Rank 3 Extensions of Frobenius Groups
 David Perin
 The University of Michigan, Ann Arbor, Michigan 48104
 Communicated by M. Hall, Jr.

Received October 28, 1971

Introduction

Recently the study of finite permutation groups of rank 3 has received much attention. No doubt this is due to the fact that the new simple groups of Higman and Sims, McLaughlin, and Suzuki were constructed as rank 3 extensions of known permutation groups. Rank 3 extensions of multiply transitive groups have also been carefully studied. Tsuzuki [11] studied rank 3 extensions of S_{n}, the symmetric group on n letters. Montague [8] classified the rank 3 extensions of $P S L_{2}(q), P S U_{3}(q), S z(q), R(q)$, and A_{n}. This paper is concerned with the rank 3 extensions of Frobenius groups. The analogous problem for doubly transitive groups is the classification of all transitive extensions of Frobenius groups, or equivalently the determination of all Zassenhaus groups which are not sharply doubly transitive. The problem for rank 3 groups is much easier than the classification of Zassenhaus groups. This is due to the fact that only a small number of groups occur. The main result of this paper is the following theorem.

Theorem 1. Let G be a primitive permutation group of rank 3 on a finite set \mathscr{G}. For $A \in \mathscr{G}$ let $\{A\}, I(A)$, and $J(A)$ denote the three orbits of G_{A}. Assume that G has even order and G_{A} acts faithfully on $I(A)$ as a Frobenius group. Then G satisfies one of the following.
(1) G is isomorphic to A_{5} acting on the unordered pairs of $\{1,2,3,4,5\}$.
(2) G is solvable and has a regular normal subgroup N of order $16 . G_{A}$ acts on N like $S z(2)$, the degenerate Suzuki group, or like the Frobenius group of order 36.

The method of proof of this result is to find the values of certain parameters. The resulting values must be considered one at a time in order to determine which groups actually occur. The parameter conditions come from counting
involutions in G and from the standard conditions on the graph of a rank 3 permutation group. These conditions are listed in the next section.

We remark that in view of the Feit-Thompson Theorem [2], the assumption that $|\boldsymbol{G}|$ is even is not very restrictive. Also, the assumption that G_{A} acts faithfully on $I(A)$ rules out only one group, S_{5} acting on the unordered pairs of $\{1,2,3,4,5\}$. (See [10] for a proof.) All sets and groups considered in this paper are finite.

1. Notation, Parameters, and Involutions

Let \mathscr{G} be a nonempty set. Denote the points of \mathscr{G} by capital letters A, B, C, D, and E, subscripted if necessary. Let G be a group which acts on \mathscr{G} on the right as a transitive permutation group. (All group actions will be right actions.) G has a natural action on $\mathscr{G} \times \mathscr{G}$ given by $(A, B) g=(A g, B g)$, for $A, B \in \mathscr{G}$ and $g \in G$. The number of G-orbits of $\mathscr{G} \times \mathscr{G}$ is called the rank of G as a group acting on \mathscr{G}. We are concerned with the case in which G has rank 3. Then in addition to the diagonal orbit $\{(A, A) \mid A \in \mathscr{G}\}$, there are two other G-orbits of $\mathscr{G} \times \mathscr{G}$, denoted by I and J. For $A \in \mathscr{G}$ let $I(A)=$ $\{B \in \mathscr{G} \mid(A, B) \in I\}$ and $J(A)=\{C \in \mathscr{G} \mid(A, C) \in J\}$. Then $\{A\}, I(A)$, and $J(A)$ are the three orbits of G_{A} acting on \mathscr{G}.

It is possible to associate a graph with the action of G on \mathscr{G}. The point set of this graph is just \mathscr{G}. The edge set is the orbit $I . \mathscr{G}=\mathscr{G}_{I}$ will also denote this graph. Since G has even order, the orbit I is self-paired, and so \mathscr{G} is undirected. (See [5].) G acts on \mathscr{G} as a group of collineations of \mathscr{G} which is transitive on the set of edges and the set of nonedges of \mathscr{G}. Consequently, \mathscr{G} has a great deal of symmetry. In particular, \mathscr{G} has the following properties.
1.1 (1) \mathscr{G} is regular, i.e., the number of points adjacent to a fixed point of \mathscr{G} is constant.
(2) \mathscr{G} is strong. This means that the number of points adjacent to each of two distinct points A and B in \mathscr{G} depends only on whether or not A and B are adjacent.

