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The “psychophysics of gambling” model, in which a person is assumed to have 
a single-peaked or monotonic preference function on each of the primary psychological 
dimensions of a gamble, is compared to the expected utility model for two-outcome 
gambles. Two theorems are proved, the first of which shows that expected utility 
(EU) theory is inconsistent with single-peaked preference functions on both 
skewness and variance, while the second shows that subjectively-expected utility 
(SEU) theory is inconsistent with single-peaked preference functions on both 
skewness and range. The applicability of the theorems is discussed and a weak test of 
SEU theory is made employing the second theorem. 

INTRODUCTION 

In decision making under risk, expectation theories have held the center of the stage 
for over a century. The first major expectation theory, historically, is expected value 
(EV) theory, which postulates that an individual selects the option with the highest 
expected monetary value. When EV theory was shown to have serious difficulties 
(e.g., the St. Petersburg paradox), another theory called expected utility (EU) theory 
was proposed (Bernoulli, 1738). In EU theory, every individual is postulated to have 
a utility function which is restricted only in that it must be continuous and it must be 
a monotonically increasing function of monetary value. EU theory postulates that the 
subject maximizes his expectation of utility. When EU theory was found to be a 
somewhat inadequate descriptive model, a subjective probability function was 
postulated (Edwards, 1955). In many discussions of subjective probability this function 
is restricted to be a continuous and monotonically increasing function of objective 
probability (Preston and Baratta, 1948; Coombs, Bezembinder and Goode, 1967). 
Subjectively-expected utility (SEU) theory predicts that the subject will maximize 
1 VW W4 where NPJ is the subjective probability of event i having objective 
probability pi and u(a,) is the utility of the consequence ai , of event i (Edwards, 1955). 
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An alternative approach to the general class of expectation theories has been 
proposed by Coombs and Pruitt (1960) for two-outcome gambles. A two-outcome 
gamble is considered as a three-dimensional stimulus; the three dimensions selected 
by Coombs and Pruitt were expectation (E), variance (a2), and skewness (S). For two 
outcomes with consequences a and b, (u > b) and with probabilities p and q, respec- 

tively, these three quantities are given by 

E = pa + qb, 

2 = pq(a - b)2 

s = 1-2p 
2/ps’ 

The dimension of variance measures the spread of the bet. The dimension of skewness 
is monotonic with the probability of losing, and, therefore, skewness preference can 
also be viewed as probability preference or “odds” preference. To minimize confusion, 
the third dimension will be subsequently referred to as skewness. 

Coombs and Pruitt concentrated their attention on the situation in which a2 or S 

is varied with the other two dimensions held constant; since, if u2 and S are the same 
for two two-outcome gambles, the gamble with the higher expectation will dominate 
the other. They predict that the subject will “fold” a series of bets varying only in 
skewness or in variance. The folding model postulates that variance and skewness 
are psychological dimensions and that the subject has an ideal point, or most preferred 
value, on each of these dimensions, and that the subject folds the dimension (line) 
at this ideal point. The subject’s preference ordering of stimuli is then the ordering 
of the stimuli on the folded dimension. Lute and Raiffa (1957) have shown that this 
model predicts the same preference orderings as a model in which the subject has a 
single-peaked preference function on the relevant dimension. Coombs and Pruitt 
found that most of their subjects did have preference functions (rank orders) on both 

variance and skewness that conformed to the folding model, although the ideal points 
for skewness changed as the variance changed, and vice versa. 

The folding model of two-outcome gambles is more vulnerable to a simple critical test 
than is SEU theory (compare the analysis of the Coombs and Pruitt (1960) experiment 
with that of the Coombs, Bezembinder and Goode (1967) experiment), and might be 
equivalent to a special case of SEU theory with well-defined restrictions on the utility 
and subjective probability functions. However, the exact correspondence between the 
two theories is largely an unsolved question. Given a specific utility function and 
a specific subjective probability function, it would be a simple matter of calculation 
to determine the subject’s skewness and variance preferences, but there is little that 
can be said at present about his skewness and variance preferences if all that is known 
is that he obeys SEU theory. Discovery of the opposite type of correspondence seems 
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to be an easier problem to solve; i.e., given a certain set of skewness preferences and 
variance preferences, what can one say about the subject’s utility function and 
subjective probability function ? A general solution to this second problem is also 
unsolved, but in certain specific cases the correspondence is known. For example, 
if a subject’s preference for variance is monotonically increasing for all values of E and 
S, then he will have a positively accelerating (concave upward) utility function. 
Similarly, if his preference for variance is monotonically decreasing, he will have a 

negatively accelerating (concave downward) utility function. On the other hand, 
if a subject has a single-peaked variance preference function with ideal variance not 
equal either to zero or infinity, then it can be shown that his utility function must 
have at least one inflection point. 

