculate cutting numbers. The point u1 

has a P-branch with qll points, other branches with qlk points, 
2<k<Sl, and another branch with p points. Thus 

Sl Sl 

(43) C(U 1) = c2f- ‘) -- (5, - ?I (y) = @j-Q -- ( ;t 
zP--p!) _ c (C7;kj . k=l 

For 2 < i 5 II .-- 1, II, has P-branches with 2p - IZi and qil points and 

other branches with Q,+& points 2 5 k 5 Si+ Thus 
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(44) 
‘P Qik 

C(Ui)= (2p2-*j _ (2p2e.Qil -- $( ( 2 ) for 2 < i <= PI 1 . 

Lastly, un has a P-branch with zp ‘” A, points and other branches with 
qnR points, I < k < sn, 3x3 

Thus for each 1 5 i C 11, (4 1, (45) and (33) imply 

147) L.(U.j = (2p-‘) __ (‘~-~“ij __ (h,+l) = c _._ 1 
I if i tF. i“ . 

If v is a point of 1’ not in P then v is of degree either one or two. III the 
former case, C(V) = 0. In the latter cax3, v has two branches with a total 
of Zp- 1 points, so c(v) = s(2p --- t -- s) for some 1 5 s < 2p - 2. Note 

that 

(48) max 
Er_F2p-2 

s(2p-- I --s)=p(p--Ll), 

By (24,1 we have p > 3, which implies - 

Clearly (48)- -(SO) imply 

f5t) c(u) c c for v q P . 

phi w see by 146), (47) and (5 1) that c(T) = c and the cutting center 
of Tis (Ujia’E C). 
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