These two properties show that the following parameters are well-defined and have a geometric interpretation in the graph.

$$
\begin{aligned}
n & =|\mathscr{G}| \\
i & =|I(A)| \\
j & =|J(A)| \\
\lambda & =|I(A) \cap I(B)|, \quad \text { where } \quad A \in I(B) . \\
\mu & =|I(A) \cap I(B)|, \quad \text { where } \quad A \in J(B) .
\end{aligned}
$$

These parameters are not completely independent. The following relations are satisfied.

$$
\begin{array}{ll}
1.2 & \text { (1) } n=1+i+j \\
& \text { (2) } i(i-\lambda-1)=\mu j
\end{array}
$$

The second relation comes from enumerating the set $\{(B, C) \mid B \in I(A)$ and $C \in J(A) \cap I(B)\}$ in two ways. Valuable information about the parameters of \mathscr{G} comes from a computation of the eigenvalues of the adjacency matrix of \mathscr{G} and their multiplicities.
$1.3 d=(\lambda-\mu)^{2}+4(i-\mu)$ is a square, or else $\lambda=\mu-1$ and $i=j=2 \mu$. The degrees of the two nontrivial constituents of the permutation character of G are $h=\left[\left(\lambda-\mu+d^{1 / 2}\right)(n-1)+2 i\right] / 2 d^{1 / 2}$ and $k=n-h-1$. In particular h and k are integers.

A proof of 1.3 is contained in D. G. Higman's work on rank 3 permutation groups [5]. Also found in [5] is a proof of the following simple result.
1.4 The following are equivalent.
(1) G is primitive.
(2) \mathscr{G} and its complementary graph are connected.
(3) $\lambda \neq i-1$, and $\mu \neq i$

If x is an element of G, let $K(x)$ denote the conjugacy class of G which contains x. Computation of $|K(x)|$, especially when x is an involution, leads to additional information about the parameters of G. The best known way of computing $|K(x)|$ is the formula $|K(x)|=G: C_{G}(x)$. Another way of computing $|K(x)|$ occurs in a paper of Montague [8]. Suppose G is a transitive permutation group on a set \mathscr{G}. Let y be an element in G. Consider the set $S=\{(B, z) \mid z \in K(y)$ and $B z=B\}$. Since G is transitive, the number c of conjugates of y which fix B is independent of the point B. Similarly, the number f of fixed points of z is independent of $z \in K(y)$. Consequently, $|\mathscr{G}| c=|S|=|K(y)| f$. If $y=x$ is an involution which fixes at least one point, then $|K(x)|$ is given by:
1.5

$$
\left|K^{\prime}(x)\right|=|\mathscr{G}| c \mid f
$$

Finally we show how $|K(x)|$ can be computed according to the double cosets of a subgroup $H<G$. Again suppose that G is a transitive permutation group on a set \mathscr{G}. Choose $A \in \mathscr{G}$, and let $H=G_{A}$. Let $I_{1}, I_{2}, \ldots, I_{m}$ be the nontrivial orbits of G_{A}. For $k=1,2, \ldots, m$ choose a point $B_{k} \in I_{k}$. Let R_{k}
be the subgroup of G which fixes A and B_{k}. Let T_{k} be a right transversal for R_{k} in H. (i.e., T_{k} contains exactly one element from each right coset of R_{k} in H.) Finally let y_{k} be an element of G which permutes A to B_{k}. Then $G=H \cup H y_{1} H \cup \cdots \cup H y_{m} H$ is the decomposition of G into $H-H$ double cosets. Moreover, $H y_{k} H=H y_{k} T_{k}$, and every element $g \in H y_{k} H$ has a unique expression $g=h y_{k} t$ with $h \in H$ and $t \in T_{k}$.

Let x be an involution in G. Consider a double coset $H y_{k} H$ containing a conjugate of x. Set $y=y_{k}, R=R_{k}, B=B_{k}$, and $T=T_{k}$. We can assume that y is conjugate to x. Then y interchanges A and B, and so y normalizes $R=G_{A, B}$. Suppose hyt is an involution in $H y T$, where $h \in H$ and $l \in T$. Then Ahythyt $=A$. But h and $t \in G_{A}$ implies $A y t h=A y$, or $B t h=B$. Thus, th fixes both A and B and so is contained in R. Also, $y t h=$ $h^{-1}(h y t) h$ is an involution. Since y itself is an involution, y must invert $t h$. Together these two remarks imply that the set of involutions in $H y H$ equals $\{h y t \mid h \in H, t \in T$, and $t h \in R$ is inverted by $y\}$. For an element $z \in R$, there are exactly $|T|=H: R$ elements hyt with $h \in H$ and $t \in T$ such that $t h=\boldsymbol{z}$ (i.e., for $t \in T$ let $h=t^{-1} z$). Thus, there are $a|T|$ involutions in $H y H$, where a equals $\left|\left\{z \in R \mid z^{y}=z^{-1}\right\}\right|$. In particular, there are at most $|R||T|=|H|$ involutions in $H y H$.

