
Acta Psychologica 37, 375-392. Q North-Holland Publishing Company 1973 

DEPTH OF VISUAL INFORMATION PROCESSING* 

Irwin POLLACK 
University of Michigan, Ann Arbor, US.A. 

The depth of visual information processing is identified with the longest randomly-generated 
binary-encoded spatial pattern whose partial repetitions can be detected. In contrast with the 
auditory detection of sequentially-presented constraints, the depth of perceptible visual encod- 
ing of spatially-presented constraints is sharply limited. Depths of about 35 were achieved for 
one-dimensional constraints; depths of perhaps 3 or 4 were achieved for two-dimensional con- 
straints imposed in only one direction and depths of perhaps 2 for two-dimensional constraints 
imposed in two directions. With one-dimensional constraints, it is shown that the inferred depth 
of processing is partially determined by the number of pattern representations and by the 
spatial distance between successive representation for visual displays of fixed size. 

1. Introduction 

Julesz ( 1962) has suggested an operational measure for defining the 
depth of visual information processing: depth of processing is identified 
with the largest random signal whose partial periodicities can be de- 
tected. In determining the depth of temporal processing, for example, 
one seeks to determine the longest random sequence for which observ- 
ers can identify repetitions of the random sequence from independently 
determined random sequences. Discrimination breaks down for audito- 
ry random noise sequences of l-4 set (Guttman and Julesz 1963; 
Julesz and Guttman 1963). Comparable experiments have not been 
reported in vision, but preliminary research indicates a comparable du- 
ration of 250-500 msec for two-dimensional random-dot visual pat- 
terns. 

* This research was supported in part by Grant GB 14036X of the National Sciences Founda- 
tion. The writer is indebted to Mrs. Nancy Mandell for supervising the experimental tests; to 
Lon Radin for the PDP-81 computer program; to Don Mayer for an extension of the 81 program 
to the extended display format and to distributed patterns; to Louis Wojnaroski for the PDP-9 
computer program; to Robert Shea for processing the experimental results; and to Kenneth 
Bachman for developing high-speed plotting hardware for the PDP-9. 
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The depth of spatial processing may be similarly defined. Here one 
seeks to determine the largest random visual pattern for which observ- 
ers can identify repetitions of the random visual patterns from inde- 
pendently determined patterns. With partial repetition - rather than 
exact repetition - Julesz (1962) showed that the discernible depth for 
spatially-encoded displays in one dimension was only 3 or 4 elements of 
the random sequence. Specifically, Julesz employed a procedure devel- 
oped by Rosenblatt and Slepian (1962) which controls the probability 
of a parity sum over y1 successive elements. In this method, constraints 
are absent within n successive elements; constraints are imposed be- 
tween elements y1 units removed from each other. The Rosenblatt- 
Slepian procedure, however, required encoding of display elements into 
more than two states for higher-order sequences, and Julesz employed 
several levels of brightness for encoding. Perhaps the estimate of the 
depth of spatial processing was restricted by the requirement of multi- 
level brightness encoding. Might we achieve higher discriminable depths 
with binary-coded displays? 

A related procedure of distributing statistical constraints, which is 
applicable to binary-coded elements, was developed by Smith (1954). A 
set of y1 sub-sequences, each k units long, is developed, each with the 
same sequential repetition probability. The independently-derived y1 se- 
quences are then interfolded into each other. The first y1 elements of 
the merged sequence consist of the first element of each of the n 
sub-sequences; the second y1 elements of the merged sequence consist of 
the second element of each of the y1 sub-sequences,... the k-th y1 ele- 
ments of the merged sequence consist of the k-th element of each of 
the y1 sub-sequences. As in the Julesz procedure, the discernible depth 
of processing, ~1, can be identified. Tests in audition (Pollack 1969) 
show that the upper limit upon y1 is reached by the capability of dis- 
crete sequence generators before the ear’s limit can be discerned. 

