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Abstract-Analytical solutions are obtained for both the radius-time relation and the rate of 
solution by diffusion of a gas bubble in plasma and whole blood with reduced hemoglobin. If 
an oxygen bubble is situated in the blood. a concentration boundary is formed in which the 
combined processes of diffusion and chemical reaction takes place. The effect of surface ten- 
sion on the bubble dynamics is also considered. Applications of the analytical results include 
the extracorporeal oxygenation of the blood and the determination of the diffusion coefficient 
in plasma and the reaction velocity constant in whole blood. 

INTRODUCTION 

THE DISSOLUTION of gas bubbles in a liquid- 
gas solution with simultaneous chemical 
reaction between the dissolved gas and the 
liquid is of concern in several problems of 
biolo@cal and physical interest. Among them 
may be mentioned the dissolution of oxygen 
bubbles in blood in extra-corporeal circulation 
during open heart surgery. and that of carbon 
dioxide bubbles in water. 

When an oxygen bubble is situated in whole 
blood the oxygen gas diffuses across the 
bubble surface into the blood and immediately 
combines with the undersaturated hemoglobin. 
Only a small fraction of the oxygen gas is 
dissolved in the plasma.. The chemical 
reaction between the oxygen and the hemoglo- 
bin takes place in the concentration boundary 
layer. which grows in thickness over the 
bubble surface. The combined processes of 
diffusion and second-order chemical reaction 
can be described by the following differential 
equation (Forster. 1964). 

9 = 5?Y[02] + k”[HbO.J - k’[O,][Hb] (1) 

where r is time. 7’ is the Laplacian operator: 

[O,]. [Hb] and [HbO,] are the concentrations 
of 0,. reduced hemoglobin. and oxygenated 
hemoglobin. respectively. The symbol X” is 
the reaction velocity constant for the dissocia- 
tion of 0, from HbO,: k’ is the reaction con- 
stant for the association of 0, and Hb to 
form HbO,. 22 is the diffusion coefficient. 
When the chemical constituents are not in 
equilibrium. a second equation is required to 
define the relationships among the reactants 
(Forster. 1964 and Gibson. 19S9). 

aCHbO,l 
at 

= --k[HbO,] + k’[Hb][O,]. (3) 

Forster (1964) has presented a compre- 
hensive survey of the literature pertinent 
to the problems of gas uptake by red cells as 
described by equations (1) and Ct. It is 
summarized as follows. 

Numerical solutions of equations (1 I and 
(2) have been obtained for several cases: 
(a) Diffusion of a liquid gas into and out of an 
infinite sheet of hemoglobin solution. the one- 
dimensional case with and without a membrane 
(containing no hemoglobin) on the surface. 
by Klug et al. (1956) and Nicolson et al. 

( 195 1). Equations ( 1) and (2) were solved by 
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numerical methods involving finite differences 
and successive approximations. (b) Diffusion 
of liquid gas into spherical and discoidal 
volumes (three-dimensional) containing no 
hemoglobin. This was done by Forster er al. 
( 1959) through the use of a digital computer. 

In this paper, the simultaneous diffusion 
and chemical reaction process is investigated 
for the case where a gas contained in a spheri- 
cal bubble diffuses into whole blood. Consider 
the whole blood as a homogeneous mixture 
of plasma and hemoglobin. and let equation 
(I) describe the diffusion of a gas from a 
bubble into the whole blood accompanied by 
chemical reaction. it is assumed that only 
the association of the dissolved gas and the 
reduced hemoglobin takes place. In other 
words, the reaction products such as oxygena- 
ted hemoglobin are constantly removed from 
the immediate vicinity of the gas bubble. As 
a result, no dissociation process occurs and 
the gas bubble is surrounded by the reduced 
hemoglobin at a constant concentration. The 
postulation is reasonable for two cases: ( I) 
When the gas bubble is situated in a moving 
blood stream. Then a relative motion occurs 
between the bubble and the blood. resulting 
from their bulk motions and the motion of the 
bubble surface due to its shrinkage. (2) During 
the initial stage of bubble collapse in the 
quiescent blood. Under the above assump- 
tion, equation (1) may be modified to the 
form 

F = 5w’[O,] - K[O,] (3) 

where K is k’[O,] and DIDr is the substantial 
derivative including both the local and con- 
vective effects on diffusion. Equation (3) 
can be solved for the concentration from which 
the bubble radius-time relationship and the 
rate of mass diffusion of the gas from the 
bubble can be determined. In plasma where 
chemical reaction is absent (K = 0). analytical 
results are general, i.e. free of the restriction 
imposed by the above postulation. 

ANALYSIS 

Consider that at the initial time a spherical 
gas bubble of radius R. is situated in plasma 
or whole blood, in which the concentration 
of the dissolved gas is uniform and equal to 
C,. Let the liquid (referring to plasma or whole 
blood) be at constant temperature and pres- 
sure. and the dissolved gas concentration 
for a saturated liquid at this temperature and 
pressure be denoted by C,. The origin of a 
spherical polar coordinate system is fixed at 
the center of the gas bubble which is at rest. 
At any time t when the bubble radius is R, 
the diffusion of the gas across the bubble sur- 
face into the liquid is accompanied by simul- 
taneous chemical reaction of first order in the 
liquid. The dissolved gas concentration C at 
a point in the liquid at a distance r from the 
origin, is governed by the diffusion equation 
(3). It is rewritten in spherical coordinates 
as 

$=$BV’C-KC (4) 

where K > 0 for whole blood, while K = 0 in 
the case of plasma. The motion of the bubble 
surface resulting from the shrinkage of the 
bubble introduces convective effects into 
the diffusion process. The convective term 
has been omitted from the LHS of equation 
(4). The resulting approximation is good so. 
long as (I) the concentration of dissolved gas 
in the liquid surrounding the bubble is much 
smaller than the gas density in the bubble. 
and (2) the region in the solution around the 
bubble through which the diffusion process 
takes place is soon much larger than the 
bubble itself. The first physical reason is 
valid especially in the presence of association 
process, while the other reason will be con- 
firmed later by numerical results. 

The appropriate initial and boundary con- 
ditions are 

C(r, 0) = c, (5) 

C(a. t) = C,, C(R. t) = C,. (6) 
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In the absence of chemical reaction, i.e. surface is 
K = 0. the solution u(r. t) of equation (4). 
subject to the conditions (5) and (61, may be K - 
solved through the introduction of the new ( ) ,+ r=I( 

= cc,-c,, 

variable 

and 

u = rcc-c,Y) 

t=r--R. 

(7) 
+&VE). (12) 

Thus. the rate of mass flow into the liquid has 
(8) the value 

The solution of the problem, which is identical 
with a familiar problem in heat conduction. is = 47rR2SYC,c - C,) 

found to be 

U(r, [) = C, _R(C.q -C=) 
I 

( 1 
x -+ e-“‘+ $$erfVE). 

RVZZ 
(13) 

Or, in dimensionless form as 
e-3AP,Sin[(r-R)hl dh (9) 

A I. C; = 47r(R*Y 

If v(r. t) is the solution for the case K = 0 -h”,’ 
and the same boundary conditions, it may be J_+e 

verified by differentiation that 
xC,*(CZ-1) R”: 

( 
~+*erfVEG 

) 

(14) 

C(r, t) = C, + K J,I e-““v(r, t’ )dt ’ + v(r, t)emx’ where 

(101 m 
m” - PeR,“’ 

-- +iJ&++ 
0- n L 

satisfies equation (4) and the boundary condi- 
tions. The substitution of equation (9) into 
equation ( 10) produces 

rk = (15) 

ar. 1) = c, + NC, - Ccc) e-KI However, the rate change of the mass of gas 
I inside the bubble is 

e --..zh~l’ sin[(r;R)hl dh 1 dm dR 
dt = 4rrR’p, dt. (16) 

R(t’ MC, - Ccc) 
I 

Hence, the equality of equation (13) and (16) 
gives the differential equation for the bubble 
radius in dimensionless form as 

-M sin[(r - R bl dh 
A 1 

The concentration gradient at the bubble 
+merf* (17) 

> 
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The last equation is integrated to yietd the 
radius-time relationship for the bubble 

1-(R*)‘=+C$(l-Cm*) 
I* ~a?.~-K’t’ 

o T 

I 
I’ 

dt”+x@ R+erfmdt” . (18) 
0 > 

Effect of surface tension on diflusion and 
bubble dynamics 

The force balance on the bubble surface 
requires that 

(19) 

where p and pg are respectively the liquid and 
gas pressures exerted on the bubble surface, 
u is the surface tension, pa is the gas density. 
n is the polytropic exponent, and the subscript 
0 indicates the physical state corresponding to 
r s 0. Let ppro be the density of the gas under 
the same conditions of pressure and tempera- 
ture. with a gas-liquid surface of zero curva- 
ture. Then the thermodynamic equation of 
state for an ideal gas gives 

P = Pam ST (20) 

where R, is the universal gas constant. M 
is the molecular weight of the gas and T is 
the liquid temperature. The combination of 
equations (19) and (20) followed by the sub- 
stitution of psu = prroMI&T yields 

where 

2fTM 

= Rap,TRo’ 

Hence, the mass of gas in the bubble is 

(21) 

(22) 

so that 

dm” 
-=47r(R*)2~a3in(l-&). (23) 
dt* 

The equality of ( 13) and (23) gives 

dR -= d(C, - C_J 
dt p@a”“( I - u*/3R”na) 

( i+--$& +gerfVXi). (34) 

When surface tension is neglected. both 
C, and pa remain constant throughout the 
entire process of bubble collapse. On the 
other hand, when the effect of surface tension 
is included, both C, and pa vary as a function 
of the instantaneous bubble size. However, it 
can be shown that their ratio C,* is not affected 
by surface tension effects. C, may be expres- 
sed as 

c, = C&$p,P (2.5) 

C, is conveniently expressed in terms of C,* 
by the relationship C, = C~C,*p,,. Equation 
(24) can now be written in dimensionless 
form as 

dR”__ D 
p(al/” -#CZ) 

dt" C+ 1 - &/3R*nLu) 

+v??erfX’m . 
1 

(26) 

Take a special case where the gas inside 
the bubble undergoes an isothermal process 
during the collapse of the bubble. This cor- 
responds to the case where n = 1 and p*: = 1 
or (Y= 1+ ir*IR”. Equations (23) and (26) 
may now be written as 

dm” - = 4a(R*)’ 
dP 

and 

dR* _=_c~ t-Ctt+(~*lR*) ‘+ e+” 
dt’ P I +J(u*/R”) R” iJ77 

+V?FerfdFF 1 (7-8) 

respectively 
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THEORETICAL RESULTS AND DISCUSSION 

An examination of equations (14). ( 18). 
(23). (26). (27) and (28) has revealed that 
(1) When the effect of surface tension is 
neglected. both the diffusion of the dissolved 
gas in the liquid and the radius-time relation 
for dissolving bubbles are functions of four 
dimensionless parameters Cz. Cz. K” and 
t”. (2) When the effect of surface tension is 
taken into consideration. both the diffusion 
and the radius-time relation become functions 
of seven dimensionless parameters C;. Cz. 
h.‘ . t’:, c)i* @‘: and II. The parameters p*: 
and tr depend on the thermodynamic process 
of the gas inside the bubble during bubble 
collapse. For an isothermal process. both 
0.’ and /r are unity and consequently only the 
remaining five parameters influence the dif- 
fusion and the bubble dynamics. It must be 
noted that because the diffusion cotfficients 
of plasma and whole blood are not available. 
that of water has been employed in the follow- 
ing calculations. 

Equation ( I 1) is numerically integrated for 
C, = 0 using a digital computer. The results 
for the concentration-time relation are gra- 
phically illustrated in Fig. I. It is shown 
in the figure that for both plasma (K” = 0) 
and whole blood (k’” = 4880, corresponding 
to K = 9.76 set-’ , LT = 3 X 10m5 cm’/sec and 
R,, = 0.1 cm for example) concentration 
boundary layers in the solution around the 

* 
” 

0 
IO 1.5 2.0 25 

DIMENSIONLESS DISTANCE ,* 

Fig. I Concentration-time relation for dissolved gas m 
whole blood tli” = 48801 and plasma (K’ = 0) for C; = (I. 

bubble through which the diffusion takes place 
become larger than the bubble itself for small 
times. This observation confirms the second 
condition under which the omission of the 
convective term in equation (4) is justified. 

The numerical results of equation (18) are 
obtained through the use of a digital computer 
for two distinct cases: The case of K” = 0 

and Cz = 0 for plasma is shown in Fig. 2 and 
the case of C,X = O-025 (corresponding to 
C, = 3.26 X 10e5 g/cm3 and pan = I -307 x IO-" 
g/cm”) and Cz = 0 for whole blood is depicted 
in Fig. 3. Figure :! indicates that the time re- 
quired for a gas bubble to dissolve completely 
in the plasma is shortened as the value of 
C; increases. i.e. as C, is increased and/or 

DIMENSIONLESS TIME t* 

Fig 1. Radius-time relation for dissolving bubbles in plasma 
(K- = 0) for C; = 0. 
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0 5 IO 15 20 
DlMENSlONLESS TIME f * 

Fig. 3. Radius-time relation for dissolving bubbles in whole blood 

for Cg = 0.025 and C: = 0. 

pU is decreased. This means that at the same 
temperature at saturation, the bubble of a 
gas with lower density may be completely 
dissolved in the plasma in less time than that 
of a gas with higher density. 

Figure 3 illustrates that as the magnitude 
of the reaction velocity constant K* is in- 
creased. the time of .complete solution of a 
gas bubble in the whole blood is shortened. 
This observation can be easily explained 
physically. Since the term -KC on the RHS 
of equation (4) signifies the existence of a uni- 
formly distributed mass sink of strength KC 
in the liquid region: the larger the value of K. 
the stronger is the strength of the mass sink 
and consequently the diffusion is enhanced. 
This results in a faster dissolution of a gas 
bubble in the liquid. 

Owing to the mathematical complication of 
equaton (26) or (28). the effect of surface 
tension on the diffusion and bubble collapse 
will be examined using an approximate soiu- 
tion obtained for large times. As indicated by 
the slope of the RX vs. t:': curves in Figs. 2 
and 3, significant diffusion takes place when 
enough time has elapsed. Consider the most 
practical case. where the gas contained in the 
bubble undergoes an isothermal process. At 
large times the term eeK”‘/fi is generally 
small and the error function is close to unity. 
Therefore, equation (28) may be approximated 

as 

___cc” 1-c2+(a*/R*) dR* 
dt* P I + gu*IR*) 

(29) 

The solution of equation (29) can be obtained 
for small values of K* (such that l/R* 9 K*) 
as 

, _(R*)z_20*(l +2C%l -R*) 
3(1 -CZ) 

+ 2((r’“)( 1+ 2CZ) ,n u*+(l_cc*) 

3(1 -CZ)z o*+_(t_C-)R” 

= 2C,*( I - C,*)P. (30) 

The resulting functions R* of equation (30) 
for u* = 1.4 x IO-” (corresponding to r = 70 
dynlcm. R o=O*lcm and pM,= 1.00140~ 
10” dyn/cm”) are compared graphically in 
Fig. 4, with the corresponding solution of 
equation (30) without surface tension. i.e. 
R* = [I-ZCZ (I-C,*)r*]"'. It is seen in the 
figure that the effect of surface tension is to 
shorten the time of complete solution. This 
can be explained by the bubble dynamics 
equation 

2J’Y-P(=)_& 
P PR’ 

In the last equation, the surface tension term 
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Fig. 4. Effect of surface tension on radius-time relation 
for dissolving bubbles in whole blood with low, K” and 

plasma for C; = 0.025 and C,^ = 0. 

has the same sign as the system-pressure term. 
indicating that the larger the surface tension 
force the faster will be the bubble collapse. 

Finally. a bubble situated in a saturated 
solution will be examined. This corresponds 
to the special case C’z = I. If surface tension 
is neglected. equation ( 18) gives R" = 1. This 
implies that a bubble of any radius would be 
stable against diffusion in a saturated solution. 
with or without chemical reaction. However, 
in reality such a bubble dissolves due to 
surface tension. The solution of equation (29) 
with CZ = I and neglect of the V’Fterm is 

1 _-(R”)“++“[] _(R”)‘] = 3@C;r*. (31) 

Therefore. the time of complete solution is 

1 
* l-tcr’” 

- 3a”:C* 
P 

(32) 

which decreases with an increase in surface 
tension o*. 
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NOMENCLATURE 

concentration of dissolved gas in liquid; C,. under 
saturated state: C,. at zero time or at a distance 
from bubble 

c/c,: c,* = c,/c, 

CJP” 
diffusion coefficient of dissolved gas in liquid 
A’ x (concentration of reduced hemoglobin) 
R,,“K/p 
reaction velocity constant for the association of 

0, and H b to form H b0, 

molecular weight of gas inside bubble 
mass of gas inside bubble 

Wllp,,R,,:’ 
polytropic exponent 
liquid pressure 
gas pressure inside bubble: ppl,. at zero time 
bubble radius: R,,. at zero time 

RI% 
universal gas constant 
distance from the center of spherical bubble 

r/R,, 
liqutd temperature or system temperature at zero 

time 

time. 

Greek letters 

Q px+ux/RX 
p liquid density 

pp density of gas inside bubble: p,“). at zero time; ppx. 
under the same conditions of pressure and temper- 
ature with a gas-liquid surface of zero curvature 

Pk. PPJPUi 
cr surface tension 

LT” ‘o/(R,,p,,). 

Subscript.> 

0 r=O 

I( gas 
s saturated value. 