Actually the above argument proves even more. An involution hyt in HyT is conjugate to the involution $y t h \in y R$. Let $b=|K(x) \cap y R|$. Then $|K(x) \cap H y H|=b|T|$. If $K(x) \cap H y_{k} H=\varnothing$, let $b_{k}=0$. Otherwise let $b_{k}=\left|K(x) \cap y_{k} R_{k}\right|$, where y_{k} is a conjugate of x. Then the above argument yields:

$$
|K(x)|=c+\left(H: R_{1}\right) b_{1}+\cdots+\left(H: R_{m}\right) b_{m}
$$

Here as in $1.5 c$ cquals $\left|K_{H}(x)\right|$, the number of conjugates of x which lie in $H .1 .5$ and 1.6 can be combined to give the following equation:

$$
|\mathscr{G}| c \mid f=c+\left(H: R_{1}\right) b_{1}+\cdots+\left(H: R_{m}\right) b_{m}
$$

This equation plays a fundamental role in the proof of Theorem 1. We shall refer to it as the involution equation. Suppose G has rank 3. Let $Q=R_{1}$, $R=R_{2}, b_{Q}=b_{1}$, and $b_{R}=b_{2}$. In this case the involution equation becomes:

$$
n c / f=c+i b_{0}+j b_{R}
$$

where i, j, and n are the usual parameters of a rank 3 group. This form of the involution equation is used later in the proof.

For the remainder of this paper assume that G is a primitive rank 3 permuta-
tion of even order on a set \mathscr{G} such that for $A \in \mathscr{G} G_{A}$ acts faithfully on $I(A)$ as a Frobenius group. In addition we use the following notation.

$$
\begin{aligned}
H & =G_{A} \\
Q & =G_{A, B}, \text { where } B \text { is a point in } I(A) \\
R & =G_{A, C}, \text { where } C \text { is a point in } J(A) \\
M & \text { is the Frobenius kernel of } H \\
m & =|M| \\
q & =|Q|
\end{aligned}
$$

The group R is a (possibly degenerate) Frobenius group. By proper choice of the point C we can write $R=M_{1} Q_{1}$, where $M_{1}=R \cap M$ and $Q_{1}=$ $R \cap Q . M_{1}$ is the Frobenius kernel of R, and Q_{1} is a complement. Let $m_{1}=$ $\left|M_{1}\right|$ and $q_{1}=\left|Q_{1}\right| \cdot F(X)$ denotes the set of fixed points of a group $X \leqslant G$. The proof of Theorem 1 breaks down into cases depending on whether $|M|$ is even or odd.

2. The Case $|M|$ Even

In this section we show that there are no groups G with $|M|$ even. Suppose that M_{1} has odd order. Then an involution in H fixes exactly one point. Since M is nilpotent of even order, M has exactly one Sylow 2-subgroup S, which is normal in H. Hence, the Sylow 2-subgroups of G are independent. A result of Suzuki implies that G acts doubly transitively on the cosets of $N_{G}(S)$. (See Bender [1], Proposition 2.3, for a short proof of this result.) But $N_{G}(S)=H$ since H is a maximal subgroup of G. Since G does not act doubly transitively on the cosets of H, M_{1} has even order. In particular $M_{1} \neq 1$.

$2.1 M_{1}$ contains no nontrivial normal subgroup of H.

Proof. Suppose $P \leqslant M_{1}$ is a normal subgroup of H. Since M_{1} fixes C and P is normal in H, P fixes every element of $J(A)$. Since G is primitive, there are points $D \neq E$ in $J(A)$ such that $D \in I(E)$. Then $P \leqslant G_{D, E}$, which is conjugate to $G_{A, B}=Q$. Since $|Q|$ and $\left|M_{1}\right|$ are relatively prime, P must be the identity.

This result implies that M is a Hall subgroup of G. For suppose p is a prime divisor of $m . O_{p}(M)$, the Sylow p-subgroup of H, is not contained in M_{1} by 2.1. Hence, p divides m / m_{1}, and $n=1+m+\left(m q / m_{1} q_{1}\right)$ is congruent to 1 modulo p.
$2.2 N_{G}\left(M_{1}\right)$ acts doubly transitively on $F\left(M_{1}\right)$.

Proof. $F\left(M_{1}\right)$ consists of A and the fixed points of M_{1} in $J(A)$. Choose $C \in F\left(M_{1}\right) \cap J(A)$, and let M^{*} denote the Frobenius kernel of $G_{C} . M_{1}$ is a proper subgroup of M^{*} by 2.1. Since M^{*} is nilpotent, $N_{G}\left(M_{1}\right) \cap M^{*}$ properly contains M_{1}. Consequently, $N_{G}\left(M_{1}\right)$ does not fix A. But $N_{H}\left(M_{1}\right)$ acts transitively on $F\left(M_{1}\right) \cap J(A)$ since M_{1} is a normal Hall subgroup of $R=H_{C}$. Hence, $N_{G}\left(M_{1}\right)$ acts doubly transitively on $F\left(M_{1}\right)$.

$2.3 \quad Q_{1}=1$.