The present tests explore the upper limit on the descernible depth of 
spatial enfolding for visual displays. In particular, we shall identify the 
depth of information processing with the largest randomly-generated 
pattern for which pattern-repetitions can be detected. 
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2. Method 

311 

2.1. Preliminary informal tests 

Random dot patterns consisting of dots and non-dots were drawn upon 28 X 34 cm paper 
sheets by a computer printer. The probability of a dot at each position of an imaginary 50 X 80 

grid was 0.5; the column density was 2.5 position/cm and the row density was 4 positions/cm. 
Observers viewed a large display consisting of 16 separate sheets, arranged in two rows of 8 

patterns each. One row consisted of the same random pattern on 8 adjacent sheets; one row 

consisted of 8 independent patterns on 8 adjacent sheets. The subject’s task was to respond 
which one of the two rows employed the repeated pattern. The patterns were initially viewed 

from a distance of 10 meters. The subject was instructed to walk toward the display until he 

could identify the row of repeated patterns. 

Typical behavior was to approach the displays closely until some unusual local feature was 

identified upon a single sheet and then to test whether that feature was found on adjacent 

sheets. That is, the problem was solved by deliberate analysis; the periodicities did not stand 

out in immediate experience. The data do indicate, however, that with slow, deliberate analysis, 
exact repetitions of a large random pattern can be perceived. Therefore in the main tests, partial 

periodicities were introduced to random patterns. Thresholds were defined in terms of the 

degree of repetition required for a fried level of performance. 

2.2. One-dimensional constraints 

2.2.1. Generation of sequences 
One-dimensional Markov spatial constraints were generated by controlling the conditional 

repetition probability of binary-encoded sequences, P(AIA). Such sequences, when converted to 

displays of dots and no dots, yield long unbroken sequences of dots and of no dots at high 

P(AIA) levels, as seen in the upper left corner of fig. 1, and yield rapidly alternating sequences 

of dots and no dots at low P(AIA) levels. The average run length of identical elements within 

such sequences is l/[ 1 - P(AIA)] . 
Consider a folded Markov sequence, initialized by an unconstrained random sequence of IV 

elements, and laid down as the first row of a display of width IV. Each element of the initial 

random sequence becomes the initial element of a constrained sequence, to be determined by 

P(AI.4) in successive columns. For example, if the initial element was a dot, at high P(A4) 
levels, a sequence of dots would tend to be generated; if the initial element was a space, at low 

P(AI.4) levels, a sequence of spaces and dots, starting with a space, would tend to be generated. 

If each element of the initial random sequence heads one column of the display, the several 
constrained sequences would appear as vertical columns of the display. 

The method is illustrated for a 4 X 4 matrix in the fist line of table 1 for D = 1. An initial 

unconstrained’binary-coded random sequence is laid down in positions a, b, c, d. Each binary 
element in positions a, b, c and d becomes the starting element of a sequence which is con- 
tinued by POIIA). The first constrained sequence is laid down in positions a, e, i, m; . . . the 
fourth sequence is laid down in positions d, h, Z, p. 
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Fig. 1. Examples of one-dimensional and two-dimensional enfolded Markov constraints. Under 

each display is the depth of folding (top and bottom lines) or the slant (middle lines). The 

associated P(AIA) or P(S,) level is shown in parentheses to the left of the displays. Displays 

with 1-D constraints were developed in a 60 X 60 matrix; displays with 2-D constraints were 

developed on a pair of 32 X 32 matrices, the top matrix was set at P(S,) = 0.9999 and the 

bottom at P(S,) = 0.5. Differences in photographic density and size were not present in original 

displays. 

Table 1 

Illustration of derivation of folded Markov sequences. 

Matrix 

positions D S 

Initial Examples of 

random sub-sequences 

abed 1 0 

efgh 2 0 

ij kl 1 1 

mnop 2 5 

a-d aeim,dhIp 
a-h ai,dI,em,hp 
a-e afkp,ejo-d 
a-i a j, e n, d-i, h-m 
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2.2.2. Depth 
Consider now a folded Markov sequence, initialized by an unconstrained random sequence 

of DW elements, where D is an integer, n, and laid down as the first D rows of the display of 

width W. Again, each initial element is associated with an independently generated sequence. 

Successive elements within the same sequence are derived according to P(AIA), but are spatially 

separated by (D-l) independently derived elements. For example, when D = 2W, within any 
given column, elements in the odd rows represent one generating sequence; elements in the even 

rows represent another; and, elements in the odd rows are independently derived from elements 
in the even rows. The method is illustrated for a 4 X 4 matrix in the second line of table 1 for D 
= 2. The initial unconstrained random sequence is laid down in positions a through h. Each of 

these positions heads up a constrained sequence, e.g. ai,... dl, em...hp. The variable D will refer 

to the depth of encoding of one-dimensional constraints. Examples of various depths of encod- 
ing of one-dimensional constraints upon a 60 X 60 element display are given in the top line of 

fig. 1 for &#A) = 0.80. 

In anticipation of the results, it should be noted that there are several effects of varying D. 
First, since the number of constrained elements is the width of the display (W) times the length 

CL.1 minus the initial randomizing sequence, the total number of constrained elements is 

(L-D)W. Variation in D is inconsequential for D<<L. More important is that the number of 

display elements within each constrained sequence, including the initializing element, is L/D; 
and the total number of independently generated sequences contributing to the constraints is 
DW. 

2.2.3. Introduction of noise 
Noise was introduced in the form of unconstrained random sequences, P(_4IA) = 0.5, into 

the displays. Had random elements, rather than random sequences, been introduced, the tar- 

getted P(AlA) levels would simply have been modified. The introduction of 50% random 
elements into a display with P(plA) = 0.70, for example, leads to a display with P(AL4) = 
0.5(0.7) + O.S(O.5) = 0.60. The introduction of 50% random columns into a display permits 0 

to filter the constrained from the unconstrained sequences. In table 1, such a display might 

consist of random sequences at positions a-m and d-p, and, constrained sequences at positions 

b-n and c-o. 
The positions of the unconstrained sequences were randomly chosen. Unconstrained se- 

quences, therefore, have several effects: they displace constrained sequences from the display; 

they break up adjacent clumps of constrained sequences, and they hide or mask the presence of 

constrained sequences. 

2.2.4. Slant 
We now turn to a related variable, slant, s. Consider a folded Markov sequence, initialized by 

an unconstrained random sequence of (W+s) elements, where s is a small integer when com- 

pared to W.. The sequence is laid down in a display of width W. Each initial element is again 

associated with an independently generated sequence by means of P(AIA). Elements of the 

same sequence are plotted in different columns. For example, an initial random sequence of 6 1 

units is laid down in the top row of a display of 60 columns, with the 61st element laid down in 
the first column of the second row. The second random sequence of 61 elements is laid down in 
the remaining 59 columns of the second row with the 60th and 61st elements laid down in the 

first two columns of the second row... In this way, one sequence is laid down upon the diagonal 
elements of a square matrix, and other sequences are laid down parallel to the diagonal element. 

In general, the slant s, = AW/AL. The method is illustrated for a 4 X 4 matrix in the third line of 
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table 1 for D = 1, s = 1, i.e., with the initial sequence a-e of 5 units with a display of width 4. 

Only the diagonal sequence is unbroken; all other sequences are broken, e.g., e, j, o and d. 
Slant may also be combined with depth by employing initializing sequences of length 

D(w+s). The method is illustrated for a 4 X 4 matrix in the fourth line of table 1 for D = 2, s 
=0.5. Examples of various slant levels for the 60 X 60 display are given in the second line of fig. 
1. The first three displays represent P(AIA) = 0.20; the last two represent PQlI.4) = 0.80. 

In anticipation of the results, it is noted that the effects of slant are different from simply 

turning vertically generated constraints to the appropriate slant angle. Even without the depth 

variable added to the slant variable, the effects of slant parallel those of depth. For a slant of 1, 

for example, only the diagonal sequence is of length W, when W = L!andoff-diagonal sequences 

become shorter and shorter so that the average length of slanted sequences is W/2. In general, 
the average length of slanted sequences is W/( l+s). 

2.2.5. Procedure 
Displays were painted on the face of a Tektronix 601 display equipped with a P4 storage 

tube. Natural binocular viewing was employed. The distance to the display was controlled by 0 

for maximal comfort, but averaged about 50 cm. The inter-dot separation was 0.77 mm be- 

tween successive columns and 0.83 mm between successive rows. Four 60 X 60 matrices were 

presented in a 2 X 2 array. Three of the four matrices obeyed a reference constraint level, 

&-llA)~; one obeyed a variable constraint, P(AIA)JJ. The position of the odd display was 

randomly varied. The task of 0 was to indicate the position of the odd matrix. An adaptive 

stimulus programming procedure (Taylor and Creelman 1967) varied P(AIA), to converge 

upon 50% correct in the four-alternative, forced choice (4AFC) test. The duration of the 

display was determined by 0. He was encouraged to respond quickly by means of instructions 

and by an incentive schedule based upon the number of completed thresholds. A PDP-81 

computer generated the displays and executed the adaptive programming procedure (details in 

Pollack 1972). 

In order to achieve a larger number of pattern repetitions, additional tests were carried out 

with 15 X 240 matrix displays arranged in a 1 X 4 array. Otherwise, details were identical. 

When the adaptive procedure sought P(AIA) levels below 0 and above 1.0, one trial was 

provided at the extreme condition. An incorrect response at the extreme condition terminated 

the trial. The proportion of terminated trials, P(7), thus, provides a rough measure of extreme 

difficulty. For conditions with P(r) < 0.10, thresholds are represented by geometric means, 
excluding the terminated trials; for conditions with J’(7) > 0.10, thresholds are represented by 
medians, including terminated trials. Half-filled points represent conditions with 0.10 < P(T) Q 
0.20. Filled points represent conditions with P(r) > 0.20. The degree of shading of the points, 

then, represents a crude display of discriminability. 

2.3. Twodimensional constraints 

2.3. I. Generation of sequences 
Two-dimensional Ma&ov spatial constraints were generated by controlling a parity sum 

among overlapping 2 X 2 cells of the matrix. In the context of a binary code where, for 
example, a dot is represented by 1 and a space is represented by 0, an even parity sum consists 

of 0, 2 or 4 dots within a 2 X 2 local unit; an odd parity sum consists of 1 or 3 dots.. 
Specifically, the fist row and the first column of a 32 x 32 matrix were determined by 

unrestricted random sampling (except for the overlapping intersecting element). In the local 2 
X 2 matrix of the upper left corner, three of the four elements are defined. The fourth is 

determined by the parity sum. After the initial fourth element is determined, the next 2 X 2 
matrix has three entries given and the fourth element is determined by the next parity sum. 
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Variation in the probability of an aimed-for even parity sum, P(Se), controls the organiza- 

tion of the display. At high P(S,) levels, rectangular clumps of dots and non-dots are obtained 
in checkerboard patterns; at low P(.S,) levels, distributed or “lacey” displays are obtained. 

The procedure just described can be extended to different depths of enfolding. Consider 
two submatrices, each with 16 rows and 32 columns. Two-dimensional constraints are devel- 

oped for each submatrix and then the rows are interfolded. Thus, items on odd rows of the 

merged 32 X 32 matrix were developed from one 16 X 32 submatrix; items on even rows were 

developed from the other submatrix. In general, a depth of enfolding by rows alone, D, is 

achieved by developing D sutmatrices, subjecting each to P(Se), and then interfolding by rows. 

The right three displays on the lowest line of fig. 1 illustrate the effect ofD with row enfolding. 

Each figure represents a pair of 32 X 32 matrices, the upper one at RS,) = 0.9999; the lower 

one at P(S,) = 0.50. Discrimination is barely possible with D = 3 or 4. 

The enfolding procedure may be further extended to obtain two-directional, or spatial, 

enfolding. Consider the case of D = 2. Four 16 X 16 submatrices develop two-dimensional 

constraints by P(S,). Matrices 1 and 2 are enfolded by rows, as are matrices 3 and 4, to form 

two intermediate 16 X 32 matrices. These intermediate matrices are then enfolded in terms of 

alternative columns to make a 32 X 32 matrix with D = 2 in both directions. In general, nz 

submatrices are first developed; n intermediate submatrices are formed by row enfolding; the 

remaining n intermediate matrices are then enfolded by columns. The left two displays on the 

lowest line of fig. 1 illustrate two-dimensional enfolding. Discrimination is barely possible with 

D = 3. 

2.3.2. Procedure 
Displays were painted on the face of a Tektronix 602 display equipped with a fast P-15 

phosphor. A PDP-9 computer generated the displays and executed the adaptive programming 

procedure. Details were otherwise identical with the one-dimensional tests, except that P(Se)R 
replaced P(AIA)R and flS,)F replaces P(AIA)p The inter-dot spacing was 1.17 mm and the 

average seating distance was 70 cm. Over the one- and the two-dimensional tests, 230 experi- 
mental conditions were employed with each of at least 15 observers contributing two thresh- 

olds, for a total of 6.9 X lo3 thresholds. 

3. Results 

3. I. One-dimensional constraints 

3.1.1. Measure 
Thresholds will be expressed in terms of the average conditional repetition probability of 

one of the two states, P( *I*) v, required for 50% correct response in the 4AFC test. It is noted 

that the conditional repetition probability of the non-dot state equalled that of the dot state. 

3.1.2. Constant display size 
Fig. 2 explores the role of pattern depth for one-dimensional constraints for a 60 X 60 

display of 3600 elements. For this display, the product of depth, D and the number of 

repetitions of the pattern, R, is constant at 60. Increment thresholds above the indicated 

reference conditional repetition levels (parameter) are plotted in the left section; decrement 
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Fig. 2. Effect of pattern depth, D, and the number of pattern repetitions, R, for threshold 
increments (left section) and decrements (right section) as a function of the reference P(A ~4) 
level (parameter). Displays with a constant number of elements. 

thresholds below the indicated reference levels are plotted in the right section. The ordinate 
scale is that of the standard-score transform of the normal probability curve. 

Since the successive reference levels represent equal differences in standard scores in the left 
section, the nearly equal spacing of the threshold curves suggests that nearly a constant stand- 
ard-score difference separates the threshold and reference levels, at least for low depths of 
enfolding. Performance suffers, i.e. threshold differences increase in magnitude, at longer 
depths of enfolding (and/or at a smaller number of pattern repetitions). Under selected condi- 
tions, a depth of 15 can be discriminated with displays of length 60. 

3.1.3. Interaction of pattern depth and number of pattern repetitions 
The complete confounding between pattern depth, D, and pattern repetitions, R, in the 

tests of fig. 2 is removed in the tests of fig. 3. Depth, as represented by the symbols, and 
pattern repetitions, as represented by the abscissa, were independently varied. The three sec- 
tions represent displays of 1, 6 and 60 columns in width. Thresholds are jointly determined by 
D, the pattern depth; by R, the number of pattern repetitions; and by W, the width of the 
pattern. No simple tradeoff is noted, but consistent discrimination is observable with D = 15. 
With only 60 rows, however, it is not clear if the apparent upper depth limit is determined more 
heavily by the number of pattern repetitions, a maximum of 4 with D = 15, or by the depth of 
the sequence. 
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Fig. 3. Effect of pattern depth (parameter) and number of pattern repetitions (abscissa) for 
display-widths of 1 (top section), 6 (middle section) and 60 (bottom section) display elements. 
The length of the display is the product of pattern depth and the number of pattern repetition. 

I- PERCENT COLUMNS CONTROLLED 

Fig. 4. Effect of unconstrained random sequences (‘noise’) on the detection of partial periodici- 
ties as a function of pattern depth (parameter) and the fraction of sequences controlled (abscis- 
sa). The percentage of unconstrained sequences was 100 minus the percentage of controlled 
columns. 
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3.1.4. Effect of noise 
The effect of introducing noise into patterns of different depth is examined in fii. 4. 

Patterns of low depth are relatively resistant to noise - a single sequence at a high P(AIA) level 
at D = 1 can be detected. Longer depths require a greater proportion of controlled sequences 
for pattern detection. 

3.1.5. Effect of slant 
Fig. 5 examines the effect of slant, s. The lower section considers one-dimensional incre- 

ment constraint thresholds above a chance reference constraint as a function of slant and of 
depth (abscissa), relative to a chance reference constraint. For a depth of 1, thresholds rise 

sharply only at the higher slant levels. Sharp changes occur at lower and lower slant levels at 

higher and higher depths of encoding. This result suggests that the interaction of depth and 

slant may have a common basis with respect to the deterioration of discrimination. However, 
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Fig. 5. Combined effect of pattern slant (abscissa) and pattern depth (parameter) upon detec- 
tion thresholds for increments above a chance reference level (lower section) and decrements 

below a near-perfect reference level (upper section). 
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Fig. 6. Effect of unconstrained random sequences (‘noise’) on the detection of partial periodici- 
ties as a function of the slant angle from the horizontal (parameter) and the fraction of 

sequences controlled (abscissa). 

the top section, which represents decrement thresholds below a near-perfect constraint level 

shows little additive effect of slant and depth. 

The effect of introducing noise into patterns of different slant is examined in fig. 6. (Slant is 

expressed in terms of the direction of constraint relative to a horizontal line; s = 0 is repre- 

sented at 90”.) As with pattern depth, higher degrees of slant can be detected only with a high 

proportion of controlled columns. 

3.2. Two-dimensional constraints 

3.2.1. Measure 
Thresholds will be expressed in terms of the probability of an even parity sum, P(S,)v, 

required for 50% correct response in the 4AFC test. 

3.2.2. Depth 
Fig. 7 considers the effect of the depth of enfolding (in one direction) for the detection of 

two-dimensional constraints. The left section represents increment thresholds above a chance 

reference constraint level; the right section represents decrement thresholds below a perfect 

constraint level. The parameter is the depth of encoding; the abscissa is the display duration, 

expressed in terms of the number of display paintings, each 18 msec in duration. The single 
point in parentheses in the left section represents a decrement threshold of 0.09 relative to a 

reference constraint of 0.50, but plotted in terms of its reflection above 0.50 on the ordinate. 

Discrimination improves as a function of display duration. Increment thresholds (left sec- 

tion) are obtainable for D = 3, and perhaps D = 4, for extremely long display exposures (nearly 
10 set). Decrement thresholds (right section) are obtainable for D = 3, and perhaps D = 4, for 

extremely long display exposures. 
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thresholds for two-dimensional enfolded constraints. The &shed curve and triangles represent 
spatial enfolding (in two dimensions). The coordinates are the normal probability grid. 
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3.2.3. One-directional spatial enfolding 
Fig. 8 compares increment thresholds (above the diagonal reference line) and decrement 

thresholds (below the diagonal reference line) for one-directional and for two-directional en- 

folding of D = 2. Both medians (circles) and geometric means (squares) are presented for 

one-directional enfolding. The coordinates are normalized in each direction. Sharp differences 

from the reference line are observed. Upon such coordinates, two-dimensional constraint 

thresholds, with D = 1, plot as nearly straight lines parallel to the reference line (Pollack 1972). 
With D = 2, there is a marked departure from such functions. 

3.2.4. Two-directional enfolding 
Two-directional spatial enfolding (triangles) requires substantially larger threshold deviations 

than one-directional enfolding. Under selected conditions, consistent thresholds can be achieved 

for spatial enfolding D = 2 only for a limited range of conditions. Comparison between com- 

mon conditions of figs. 7 and 8 suggests that two-dimensional constraint thresholds obtained 
with two-directional spatial enfolding, with D = 2, are nearly equivalent to those obtained with 

one-directional enfolding with D = 3 or 4. 

4. Discussion 

4.1. Comparison with Julesz’ estimate of the depth of processing 

In the Rosenblatt-Slepian procedure employed by Julesz, the num- 
ber of states of the sequence must increase with the depth of con- 
straint. The apparent mismatch between Julesz’ estimate of depth of 
processing at 3-4 and the present estimate of depth of 15-20 is proba- 
bly related to the present use of binary coded sequences at all depths. 

4.2. Auditory temporal vs visual spatial depths of processing 

The limit on the temporal depth of auditory processing is a temporal 
limit. When expressed in terms of the number of samples required for a 
bandwidth of 20 kc, a 4-set limit translates to 160,000 numbers which 
must be specified to determine the random noise waveform. There, 
sample i is correlated with sample ( 160,000 + i), but all numbers within 
each block of 160,000 are independent. No direct comparison can be 
made with spatial depths of visual processing, because visual displays 
can be generated in two dimensions. Thus, folded Markov sequences 
can be generated with contingencies separated by DW elements. When 
such a sequence is laid down upon a display of W elements in width, 
contingencies are separated by depth D, as in the present tests. Defini- 
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tion in terms of the initial DW separation might yield estimates close to 
the 160,000 of the auditory sequence. Such an estimate, however, is 
misleading because displays of arbitrary width can be generated. 

4.3. Display limitation 

The display for one-dimensional constraints was limited to 60 X 60 
matrices and the apparent upper depth limit was 15 or four pattern 
replications. If a minimum of four pattern replications is required, the 
upper depth level may be more nearly display-limited, rather than oper- 
ator-limited. 

Fig. 9 presents the results of tests with the 15 X 240 display which 
provided a greater number of pattern replications for displays of a given 
depth. The parameter is the depth of the pattern. The proportion of 
terminated trials is roughly indicated by markings: no marking 
(O-10%), tic mark (lo-20%), a single underlying bar (20-50%), and a 
double underlying bar (>50% terminated trials). Two curves are drawn: 
the dashed curve showing thresholds with 3600 elements; and, the solid 
c uve representing the lower limit with D = 1. Discrimination is possible 
for depths between 30 and 40 with 5-6 pattern replications. 
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Fig. 9. Effect of pattern depth (parameter) and number of pattern repetitions (abscissa) on the 
detection of one-dimensional constraints for a 15 X 240 display configuration. The proportion 
of terminated trials is indicated by the bar code (see text). The two curves represent: perform- 
ance with 3600 display elements; and performance with D = 1. 
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4.4. Alternative views of the pattern depth variable 

Why does performance break down at large D levels? Perhaps the 
number of display elements in the entire pattern, DW, is crucial. This 
alternative would predict that the discriminable depth, D, would in- 
crease as the width of the display, W, is decreased. However, fig. 3 
shows that the opposite result obtains. We must, therefore, look to 
other alternatives. 

Pattern depth in one-dimensional displays has several consequences. 
For displays of fixed size, the smaller pattern depth, the larger the 
number of pattern repetitions. Figs. 3 and 9 showed, however, that for 
a fixed number of pattern repetitions, lower thresholds are obtained 
with smaller pattern depths. The exception concerns 2-3 repetitions 
with narrow displays, where shorter pattern lengths provide an insuffi- 
cient number of display elements. 

Two additional factors favor shorter pattern depths: the starting po- 
sitions of successive representations of a longer pattern, may be more 
difficult to recognize than for a shorter pattern; and, corresponding 
positions within longer patterns are separated by larger distances than 
within shorter patterns. Each of these features may be examined experi- 
mentally. 

The 15 X 240 display was employed with 6 pattern representations, 
but each representation was separated by 2 rows (1.8 mm additional 
space) upon the display. In this way, each representation of the pattern 
was marked for 0. The thresholds from such tests are presented as 
squares and the broken line in the left section of fig. 10; corresponding 
thresholds obtained in the original tests without demarcation are shown 
as circles and the non-broken line. There is a consistent difference in 
favor of the unbroken display. This result was unexpected but may be 
related to the O’s remarks that the broken display imposes order upon 
the random replications. We may tentatively conclude that the primary 
advantage of the shorter patterns does not stem from the better identi- 
fication of their starting positions. 

The 15 X 240 display was employed so that the first lines of succes- 
sive pattern representations were separated by constant distances, irre- 
spective of the length of the pattern. This was accomplished by intro- 
ducing blank rows between pattern representations. Six pattern repre- 
sentations again were employed. The results are presented in the right 
section of fig. 10. The parameter on the curves is the distance, in rows, 
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Fig. 10. Effect of pattern demarcation and spacing on the detection of partial periodicities as a 

function of pattern depth (abscissa). The left section contrasts non-broken (circles) patterns 

and demarcated (squares) patterns separated by 2 display rows. The parameter of the right 

section is the spacing, in terms of the number of display rows, between corresponding elements. 

The spacing between successive rows was 0.83 mm. The tic marks identify non-marked patterns 

where the spacing equalled the pattern depth. 

between corresponding lines of successive pattern representations. 
When the spacing distance equalled the pattern length, no demarcation 
was provided, and the corresponding thresholds are plotted with tic 
marks. 

The major result is that thresholds decrease up to intermediate pat- 
tern lengths, for a fixed spacing. Stated otherwise, partial periodicities 
are easily detected within short patterns because statistically related 
elements are closely spaced, not simply because less processing is re- 
quired for shorter than for intermediate pattern lengths. Even with a 
fixed spacing, however, discrimination suffers with longer patterns. Al- 
though the observer could simply ignore segments of the longer broken 
patterns, he apparently was unable to do this. The apparent limit on the 
visual processing of partial spatial periodicities is, therefore, determined 
by spatial, as well as by informational, factors. 

4.5. Displays of controlled duration 

In the previous one-dimensional tests, the duration of the display was 
uncontrolled. Are the conclusions reached in the previous section lim- 
ited to displays of unlimited duration? Additional tests were carried out 
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Fig. 11. Effect of duration (abscissa) on one-dimensional constraint thresholds (ordinate) for 
different pattern depths (parameter). The left panel represents non-separated patterns where 
spacing = depth. The middle and right panels represent increasing degrees of spacing between 
corresponding elements of a pattern. The solid lines connect conditions with non-separated 
patterns. The dashed curves reflect conditions with separated patterns. 

over 117 experimental conditions with the 15 X 240 display. The dis- 
play storage persisted for 0.25 to 8 set following the initial painting of 
the display. The other independent variable was the depth of pattern- 
ing. (The initial painting time for each of the four displays was 5.2 
times D msec.) 

The left panel of fig. 11 considers displays without additional separa- 
tion. The abscissa of all panels is the additional duration of the display; 
the ordinate is the threshold level; the parameter is the depth of pat- 
terning. Over the range from 0.5 to 8 set, thresholds appear to change 
more for patterns of greater depth than for patterns of a lower depth. 
The apparent exception is for the largest depth levels, where a substan- 
tial portion of the trials was terminated, and a ceiling effect is obtained. 

The middle and right panels reflect thresholds for fixed spacings of 9 
and 16 elements, consisting of non-separated displays (solid lines and 
underlined parameters) and separated displays (dashed lines and non- 
underlined parameters). Additional tests were also run with spacings of 
23 and of 30 elements. Their results confirm the trends shown with 
spacings of 9 and 16 elements. As the spacing among elements is in- 
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creased, thresholds increase. For a fixed spacing, within each panel, no 
consistent penalty is suffered at the larger pattern depths. Indeed, high- 
est thresholds are obtained for the smallest pattern when separated. The 
overall conclusion from fig. 11 is that separation is the controlling varia- 
ble over a wide range of exposure durations. 

Finally, it is noted that the separation variable cannot be overcome 
by simply varying the distance of the observer to the display. If the 
observer is too far from the display, the spatial microstructure within 
the visual pattern is lost, as in the preliminary tests. 
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