A more general question might be asked: Are all patterns of variance preference 
and skewness preference compatible with SEU theory? It would seem that all 
reasonable sets of folding patterns would be. An example of an “unreasonable” 
set of preferences would be this: A subject strongly preferred gamble A to B, but 
reversed the order of preference if a penny were added to each outcome of 

both gambles. However, it can be shown that very reasonable sets of folding patterns 
do violate EU theory. The following theorem specifies such sets of folding patterns. 

THEOREM 1. If the following conditions are true for two-outcome gambles, then the 

subject must violate expected utility theory: 

1) The subject has a single-peaked preference function on stimuli (gambles) that 
vary in skewness with variance and expectation held constant, for all values of the para- 
meters, expectation and variance, and with ideal skewness $nite and bounded from above. 

2) The subject has a preference pattern that is not monotonically increasing with. 
variance if expectation and skewness are held constant, for any values of the parameters, 
expectation and skewness. 

If  the psychological space is reparameterized so that the dimensions varied are 
expectation, skewness, and range (R = a - b), then the following theorem involving 

SEU theory can be stated. 

THEOREM 2. If the following conditions are true for two-outcome gambles, then the 
subject must violate subjectively-expected utility theory: 

1’) The subject has a single-peaked preference function on stimuli (gambles) that 
vary in skewness with range and expectation held constant, for all values of the parameters, 
expectation and range, and with ideal skewness taking any Jinite value. 

2’) The subject has a preference pattern that is not monotonically increasing witk 
range if expectation and skewness are held constant, for any values of the parameters, 
expectation and skewness. 
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A more informal statement of Theorem 2 is the following: If  the subject always 
folds the skewness dimension somewhere other than at the end (note that the ideal 
point does not have to stay constant), then if he obeys SEU theory, he always prefers 
a higher range gamble to a lower range gamble having the same probabilities and 
expected values. 

It should be emphasized that in assuming Conditions 1 and l’, one does not have to 

assume that the subject is ever asked to make a comparison between a two-outcome 
gamble and a sure thing; such comparisons are not assumed in the proofs that follow. 
The lemma below does assert that a consequence of Condition 1’ is that any gamble 
has a higher utility than the utility of its cash equivalent (in terms of expected value). 
However, a direct test of this consequence is a bit tricky since, in some sense, gambles 
and sure things are different entities. A person may choose a sure thing because it is 
simpler than a gamble and not because it has a higher SEU than the gamble. To 
repeat, the domain of these theorems is comparisons between pairs of nondegenerate 
(variance strictly greater than zero) two-outcome gambles. 

It should be noted that since range is monotonic with variance for two-outcome 
gambles with fixed probabilities, range preference is indistinguishable from variance 
preference in a set of two-outcome gambles with fixed skewness. However, bets with 
constant range have different variances as skewness changes and bets of constant 
variance have different ranges as skewness changes (u” = p( 1 - p) P). 

Proof of Theorem 2. Theorem 2 will be proved first since it will be easier to see 
why the line of argument used does not lead to the proof of a more general theorem 
than Theorem 1. The theorem is proved by assuming Condition 1’ and SEU theory 

and showing that condition (2’) cannot hold. 

LEMMA. For any set of gambles with expectation E and range R, the subjectively- 
expected utility of the gamble is greater than the utility of E if Condition 1’ and SEU 
theory are true. 

Any two-outcome gamble may be presented as a probability p of obtaining 
E + (1 - p)R and probability (1 - p) of obtaining E - pR, wherep is the probability 
of obtaining the larger amount. This is true since any three independent parameters 
can fully describe a two-valued random variable. Remember that 1 -p is 
monotonically related to skewness so that if E and R are held constant, probability 
preferences are the same as the skewness preferences specified in Theorem 2. Then 
for any gamble with expectation E and range R, 

SEU(gamble) = #(P) . U[E + (1 -PM + [1 - $(P)l . U(E - PR), 

where #(p) is the subjective probability of obtaining E + (1 - p)R and I - #(p) 
is the subjective probability of obtaining E -pR. 
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We know by Condition 1’ that the SEU of the set of gambles with fixed E and R 
has a maximum value at some finite skewness (p # 0, 1) and therefore some 
4(p) # 0, 1. The condition that the function is single-peaked implies that the SEU 
decreases asp approaches 0 or 1. The question to be asked is whether the SEU function 
has a limit as p approaches 0 or 1, and if so, what that limit is. For expectation E 
and range R, 

tz SEU(gamble) = #(p) . U(E + R) + [l - 4(P)] . U(E) = U(E), 

since as p + 0, 4(p) -+ 0 and 1 - 4(p) + 1. Similarly, 

fz SEU(gamble) = #(p) . U(E) + [l - #(p)] . U(E - R) = U(E). 

Since the function is minimal at the ends and the limit at the ends is U(E), the 
function must be greater than U(E) everywhere. 

This completes the proof of the lemma. 
Now we wish to show that Condition 2’ cannot occur; that is we wish to prove that 

for all R’ > R, and all E and p, the subject must prefer a gamble with the parameters 
E, R’ and p to a gamble with parameters E, R and p. That is, 

#(P) . WE + (1 - PM + [1 - #(PII * W - RP) 

< #(P) . U[E + (1 - P) R’l + [1 - #(P)I . YE - R’P). 

We know from the lemma, that for any p, E, R (p f 0, l), 

YYP) . UP + (1 - PM + [1 - #(P)l . WE - PR) > U(E). 

Consider the gamble: probability I/ 71 of obtaining E,, + $1 - p)R and probability 
(1 - l/n) of obtaining E,, , with 1z any real number greater than one. The expectation 
of this gamble is 

; [E, + n(l - p)Rl + (1 - ;) [-&,I = 4, + (1 - p)R. 

Therefore, by the lemma 

# (;) * UN, + 41 - PM + [ 1 - # (31 * U(Eo) > Wo + (1 - ~14. (1) 

Similarly, consider the gamble: probability l/n of obtaining E, - npR and 
probability (1 - l/n) of obtaining E,, . By a computation similar to the above, the 
expectation of this gamble is equal to E,, - pR, where the E,, , R, p, and n are the same 
as the ones in the above gamble. Therefore, by the lemma 

4 (3 * Wo - ~PR) + [ 1 - 4 (31 * u(Eo) > W% - PR). (2) 
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I f  one multiplies inequality (I) by 4(p) and inequality (2) by I ~~ #(p) and adds the 
two resulting inequalities and makes another simple substitution in the inequality, 
one gets the following inequality: 

#(PI W% -k 41 -PM t 11 -~ O)l W4, - VW 

> YXP) . w% +- (1 ~ PM + [I -- vQ)l . w% - PR). (3) 

This is true for any E,, , R, p, and any n > 1, which is what we set out to prove. 
Inequality (3) implies that for fixed probability of winning (therefore, fixed skewness) 
and fixed expectation, the subject will always prefer the bet with the bigger range, 

since the quantity on the left represents a gamble with expectation E,, , range nR :>- R, 
and probability of winning p; while the quantity on the right is the SEU of a gamble 
with expectation E0 , range R, and probability of winning p. 

Therefore, Condition 2’ is violated and Theorem 2 is proved. 

Proof of Theorem 1. Following the proof of Theorem 2, Condition 1 and EU 
theory will be assumed and a contradiction will be found to Condition 2. To see 
why the argument analogous to the one in the previous proof does not violate Con- 
dition 2 if SEU theory is assumed, we will begin by assuming SEU theory and later 
restrict the assumption to EU theory (i.e., set #(p) = p). 

I f  E is the expectation, p is the probability of winning the more preferred outcome, 
and (T is the standard deviation, then any two-outcome gamble may be represented by 
a probability p of obtaining E + 0 d( 1 - p)/’ and a probability (1 ~ p) of obtaining __- 
E--o&l -p.IfE d an 0 are held constant, then probability preferences are the 
same as the skewness preferences specified in Theorem 1. The SEU of a gamble is 
thus given by 

SEU(gamble) = #(p) . U (E + 0 49, + [I - $(p)] * U (E - D ,,,&I. 

I f  we examine the limiting values of SEU as p approaches 0 or 1, we obtain 

iii SEU(gamble) = #(p) . U (E + 0 ,d-$$) + U(E) 2 U(E), (4) 

iii SEU(gamble) = U(E) + [l - #(p)] * U (E - u J&j = ? (5) 

Since SEU is assumed to be a single-peaked function of p, we know that its limit 
as p - 0 is at least as big as U(E), since the smallest limit the first term in (4) 
can have is zero. However, the limit of SEU as p --L 1 can easily be smaller than 
U(E), so that it is only certain that SEU (gamble) will be greater than U(E) for 
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all probabilities that are less than or equal to the ideal probability. Thus, it is not 

clear exactly what restrictions on variance preferences can be deduced assuming SEU 
theory and Condition 1. 

However, if we assume EU theory instead, then a contradiction to Condition 2 
follows quite simply. Since we have assumed that the ideal probabilities are all greater 
than or equal to p, > 0 (this is equivalent to assuming that the ideal skewness is 
bounded from above), then it is true that the EU of all gambles with probability pa 
of winning the more desirable outcome are greater than the utility of the expectation 
of those gambles (by 4). It can easily be shown (Hardy, Littlewood, and Polya, 
1934, p. 73) that for each x1 and x2 if there is some p such that 

P . ml) + (1 - P) . w4 > VP% + (1 - p) %I 7 

then U is concave upwards. Since we know that this inequality is satisfied for any xi 
and x2 by setting p equal to p, , U must be concave upwards (positively accelerating). 
I f  U is concave upwards, then it is a simple matter to show that the variance preferences 
are monotonically increasing and therefore Condition 2 must be violated. 

DISCUSSION 

The above theorems describe quite general sets of preference patterns that violate 
EU theory and SEU theory, respectively. There are two major problems, however, 
in utilizing these theorems to test the appropriate utility theory. 

The first problem is that it is hazardous to infer that all of a subject’s skewness 
preferences are single-peaked from the observation that those skewness preferences 
sampled by the experiment were all single-peaked. While it is probably reasonable 
to interpolate and assume that behavior found for gambles at two different expectations 

that are not too far apart will also be found for gambles at all intermediate values of 
expectation, it is probably unreasonable to extrapolate in the same way. That is, it 
would be desirable to obtain versions of the two theorems that would apply to a 
region of values so that one isn’t forced to extrapolate and assume that the subject 
would behave the same way if he were playing for hundreds of dollars as he does in 
the laboratory. 

For Theorem 2, a “restricted” version can be stated quite simply: 

THEOREM 2a. If a subject obeys SEU theory and has single-peaked (ideal is Jinite) 
skewness preferences for two-outcome gambles for all E such that x1 > E > x2 and for all 
R such that R < x1 - x2 , then for any two two-outcome gambles with equal E and p 
whose outcomes are between x1 and x2 , the gamble with the greater range must be preferred. 



232 POLLATSER 

A truly “restricted” version of Theorem 1 would be rather difficult to state since 
a single skewness preference function for fixed E and u2 involves indefinitely large 

positive outcomes and indefinitely large negative outcomes (see 4 and 5). However, the 
following “restricted” theorem is of some interest. 

THEOREM la. I f  the subject obeys EU theory and has single-peaked (ideal is finite 

and less than some maximum) skewness preferences for two-outcome gambles for all E such 
that x1 > E > x2 andfor all u such that (J < $(a - b), then for any two gambles with 
equal E and p whose outcomes are between x1 and xg , the gamble with the greater variance 
must be preferred. 

Thus, if one is willing to assume that one can interpolate between the expectations 
and variances or ranges at which skewness preferences are tested, then Theorems la 
and 2a can be used to test expectation theories. 

In addition to the interpolation-extrapolation problem there is the problem that 
the class of situations in which subjects give single-peaked skewness preferences 

has not been clearly established. Coombs and Pruitt (1960) found that about 6096 
of their subjects gave single-peaked skewness preferences (ideal skewness not 
necessarily finite). On the other hand, Slavic, Lichtenstein, and Edwards (1965) and 
Pollatsek (1966) obtained lower proportions of subjects who gave single-peaked 
skewness preferences: I1 o/0 and 30%, respectively. In Pollatsek’s experiment, range 
was held constant and in the other two, variance was held constant. 

Slavic, Lichtenstein, and Edwards (1965) hypothesized that the proportion of 
single-peaked skewness preferences in Coombs and Pruitt’s experiment was high 
only because the subjects were bored and that a less boring (i.e., more realistic) 

gambling situation would lead to more complex preferences. Accordingly, they 
attempted to manipulate boredom and found some confirmation for their hypothesis. 
Their “boring” condition approximated Coombs and Pruitt’s experimental situation 
in that the subjects were run in groups and the gambles were not actually played, 
while their “motivated” condition employed frequent playing of the gambles and 
individual running of the subjects. This manipulation is likely to be changing many 
variables other than boredom (e.g., complexity of the perceived task). Hence, the 
presence of more single-peaked skewness preferences in the Slavic, et al., “boring” 
condition than in their “motivated” condition can only be considered tentative evidence 
for their “boredom” hypothesis. 

In both the Coombs-Pruitt and Slavic, et al., experiments, preferences were tested 
only at E = 0 so that even Theorem la is not really appropriate for testing EU theory. 
However, Pollatsek’s (1966) data allow for a test of SEU theory since each subject 
was tested for his skewness preference at three values of expectation (-60$, Oe, 60~) 
and at 3 different values of range (2Oe, 40$, 60~). I f  all of a subject’s skewness 
preferences were single-peaked (finite ideal), they were considered to satisfy Condition 
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1’ of Theorem 2. Of the four subjects (out of 67) who satisfied Condition l’, only two 
had range preferences that were all monotonically increasing. There were nine other 

subjects who were close to satisfying Condition 1’ and none of them were close (see 
the following paragraph) to having every range preference monotonically increasing 
as SEU theory combined with Condition 1’ would predict. 

In using Theorem 2a to test SEU theory one can predict only that the subject should 
have monotonically increasing preference for range for gambles with expected value 

equal to zero (assuming SEU theory and Condition 1’). Each of the 11 subjects who 
violated SEU theory by the previous test had a range preference function at zero 
expected value that was essentially monotonically decreasing and therefore seriously 
in violation of SEU theory using Theorem 2a. Of course, the fact that only 13 out 

of the 67 subjects gave only single-peaked preference functions is no evidence that 
the other 54 subjects were obeying SEU theory. 

The above application of Theorems 2 and 2a to Pollatsek’s data illustrates how the 
theorems of this paper can be utilized to provide experimental tests of EU or SEU 
theory. However, the test using the above data is somewhat weak. On the positive 

side, Theorem 2a assumes only interpolation with the skewness preferences, which 
seems quite reasonable. Furthermore, the rejection of the predicted monotonically 
increasing range preference functions for 11 of the 13 subjects is unequivocal. The 
major weakness of the above test is that only four out of 67 subjects gave perfect 
skewness folding patterns and that the other 9 subjects are included as skewness 
folders even though their patterns are not perfect. Since 54 subjects did not appear 
to be folding skewness (63 subjects by a strict criterion), it is not unreasonable that 
the skewness folding patterns that obtained in the above experiment were artifacts 
of some other decision process. It follows, therefore, that the place of the psycho- 
physics of gambling framework and its implications for expectation theories will be 
clear only when the experimental conditions that produce reliable skewness preferences 

are fully understood. 

REFERENCES 

BERNOULLI, D. Specimen theoriae novae de mensura sortis. Comentarii academaie scientiarium 
imperiales petropolitanae, 1738, 5, 175-192. (T rans. by L. SOMMER in Econometrica, 1954, 22, 
23-36.) 

COOMBS, C. H., AND PRUITT, D. G. Components of risk in decision making: Probability and 
variance preferences. Journal of Experimental Psychology, 1960, 60, 265-211. 

COOMBS, C. H., BEZEMBINDER, T. G. G., AND GOODE, F. M. Testing expectation theories of 
decision making without measuring utility or subjective probability. ]ownaZ of Mathematical 
Psychology, 1967, 4, 72-103. 

EDWARDS, W. The prediction of decisions among bets. Journal of Experimental Psychology, 1955, 
50, 201-214. 

HARDY, G. H., LITTLEWOOD, J. E., AND POLYA, G. Inequulities. Cambridge, England: The 
University Press, 1934. 



234 POLLATSEK 

LUCE, R. D., AND RAIFFA, H. Games atzd Decisions: Introduction and Critical Suvwy. New York: 
Wiley, 1957. 

POLLATSEA, A. On the relation between subjectively expected utility theory and the psycho- 
physics of gambling. Michigan Mathematical Psychology Program, Technical Report, 1966, 
MMPP 66-l. Univ. of Michigan, Ann Arbor, Mich. 

PRESTON, M. G., AND BARATTA, P. An experimental study of the auction-value of an uncertain 
outcome. American Journal of Psychology, 1948, 61, 183-193. 

SLOVIC, P., LICHTENSTEIN, S., AND EDWARDS, W. Boredom-induced changes in preferences 
among bets. American Journal of Psychology, 1965, 78, 208-217. 