Proof. Suppose $Q_{1} \neq 1$. The Frattini argument implies that Q_{1} fixes $N_{H}\left(Q_{1}\right) R: R=N_{Q}\left(Q_{1}\right): Q_{1}$ points in $J(A)$. Then Q_{1} fixes $2+N_{Q}\left(Q_{1}\right): Q_{1}$ points altogether. Since $|Q|$ is odd, Q_{1} fixes an odd number of points. Let C be a point in $J(A)$ which is fixed by $R=M_{1} Q_{1}$. By 2.2 there is an element $g \in G$ which interchanges A and C and so normalizes R. Thus, $N_{G}(R): R$ is even, and the Frattini argument implies that $N_{G}\left(Q_{1}\right)$ has even order. Let x be an involution in $N_{G}\left(Q_{1}\right)$. Since Q_{1} fixes an odd number of points, there is a point D which is fixed by both Q_{1} and x. Then $x \in N_{G}\left(Q_{1}\right) \cap G_{D}$. But $N_{G}\left(Q_{1}\right) \cap G_{D}$ has odd order since G_{D} is a Frobenius group with kernel of order $|M|$ and complement of order $|Q|$. This contradiction implies that $Q_{1}-1$.

Let $N=N_{G}\left(M_{1}\right)$. If $X \leqslant N$, let $\bar{X} \simeq X M_{1} / M_{1}$ denote the image of X acting on $F\left(M_{1}\right)$. According to 2.2 and $2.3 \bar{N}$ is a doubly transitive Frobenius group. Let $Z-\Omega_{1}\left(Z\left(O_{2}(M)\right)\right)$, the group gencrated by the involutions in $Z\left(O_{2}(M)\right) . Z$ is normal in H and so is not contained in M_{1}. Thus, \bar{Z} is a nontrivial elementary abelian subgroup of $\bar{M} \cap \bar{N}_{A}$. Since \bar{N} is a Frobenius group, \bar{Z} is a cyclic group of order 2 .

2.4 Every involution in N centralizes $Z \cap M_{1}$.

Proof. Let $U=C_{N}\left(Z\left(M_{1}\right)\right) . U$ is a normal subgroup of N containing $Z M_{1}$. Then $\bar{U} \geqslant \bar{Z} \neq 1$ is a nontrivial normal subgroup of \bar{N} and so is transitive on $F\left(M_{1}\right)$. Since \bar{Z} contains the unique involution in \bar{N}_{A}, \bar{U} contains all involutions in \bar{N}. Hence, U contains all involutions in N. The result now follows since $Z\left(M_{1}\right)$ contains $Z \cap M_{1}$.

2.5 G contains one class of involutions.

Proof. The idea of the proof is to show that G contains a normal, simple subgroup G_{2} which has a self-centralization system of type 2 . Then exceptional character theory can be applied to give the desired result.

Let B denote the fixed point of Q in $I(A)$. Since every G-conjugate of Q in H is already conjugate to Q in $H, N_{G}(Q)$ acts transitively on $\{A, B\}$. Hence, $N_{G}(Q)=Q\langle x\rangle$ where x is an involution which interchanges A and $B . Q$ is a Hall subgroup of H. Since q is odd and divides $m-1, q$ is relatively prime to
$n=1+m+\left(m q / m_{1}\right)$. Thus, Q is a Hall subgroup of G. Also, since Q is a Frobenius complement of odd order, Q^{\prime} is a cylic Hall subgroup of Q with a cyclic complement S. Choose S so that $x \in N_{G}(S)$.

Let $1 \neq X$ be a subgroup of Q. According to $2.3 X$ fixes only A and B. Consequently, $N_{G}(X) \leqslant G_{(A, B)}=N_{G}(Q)$. Let $V=C_{Q}(x)$ and $K=$ $\left\{y^{-1} y^{x} \mid y \in Q\right\}$. Then $K V=Q, K \cap V=1$, and K consists of the elements of Q which are inverted by x. (See [3], page 341.) $K \cap Q^{\prime}, V \cap Q^{\prime}, K \cap S$, and $V \cap S$ are each Hall subgroups of Q. Moreover, $K=\left(K \cap Q^{\prime}\right)(K \cap S)$ is a subgroup of Q. Now $N_{G}(V \cap S)=N_{Q}(V \cap S)\langle x\rangle=N_{O^{\prime}}(V \cap S) S\langle x\rangle$ $\leqslant C_{G}(V \cap S)$. Since $V \cap S$ is a Hall subgroup of G, Burnside's Transfer Theorem implies that $V \cap S$ has a normal complement G_{1} in G. $G_{1} \cap Q=$ $\left(V \cap Q^{\prime}\right) K . V \cap Q^{\prime}$ centralizes K since $V \cap Q^{\prime}$ and K are each normal in Q. Thus, the normalizer of $V \cap Q^{\prime}$ in G_{1} equals $\left(G_{1} \cap Q\right)\langle x\rangle \leqslant C_{G}\left(V \cap Q^{\prime}\right)$. Another application of Burnside's Transfer Theorem yields a normal complement G_{2} for V in G.

Suppose $V \neq 1$. Let θ denote the set of primes dividing $\left|G_{2}\right|$. Then V acts on G_{2} as a θ^{\prime}-group of automorphisms. V normalizes $O_{2}\left(G_{A}\right)$ and $O_{2}\left(G_{B}\right)$, each of which is a Sylow 2-subgroup of G. The Schur-Zassenhaus Theorem implies that any V-invariant 2 -subgroup of G_{2} is contained in a V-invariant Sylow 2-subgroup of G_{2} and $C_{G_{2}}(V)$ acts transitively on the V-invariant Sylow 2-subgroups of G_{2}. (See [3], page 224). Since $C_{G_{2}}(V) \leqslant K\langle x\rangle \leqslant$ $G_{\{A, B]}, O_{2}\left(G_{A}\right)$ and $O_{2}\left(G_{B}\right)$ are the only V-invariant Sylow 2-subgroups of G_{2}. But then $x \in C_{G_{2}}(V)$ is contained in $O_{2}\left(G_{A}\right)$ or $O_{2}\left(G_{B}\right)$, which is not possible since x does not fix A or B. Hence, $V=1$ and $Q=K$ is inverted by x. In fact Q is a self-centralization system of type 2 in G. This means that $N_{G}(Q): Q=2$ and $Q=C_{G}(y)$ for $1 \neq y \in Q$.

Finally we show that G is simple. G^{\prime} contains $M=[M, Q]$ and $Q=[Q, x]$. Thus G^{\prime} contains H, whence $G^{\prime}=G$ by the primitivity of G. Suppose $1 \neq N$ is a normal subgroup of G. Since G is primitive, $N H=G$. Then $G / N=$ $N H|N \simeq H| H \cap N$ is solvable. $G=G^{\prime}$ implies that $G=N$.

Thus, Q is a self-centralization system of type 2 in the simple group G. A result from exceptional character theory (see [7], page 16) now implies that G has one class of involutions.

Since $O_{2}(M)$ is a Sylow 2-subgroup of G, Burnside's Fusion Theorem (see [3], page 240) implies that the involutions in Z are conjugate in $N_{G}\left(O_{2}(M)\right)=H$. Thus, Z contains q involutions, $|Z|=q+1$, and $\left|Z \cap M_{1}\right|=\frac{1}{2}(q+1)$. Choose $1 \neq z \in Z \cap M_{1}$. Then z fixes

$$
\frac{1}{2}(q-1)\left|C_{H}(z)\right| /\left|M_{1}\right|=(q-1) m / 2 m_{1}
$$

points of $J(A)$ and $1+(q-1) m / 2 m_{1}$ points altogether. The number of G-conjugates of z in H equals $a q$, a multiple of q.

We are now ready to apply the involution equation of 1.7 to z.

$$
\begin{aligned}
n c / f & =c+i b_{Q}+j b_{R} \\
n a q & =f\left(a q+m b_{O}+\left(m q / m_{1}\right) b_{R}\right) \\
1+m+m q / m_{1} & =1+m(q-1) / 2 m_{1}+f / a\left[(m / q) b_{Q}+\left(m / m_{1}\right) b_{R}\right] \\
m_{1}+(q+1) / 2 & =(f / a)\left[\left(m_{1} / q\right) b_{Q}+b_{R}\right]
\end{aligned}
$$

Also, $n a q / f=|K(z)|=G: C_{G}(z)=n m q /\left|C_{G}(z)\right|$. Then $a\left|C_{G}(z)\right|=m f$. Since $C_{G}(z)$ contains M, a must divide f.

Since q is odd, $(q+1) / 2$ is integral, and the above equation implies that $f m_{1} b_{Q} / a q$ is integral. But $\left(q, m_{1}\right)=1$ and a divides f, so that $f b_{Q} / a q$ must be integral. In particular $f m_{1} b_{Q} / a q$ is a multiple of m_{1}. Since G has one class of involutions, b_{R} equals the number of elements of $R=M_{1}$ inverted by an involution $y \in N_{G}(R)-R$. But 2.4 implies that any involution in $N_{G}(R)$ centralizes and hence inverts $Z \cap M_{1}$. It follows that $b_{R} \geqslant\left|Z \cap M_{1}\right|=$ $(q+1) / 2$. Since a divides f, the above equation implies $f=a, b_{Q}=q$ and $b_{R}=(q+1) / 2$. In particular $\left|C_{G}(z)\right|=m f / a=m$, a contradiction to 2.4.

3. The Case m Odd and $M_{1} \neq 1$

In this section we show that there is only one group with m odd and $M_{1} \neq 1$. The group is solvable and has order 16×36. The method of proof is to study the action of $N_{G}\left(M_{1}\right)$ on the set F of fixed points of M_{1} and apply the resulting information to estimate the parameters of G.

By hypothesis $|\boldsymbol{G}|=(1+i+j)|H|$ is even. Thus, either $|H|$ is even or else $1+i+j$ is even. In the latter case i or j is even. Since i and j divide $|H|,|H|=|M||Q|$ is even in either case. Hence, Q has even order and so contains a unique involution $x . M$ is abelian since x inverts M.

Let $N=N_{G}\left(M_{1}\right)$, and for $X \leqslant N$ let \bar{X} denote the image of X acting on the fixed points of M_{1}. The proof of 2.2 shows that N acts doubly transitively on F.

3.1 \bar{N} has a regular normal subgroup.

Proof. Let $U=C_{G}\left(M_{1}\right)$. Since H is a Frobenius group with an abelian kernel, $U \cap H=M . M>M_{1}$ by 2.1 and so $\bar{U} \geqslant \bar{M}$ is a nontrivial normal subgroup of \bar{N}. The double transitivity of \bar{N} implies that \bar{U} is a (3/2)-transitive permutation group on F. Since $\bar{U}_{A, C}=\bar{M}_{C}=\bar{M}_{1}=1, \bar{U}$ is a Frobenius group. Let V denote the regular normal subgroup of $\bar{U} . V$ is characteristic in \bar{U} and so is normal in \bar{N}.
V is an elementary abelian r-group for some prime r. Suppose $|V|=r^{e}$.
$\bar{N}_{A}=\overline{N_{H}\left(M_{1}\right)}=\overline{M N_{Q}\left(M_{1}\right)}$ acts on V as a group of linear transformations. Moreover, \bar{M} is a normal abelian subgroup of \bar{N}_{A}. Since \bar{N}_{A} acts transitively on the nonzero vectors of V and hence primitively on V, \bar{M} has exactly one Wedderburn component. i.e., V is a sum of isomorphic irreducible \bar{M} modules. Identify V with the additive group of $G F\left(r^{e}\right)$. Let $K=G F(r)$, and let L denote the subring of $\operatorname{End}_{K}(V)$ generated by \bar{M}. Then V is a sum of isomorphic irreducible L modules. Since M is abelian, L is commutative, and so L is contained in $\operatorname{End}_{L}(V)$. It follows that V is irreducible as an $\operatorname{End}_{L}(V)$ module. Schur's Lemma implies that the endomorphism ring of V as an $\operatorname{End}_{L}(V)$ module is a division ring. Since L is contained in this ring, L is a finite field. Let k be the dimension of V as a vector space over L. Suppose $L=G F\left(r^{c}\right)$. Since $C_{Q}(\bar{M})=1, \overline{N_{Q}\left(M_{1}\right)}$ acts faithfully on L as a group of field automorphisms. Aut (L) is a cyclic group of order $c . \overline{N_{\mathrm{O}}\left(M_{1}\right)}$ contains an involution \bar{x}, where x is the unique involution in Q. Hence, $c=2 b$ is even. \bar{x} inverts $r^{b}+1$ elements of $L^{*}=L-\{0\}$. Since \bar{x} inverts \bar{M}, \bar{M} has order at most $r^{b}+1 . \bar{N}_{A}$ acts transitively on $V-\{0\}$, and so $|V|-1$ divides $\left|\bar{N}_{A}\right|$. Then $2 b\left(r^{b}+1\right) \geqslant|\bar{M}|\left|\overline{N_{Q}\left(M_{1}\right)}\right|=\left|\bar{N}_{A}\right| \geqslant\left(r^{2 b k}-1\right)$. The only possibilities are $b=k=1$ and $r=2$ or 3 . Since $|\bar{M}|$ is odd, $r=2$. Thus, $L=G F\left(2^{2}\right)$, and $|F|=|V|=4$. Since $\left|\bar{N}_{A}\right|=6, \bar{N}$ has order 24 and so acts on F like S_{4}. The proof of the following result is now complete.

3.2 (1) \bar{N} acts on $F\left(M_{1}\right)$ like S_{4}.

(2) $|\bar{M}|=M: M_{1}=3$, and M is a 3-group by 2.1.

Suppose $z \in N_{O}\left(M_{1}\right)$ and $\bar{z}=1$. Then $\left.1=[\bar{M}, \bar{z}]=\overline{[M, z}\right]$. It follows that z is contained in $C_{0}\left(M \mid M_{1}\right)=1$. Since $\left|\overline{N_{O}\left(M_{1}\right)}\right|=2, Q_{1}$ has order 1 or 2 . But the involution $x \in Q$ normalizes M_{1}, and so permutes the 4 fixed points of M_{1}, which consist of A and 3 points in $J(A)$. Since x fixes A, x must fix one of the three points in $F\left(M_{1}\right) \cap J(A)$, whence $Q_{1}=\langle x\rangle$ has order 2. Some conjugate of x normalizes either $Q=G_{A, B}$ or $R=G_{A, C}$. Since both Q and R have even order, $|G|$ is divisible by 4. But $|G|=n|H|$, and $n=1+m+(3 / 2) q$ is congruent to $(1 / 2) q$ modulo 2 . Hence, q is divisible by 4 .

The remainder of this analysis consists of a consideration of the parameters of G. As above let x denote the involution in Q. Since $x \in Q_{1}<R, x$ fixes $(1 / 2) q$ points in $J(A)$ and $2+(1 / 2) q$ points altogether. Since x has m conjugates in H, the involution equation implies:

$$
\begin{aligned}
n m /[2+(q / 2)] & =m+m b_{o}+(3 / 2) q b_{R} \\
m-1+q & =q[2+(q / 2)]\left[\left(b_{o} /|Q|\right)+\left(b_{R} /|R|\right)\right]
\end{aligned}
$$

$3.3 b_{R}=m_{1}$ or $m_{1}+1$.
Proof. Recall that M_{1} is a 3-group, and $N_{G}\left(M_{1}\right)$ acts on $F=\{A, C, D, E\}$
like S_{4}. x acts on F like the transposition ($D E$). There is a conjugate y of x which acts on F like the transposition ($A C$). Then y normalizes $M_{1}\langle x\rangle=R=$ $G_{A, C}$. Moreover, y inverts M_{1} since y is conjugate to x in $N_{G}\left(M_{1}\right)$ and x inverts M_{1}. Hence, y inverts $m_{1}+1$ elements of R, the elements of M_{1} and exactly one of the m_{1} involutions in $R=M_{1}\langle x\rangle$. Since M_{1} has odd order, all of the m_{1} involutions in $y M_{1}$ are conjugate. It follows that $b_{R}=m_{1}$ or $m_{1}+1$.

The above result shows that m is approximately equal to $q^{2} / 4$. The next result shows that $m \leqslant 6 q-6$. Together these two rcsults cnable us to compute m and q.

$3.4 m \leqslant 6 q-6$.

Proof. The parameters of \mathscr{G} have the following values: $i=m, j=$ $m q / m_{1} q_{1}=3 q / 2$, and $\mu=i(i-\lambda-1) / j=2 m_{1}(m-\lambda-1) / q$. Since q divides $m-\lambda-1$ and $\mu<m=3 m_{1}, q$ must equal $m-\lambda-1$. Then $\mu=2 m_{1}$ and $\lambda=m-q-1$. We get:

$$
\begin{aligned}
d & =(\lambda-\mu)^{2}+4(i-\mu) \\
& =\left(m_{1}-q-1\right)^{2}+4 m_{1} \\
& =\left(m_{1}-q\right)^{2}+2 m_{1}+2 q+1
\end{aligned}
$$

Since d is a square, there is a positive integer b such that $\left(m_{1}-q+b\right)^{2}=d$. Then $2 b\left(m_{1}-q\right)+b^{2}=2 m_{1}+2 q+1$, and we get the following equations:

$$
\begin{aligned}
2 m_{1}(b-1)+b^{2}-1 & =2 q(b+1) \\
2 m_{1}+b+1 & =2 q[(b+1) /(b-1)] \\
m_{1}+(b+1) / 2 & =q[1+2 /(b-1)]
\end{aligned}
$$

Clearly, $b \geqslant 3$, whence $2 /(b-1) \leqslant 1$. Hence, $2 m_{1}+4 \leqslant 4 q$, or equivalently $m=3 m_{1} \leqslant 6 q-6$.

Suppose $b_{R}=m_{1}$. Then the involution equation implies $m-1+q=$ $(2+q / 2)\left(b_{Q}+q / 2\right)$. Since $m \leqslant 6 q-6$, it follows that $(2+q / 2)\left(b_{Q}+q / 2\right) \leqslant$ $7 q-7$. In particular $(2+q / 2) q / 2 \leqslant 7 q-7$, and so $q<24-28 / q$. This inequality implies $q \leqslant 22$. Since 4 divides q but 3 does not, only $q=4$, 8,16 , or 20 are possible. If $q=20$, then $m+19=12\left(b_{o}+10\right)$, contrary to the fact that 3 divides m. If $q=16$, then $m+15=10\left(b_{Q}+8\right)$, a contradiction since 5 does not divide m. If $q=8$, then $m+7=6\left(b_{o}+4\right)$, again contradicting the fact that 3 divides m. Hence, only $q=4$ is possible. Since $m \geqslant 9$ is a power of $3, b_{O}=1$ and $m=9$.
G has parameters $i=m=9, j=6, n=16, \lambda=4$, and $\mu=6$. The order of G equals $n m q=16 \times 36 . G$ is solvable and so has a regular normal elementary abelian subgroup N of order 16. The Frobenius group H acts on N as a group of linear transformations having 3 orbits of vectors of lengths 1,

6, and 9. Since there is exactly one conjugacy class of such Frobenius groups of order 36 in $G L_{4}(2), G$ is determined up to permutation equivalence.

A similar analysis can be applied to the case $b_{R}=m_{1}+1$. There are no solutions to all of the parameter equations, and so no groups occur in this case.

4. The Case m Odd and $R \leqslant Q$

In this section we show that A_{5} and a solvable group of order 320 are the only groups in which m is odd and $R \leqslant Q$. The proof amounts to examining the solutions to the involution equation. Unfortunately, a great deal of computation is necessary.

Let $t=Q: R$, so that $j=m t$ and $n=1+(t+1) m . H$ acts on $J(A)$ as a transitive permutation group. The cosets of Q in H induce a system of imprimitivity for H acting on $J(A)$. Each imprimitive block contains t points, and the action of H on these blocks is equivalent to the action of H on $I(A)$. Q stabilizes one block and is transitive on the points of this block. Let x denote the unique involution in Q. There are m conjugates of x in H, one in each of the m conjugates of Q in H.
4.1 If $x \notin R$, then $t=2, q=m-1$, and $\lambda=0$.

Proof. Suppose $x \notin R$. Then x fixes only A and B. The involution equation yields:

$$
\begin{aligned}
n m / 2 & =m+m b_{Q}+m t b_{R} \\
(t+1)(m-1)+t & =2\left(b_{O}+t b_{R}\right) \leqslant 4 q
\end{aligned}
$$

Since q divides $m-1$ and $t>1$, only $t=2$ and $m=q-1$ is possible. $|I(A) \cap I(B)|=\lambda$ is divisible by q since $Q=G_{A, B}$ acts semiregularly on $I(A) \cap I(B)$. The primitivity of G implics $\lambda<m-1$ and so $\lambda=0$.

For the remainder of the analysis we assume $x \in R$. Then $x \in Z(Q)$ implies that x fixes each point of the block which x stabilizes. Thus, $|F(x)|=t+2$. Since H has only one class of involutions, $C_{G}(x)$ acts transitively on $F(x)$. $C_{G}(x)_{A}=C_{H}(x)=Q$ fixes A and B and acts transitively on $F(x)-\{A, B\}=$ $F(x) \cap J(A)$. Hence, $\{A, B\}$ is an imprimitive block for $C_{G}(x)$ acting on $F(x)$, and we have the following result.
4.2 (1) 2 divides t.
(2) $C_{G}(x)$ acts doubly transitively on the set \bar{F} of $C_{G}(x)$ images of $\{A, B\}$.

Since x fixes $t+2$ points and has m conjugates in H, the involution equation applied to x yields:

$$
\begin{aligned}
n m /(t+2) & =m+m b_{Q}+m t b_{R} \\
m-1 & =[(t+2) /(t+1)]\left(b_{Q}+t b_{R}\right) \leqslant[(t+2) /(t+1)] 2 q
\end{aligned}
$$

Note that the second equation implies that $t+2$ divides $m-1$. Since q divides $m-1$ and $t>1$, the only possibilities are $m-1=q$ or $2 q$.
4.3 Suppose z is an involution acting on a group G. If z inverts more that $(3 / 4)|G|$ elements of G, then G is abelian and z inverts G.

Proof. Let $K=\left\{y \in G \mid y^{z}=y^{-1}\right\}$. Suppose g, h, and $g h$ are contained in K. Then $h^{-1} g^{-1}=(g h)^{-1}=(g h)^{z}=g^{z} h^{z}=g^{-1} h^{-1}$, whence g and h commute. It follows that the group generated by $K \cap K g$ centralizes g. Since $|K|>(3 / 4)|G|,|K \cap K g|>(1 / 2)|G|$, and so $K \cap K g$ generates G. Thus, $K \leqslant Z(G)$. The only possibility is that $K=G$ is an abelian group which is inverted by z.
4.4 If $m-1=2 q$, then $\lambda=0$ and $t \in\{2,4,6\}$.

Proof. Suppose $m-1=2 q$ and $t>6$. Then $(t+1)(m-1)=$ $(t+2)\left(b_{Q}+t b_{R}\right) \leqslant(t+2)\left(b_{Q}+q\right)$ implies $b_{Q} \geqslant[t /(t+2)] q>(3 / 4) q$. Let z denote a conjugate of x which interchanges A and B. Then z inverts at least b_{Q} elements of Q. According to $4.3 Q$ is abelian and z inverts Q. Hence, Q is cyclic and $b_{Q}|Q|=1$ or $1 / 2$. Similarly, $b_{R} \| R \mid=1$ or $1 / 2$. Thus, only $t=2$ is possible. This contradiction implies $t \leqslant 6$. