
Acta Psychologica 35 (1971) 15-28 ; 0 North-Holland Publishing Company 
Not to be reproduced in any form without written permission from the publisher 

A TEST OF VE-THEORIES OF RISK AND 

THE EFFECT OF THE CENTRAL LTMIT THEOREM 

CLYDE H. COOMBS and JAMES N. BOWEN 

The University of Michigan, Department of Psychology, Ann Arbor, Mich. 48104, U.S.A. 

AESTRACT 

There are several theories of risk which indicate that risk could be a function only 
of variance and expectation. A transformation on odds or skewness was constructed 
which left the variance and expectation of a gamble unchanged. Perceived risk was 
clearly a function of this transformation as well as variance and expectation, even 
under multiple play in which the effect of the central limit theorem modifies the effect 
of skewness but it remains a relevant variable. 

COOMBS and HUANG (1970) investigated the structure of perceived 

risk by proposing that certain transformations defined on gambles 

induce corresponding subjective transformations on the perceived risk 

of those gambles. They further proposed that the conjoint effect of those 

subjective transformations would have a particular polynomial form. This 

theory was tested by conjoint measurement methods (KRANTZ and 

TVERSKY, 1970), using two-outcome gambles of the form g = (JJ, p, z), 

in which the outcome y occurs with probability p otherwise z, y, 3 z. 

The transformations on gambles which were used in the study were 

a(g)= (Y+ 6 l/&z-4, (1) 

b(g) = (v + b, l/Z z + b), (2) 

c(g) = cv, l/&z) @), (3) 

where a and b are amounts of money and c is a non-negative integer 

indicating the gamble is played c times independently. 

The transformation u(g) E A preserves expectation but directly in- 
_____ 
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creases variance, expected loss, expected regret, the maximum loss, 

with any of which perceived risk might increase monotonically. 

The transformation b(g) E B increases expectation and such changes 

as it makes in other variables would also tend to decrease perceived risk. 

The transformation c(g) E C tends to multiply the joint effect of u(g) 

and b(g). 

The theory proposed was that corresponding to the transformations 

u(g), b(g), and c(g) on a gamble there existed corresponding subjective 

transformations LY, p, and y on the perceived risk of the gamble, and 

that theirjoint effect was given by the so-called distributive model: 

where R(g) is the riskiness of the gamble. The experimental results sup- 

ported this polynomial over certain other alternative polynomials. 

POLLATSEK and TVERSKY (1970) then provided an axiomatic theory of 

risk and showed that the above polynomial is compatible with it. One 

of the results of their axioms is that risk is a linear function of variance 

and expectation. The proof of this rests heavily on the central limit 

theorem which says that the probability that the outcome of any gamble 

will be in any given interval approaches that of a normal distribution 

with the same mean and variance, as n, the number of times the gamble 

is convoluted with itself (e.g., played n times independently), approaches 

infinity and the outcomes are resealed by multiplying by l/In. Given 

this result and the fact that a normal distribution is completely charac- 

terized by its mean and variance those two parameters-must be sufficient 

to measure the riskiness of a gamble that is not a normal distribution 

provided continuity exists in the risk function, which Pollatsek and 

Tversky assume. 

This result implies that transformations on gambles which do not 

change a gamble’s variance and expectation will leave their risk order 

invariant. An obvious possibility to be investigated is to change the 

probability and at the same time make corrective changes in the variance 

and expectation, so that only the odds are changed. For gambles of the 

form g = (a, l/2, -a), which have expectation zero and variance ~2, the 

transformation : 

Ad = @C’dP~ PI - allpl9) (5) 

where p(g) E P and 0 < p < 1 will change the odds or skewness and will 

leave the expectation and variance unchanged. The further transforma- 
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tions b(g) and c(g) may then be performed. If this transformation p(g), 

does not leave the risk order invariant, then the odds make a contribu- 

tion to perceived risk with variance and expectation held constant. 

If this transformation is found to be relevant to perceived risk then it 

is of interest whether or not the effect can be captured by a simple change 

in the polynomial of eq. (4). Also if this p(g) transformation is a relevant 

variable, then one can independently test the effect of the central limit 

theorem by comparing the effect of skewness on perceived risk at two 

levels of C. 

1. METHOD 

1.1. Subjects 

The Ss were paid student volunteers at the University of Michigan, 

18 men and 9 women. Each S was run individually. 

1.2. Design 

One set of games was generated in a 3 x 3 x 3 matrix by independently 

varying expected value, variance, and probability of winning. The three 

levels of probability used were l/4, l/2, 314. The games at p = l/2 under 

single play (c = 1) are presented in table 1 in dollars as units. 

TABLE 1 

Games for p = l/2, c = 1. 

(4.00, l/2, -4.00) / (4.40, l/2, - 3.60) / (4.80, l/2, -3.20) 

b=O b’=40 

B 

b” = 80 

To generate the games for the other levels of P, the transformation p(g), 
(eq. (5)), was used on the games in the first column in table 1 and then the 

b(g) transformation was applied to obtain the other two levels of expec- 

ted risk. 

The games at p = l/4 and at p = 314 are presented in tables 2 and 3 

respectively. 
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a*= 4.00 

A a’= 3.00 

a = 2.00 
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TABLE 2 

Games for p = l/4, c = 1. 

(6.90, l/4, - 2.30) (7.30, l/4, - 1.90) (7.70, l/4, - 1.50) 

(5.19, l/4, - 1.73) / (5.59, l/4, - 1.33) ~ (5.99, l/4, - .93) 

(3.45, l/4, - 1.15) / (3.85, l/4, - .75) 1 (4.25, l/4, - .35) 

b=O b’ = 40 

B 

TABLE 3 

Games for p = 3/4, c = 1. 

b”= 80 

a”= 4.00 (2.30, 3/4, - 6.90) ~ (2.70, 3/4, -6.50) ~ (3.10, 3/4, -6.10) 

A a’= 3.00 (1.73, 3/4, --5.19) j (2.13, 3/4, -4.79) / (2.53, 3/4, - 4.39) 

a = 2.00 (1.15, 3/4, - 3.45) ( (1.55, 3/4, - 3.05) ( (1.95, 3/4, - 2.75) 

b=O b’ = 40 b”= 80 

B 

This set of 3 x 3 x 3 games is called the single play set. A second set 

of games was generated from the first set by a multiple play transfor- 

mation (y, p, z) CC), with C = 24. 

1.3. Stimuli 

The games were printed on cards and embedded in laminated plastic. 

The manner in which single play games were displayed is illustrated 

in fig. 1. 

P’S P$ P=S 

Fig. 1. Types of display for single play games. 

The multiple play games were presented as 25outcome games, each to 

be played once, and displayed in two ways to the Ss. On one side of each 

stimulus card was a graph of the appropriate discrete probability distri- 

bution over money; on the other side was a list of the 25 possible out- 
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Fig. 2. One side of a stimulus card. 

TABLE 4 

The other side of a stimulus card. 

Outcome Probability 

$ 50.60 0.001 
43.70 0.007 

36.80 0.031 

29.90 0.075 

23.00 0.132 

16.10 0.175 

9.20 0.185 

2.30 0.160 

- 4.60 0.113 

- 11.50 0.067 

- 18.40 0.033 

- 25.30 0.014 

- 32.30 0.004 

- 39.10 0.0013 

- 46.00 0.00035 

- 52.90 0.000077 

- 59.80 0.000015 

- 66.70 O.OOOOO23 

- 73.60 o.OOOOoO3 

- 80.50 oBOOoOOO3 

- 87.40 O.oooooooO26 

- 94.30 o.ooooooooo17 

- 101.20 o.ooooooooooo75 

- 108.10 O.oooooooooooO23 

- 115.00 o.oooooooooooooo3 
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comes with their respective probabilities. Examples of the two sides of a 

stimulus card are given in fig. 2 and table 4 in which the single play game 

from which this multiple play game was generated was (2.13, 3/4, -4.79). 

Outcomes with very low probability were suggested by the broad base 

in the figure. On the actual stimulus card the distribution was drawn in 

red. The S, of course, was informed that the actual outcomes and pro- 

babilities were displayed on the reverse of the card. 

1.4. Procedure 

Each S came for three sessions. During the first session, the S rank 

ordered each set of games in terms of their perceived riskiness. A coin 

toss determined which set was ranked first. The second and third sessions 

were a replication of the first. The following version of a method of ac- 

cumulation was used to obtain the rank orders: The S was presented with 

three games, selected for easy discrimination, and told to order them 

according to how risky they appeared. A fourth gamble, randomly 

selected, was then presented and S was told to place it relative to the first 

three. A fifth game was then placed relative to the first four, etc., until all 

27 games were ranked. The S was then asked to check the final ordering 

and to correct any errors of judgment he might have made. 

In judging the multiple play set of games, S was free to use either or 

both sides of the stimulus card. 

2. RESULTS 

2.1. Consistency 

The Ss were rank ordered in consistency based on their average T 

between the three replications on each set of stimuli. Hence, the Ss were 

ranked in consistency on the set of single play games and independently 

ranked in consistency on the set of multiple play games. The t coefficient 

between these two rankings in consistency was itself 0.339. This low 

correlation led us to keep the consistency orderings distinct for the two 

sets of games. In certain further analyses below, then, Ss are divided into 

three subgroups of nine Ss in each, H = highest consistency, M = me- 

dium consistency, and L 3 lowest consistency, based on their consistency 

ranking on the set of single play games and again based on their consist- 

ency ranking on the set of multiple play games. 

The average t for each subgroup for each of the sets of games is given 

in table 5. 
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TABLE 5 

Consistency level (?) of each subgroup for each set of stimuli. 

Subgroup 
H M L Total group 

c= 1 0.922 0.763 0.340 0.678 
c = 24 0.866 0.719 0.478 0.688 

2.2. Eflects of odds 

If the effect of a transformation from the set P is irrelevant to perceived 
risk or relevant but independent of the effect of variance and expectation, 
then the ordering induced on A x B with the levels of P and C fixed should 
be independent of the level of P (cf. KRANTZ and TVERSKY, 1970; COOMBS 
and HUANG, 1970). Furthermore, the ordering induced on P with the 
levels of A x B and of C fixed should be degenerate if P is an irrelevant 
variable or should be invariant over the levels of A x B if the contribution 
of P is independent of the joint effect of A x B. 

These scale-free tests permit us to diagnose whether the effect of the 
change in probability has been emasculated by the corrective changes in 
variance and expectation or whether, if an effect persists, it is independent 
of the effect of variance and expectation. 

Following the notation introduced in COOMBS and HUANG (1970) 
A x B; P: c=l sign&s a test of whether the ordering induced on A x B 

with P and C fixed (C fixed at c= 1) is independent of the level at which P 

is fixed. 
To make this test requires comparing the orderings of S of the games in 

each of the three tables (tables 1,2 and 3), i.e., three orderings of nine 
elements. We used as the criterion level for judging whether a test was 
satisfied the average z that would be obtained if there were exactly one 
pairwise reversal in one of the orderings of nine elements, here a Z of 
0.852. 

The number of Ss who satisfy each of the tests at the indicated criterion 
level are given in table 6. 

Lowering the criterion level for the tests of the independence of A x B 

with respect to P from exactly one pairwise reversal in one of the orderings 
to exactly three independent pairwise reversals in one of the orderings 
lowers 7 to 0.889 but makes no essential change in the results: the 5, 2,0 
in the first column become 6, 3,0 respectively, and the 0, 0, 0 of the 
second column become 1, 0,O for the H, M, and L subgroups. 
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TABLE 6 

Tests of the independence of A x B and P. 

AxB;P:c=l AxB;P:c=24 P;AxB:c=l P;AxB:c=24 

t > 0.963 ? b 0.963 f > 0.850 t 3 0.850 

Test * 

H 5 0 9 9 

M 2 0 7 9 

L 0 0 6 7 

Total 7 0 22 25 

* Cell entries are the number of Ss out of niue who satisfy the test. 

The first two tests in table 6 indicate that P is still a relevant variable 

in spite of having no effect on variance and expectation, especially under 

multiple play. This is confirmed by the last two tests in table 6 which 

indicate that the contribution of the P transformation to pereived risk 

is independent of the contribution from the joint effect of A x B. 

2.3. Test of the effect of the central limit theorem 

Table 7 contains the mean rank of the nine games at each level of P 

and C for each S. The mean rank of the 27 games at each level of C is, of 

course 14, so the sum of each row of the table is a constant 42. At each 

level of C the mean absolute deviation about 14 was calculated and 

these two quantities were compared for each S. The larger this deviation 

the greater the effect of the P transformation on risk. 

The mean absolute deviation was greater for c= 1 than for c= 24 for 23 

of the 27 Ss. A sign test for matched pairs yields a z = 3.46 which is sig- 

nificant (p < 0.001). This result is consistent with the notion that multiple 

play assuages the influence of probability on risk perception. 

In addition to the general effect of multiple play on the influence of 

skewness on risk there is within the subject an effect that is independent and 

which is of interest for descriptive purposes primarily. At c= 1 odds for 

or against may differentially effect risk and then multiple play may have a 

further differential effect. We shall speak of a game with p=3/4 played 

once or the same game under multiple play as a negatively skewed game 

(see fig. 2 for an example). Similarly a game withp= l/4 or a game genera- 

ted from such a game will be spoken of as a positively skewed bet. 

The basic data are presented in table 8. As may be seen, at single play 

about two-thirds of the Ss regard unfavorable odds as riskier (with ex- 
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TABLE 7 

Mean rank * of the nine games at each level of P and C for each S. 

S# c P S# 
314 l/2 l/4 

c 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

1 
24 

1 

24 

1 
24 

1 

24 

1 

24 

1 

24 

24 

24 

24 

24 

24 

24 

24 

1 

24 

10.78 16.67 14.55 

16.67 14.33 11.00 

12.44 18.56 11.00 

14.11 12.11 15.78 

14.77 16.88 10.35 

17.00 14.00 11.00 

6.00 15.00 21.00 

13.44 14.00 14.56 

5.00 14.00 23.00 

19.90 13.44 8.66 

23.00 14.00 5.00 

11.00 8.33 22.67 

23.00 14.00 5.00 

15.00 14.44 12.56 

5.00 14.00 23.00 

13.11 15.55 13.33 

10.33 17.00 14.67 

17.33 14.55 10.12 

20.89 12.33 8.78 

14.67 14.55 12.78 

19.44 14.33 8.23 

14.55 13.89 11.56 

5.00 16.56 20.44 

14.22 12.56 15.22 

5.00 14.00 23.00 

17.78 16.11 8.11 

16.88 14.55 10.57 

13.00 13.67 15.33 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

24 
1 

24 

24 

24 

24 

24 
1 

24 

24 

24 

24 

24 

24 

1 

24 

P 

314 l/2 

13.00 14.00 

20.67 13.33 

21.56 14.56 

16.22 15.11 

5.00 16.33 

14.44 15.56 

5.00 14.00 

15.44 14.56 

5.00 14.00 

23.00 14.00 

5.00 14.00 

15.67 14.78 

17.78 15.33 
18.22 14.22 

5.00 16.00 
15.33 14.89 

5.00 14.00 

22.44 14.33 
5.00 14.00 

14.67 16.56 

5.00 14.00 

12.77 13.44 
11.33 15.00 
16.22 14.78 
14.44 16.88 

16.44 14.33 

l/4 

15.00 
8.00 

5.88 

10.67 

20.67 

13.00 

23.00 
12.00 

23.00 

5.00 

23.00 

11.55 

8.89 

9.56 
21.00 

11.78 

23.00 
5.23 

23.00 

10.77 

23.00 
15.79 

15.67 

11.00 

10.68 

11.23 

* The higher the rank the riskier the game. 

pectation and variance controlled) but under multiple play this relation 

appears not to hold and may even be reversed. There are only 7 Ss (the 

main diagonal) for whom the relation of risk to skewness is the same 

under single and multiple play. For 20 of the Ss this relation was reversed. 

A count made from table 7 indicates that there were 21 Ss for whom 

negative skewness got relatively riskier under multiple play as against 

only 10 for whom positive skewness got relatively riskier. There were 
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TABLE 8 

Effect of multiple play on the relation of skewness to perceived risk. 

Multiple play 
(c = 24) 

Negative skewness Positive skewness 
riskier than riskier than 

positive skewness negative skewness 
__- -.__ 

Negative skewness riskier 
than positive skewness, 
(favorable odds riskier) 2* I 9 
Positive skewness riskier 
than negative skewness, 
(unfavorable odds riskier) 13 5 18 

15 12 

* Number of Ss. 

also four Ss, for whom the effect of multiple play was to make any skewed 

games riskier relative to the effect on symmetric games. 

These relations could reflect inherent interactions which the methods 

of conjoint measurement are well suited to test. This analysis is dis- 

cussed next. 

2.4. Diagnostic properties for polj nomials 

It might be conjectured that the four variables with which this study 

is concerned, A, B, P and C induce four corresponding transformations 

on perceived risk whose joint effect can be represented by a simple poly- 

nomial, a simple polynomial being one obtained by either the successive 

addition or multiplication of the four variables in some sequence. 

There are, altogether, 48 possible polynomials of that kind and this 

study is too limited for complete diagnosis by conjoint measurement 

methods, particularly in view of the possibility that one of the variables 

(p) may generate sign-dependencies. It is possible, however, to draw some 

inferences so the results of the tests that could be made are presented 

here in tables 9 and 10. 

The tables report the number of Ss out of a possible nine in each cell 

who satisfy the test in question at the level indicated by the Z at the top 

of each column. The higher ? reflects exactly one pairwise reversal in one 

ordering of the three orderings of 5 elements. The lower ? reflects exactly 
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TABLB 9 

Tests* of diagnostic properties for polynomials under single play, c = 1. 

Interplane tests 

AxB;P P; AXB AXP; B B; AxP BxP; A A; BXP 

f> %> r> t> f> i> rg3 f> t> 

0.963 0.889 0.852 0.963 0.889 0.852 0.963 0.889 0.852 
______ 

H 5 6 9 7 8 6 1 6 I 

M 2 3 7 1 5 6 0 2 6 

L 0 0 6 0 0 1 0 0 1 

Total 7 9 22 8 13 13 1 8 14 

Intraplane tests 

A;P:B P;A:B A;B:P B;A:P B;P:A P;B:A 

t > 0.852 t > 0.852 f 2 0.852 5 > 0.852 t > 0.852 % > 0.852 

H 7 9 9 6 7 9 

M 6 7 7 6 6 7 

L 1 6 1 1 1 6 

Total 14 22 17 13 14 22 

* Cells report the number of Ss out of nine who satisfy the test in question at the 
level indicated. 

three independent pairwise reversals in one of the three orderings on nine 

elements. 

Because our fourth variable, C, is represented at only two levels and 

there are no data on orderings induced on C we will only examine the 

simple polynomials involving the functions corresponding to the 

transformations A, B, and P. These models in three variables are as fol- 

lows : 

rl + 12 + r-3 additive model, 

(rl + r2)rs distributive model, 

rv2 + r3 

nr2r3 

dual distributive model, 

multiplicative model. 
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TABLE 10 

Tests* of diagnostic properties for polynomials under multiple play, c = 24. 

Interplane tests 

AxB;P P;AxB AxP;B B;AxP BxP;A A;BxP 

f> 5 --> 5, 73 s> f_> ig? f > t, - ‘.> ?I2 

0.963 0.889 0.852 0.963 0.889 0.852 0.963 0.889 0.852 

H 0 1 9 1 6 3 1 4 2 

M 0 0 9 0 2 3 1 3 1 

L 0 0 7 0 2 5 0 2 2 

Total 0 1 25 1 10 11 2 9 5 

Intraplane tests 

A;P:B P;A:B A;B:P B;A:P B;P:A P;B:A 

f> 0.852 t> 0.852 f> 0.852 %> 0.852 f> 0.852 f> 0.852 

H 3 9 2 2 2 9 

M 1 9 1 3 3 9 

L 4 7 2 5 5 -I 

Total 8 25 5 11 11 25 

* Cells report the number of Ss out of nine who satisfy the test in question at the 
level indicated. 

For simplicity of exposition we shall use the letters A, B, C, and P in 

particular polynomials to represent the subjective functions on perceived 

risk induced by the corresponding mathematical transformations on 

games. 

If a single variable is mutually independent with the joint effect of 

the remaining variables it is called semiadditive. We see from table 9 that 

B x P is not independent of A at a stringent level (only 1 S out of 27) and 

even at a weaker level only about 30 % of the Ss (8 out of 27) satisfy 

independence so we conclude that B x P and A are not mutually indepen- 

dent and so A is not semiadditive. 

The additive model requires that each of the three variables be semi- 

additive so it may be rejected. There remain the possibilities th. there 

are two, one, or zero semiadditive factors. 

If there are exactly two semiadditive fC ors then none of the four 

models is possible. 
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If there is exactly one it must be P or B. If B is the semiadditive factor 

then AP + B or (A+P)B are possibilities. In either case A and P should 

be mutually interdependent and we see from the bottom half of table 10 

that this appears to be the case. 

If P is the semiadditive factor then AB + P or (A + B)P are possibili- 

ties. In either case A and B should be mutually independent and we see 

from the bottom half of table 9 that they appear to be. 

If there are no semiadditive factors then the distributive and the mul- 

tiplicative model are possibilities. The multiplicative model may be 

rejected because every factor must be at least mutually sign-dependent 

and, as noted in rejecting the additive model, A does not satisfy this 

condition. For the distributive model with no semiadditive factors there 

must be exactly one which is at least mutually sign-dependent and the 

remaining pair must be mutually independent. For these three variables, 

then, with C fixed at c= 1 the three polynomials that are not clearly 

eliminated are AP + B, (A + B)P, and AB + P. 

If we turn to table 10, with Cfixed at c = 24 it is clear that there are no 

semiadditive factors, so only (A + B)P remains a possibility. But then A 

and B must be mutually independent and the bottom half of table 10 

(columns 3 and 4) leaves that prospect very suspect. 

3. DISCUSSION 

It is clear from this experiment that varying the odds without changing 

the variance or expectation still causes substantial changes in perceived 

risk. As a consequence any theory that requires risk to be a function 

solely of variance and expectation is violated. We note that the effect of 

odds is especially marked under multiple play. 

It should be pointed out that the substantial effect observed here of the 

central limit theorem on perceived risk is obtained under display condi- 

tions in which the distribution obtained under multiple play is explicitly 

presented. Whether these same results would have been obtained if a 

2-outcome game were presented with the information that it was to be 

played 24 times is in serious doubt. In the case of a few Ss, after the 

experiment was concluded, some pairs of 2-outcome games were presen- 

ted and S was asked to judge which was riskier if the games were to be 

played 24 times. Almost invariably the Ss responded the same as they 

did to the games under single play. This is very clearly not what happened 

when they were presented with complete information about the effect of 

playing 24 times. 
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Such a difference could reflect a failure in mental arithmetic, uninform- 

ed biases, or a real psychological difference in perceived risk in that if 

it can happen all at once it has a different riskiness than if it happens in 

successive stages like a random walk. 

If all simple 4-variable polynomials are rejected there are at least two 

possibilities to consider. One possibility is that the effect of a given 

mathematical transformation on a game may be mediated by more 

than one psychological transformation on risk. For example, the effect 

of the transformation P may be mediated by one function interacting 

with that for the A transformation and another function interacting 

with that for the B transformation, say P’ and P”, in which case the poly- 

nomial could take the form AP’ + BP”, a form not tested in this ex- 

periment. 

A second possibility is that the transformation P utilized here is not 

the one best suited for combining with A, B, and C in a simple poly- 

nomial. Alternative transformations which effect neither expectation nor 

variance or exactly one could be more suitable for the purpose. 

(Accepted September.14, 1970.) 
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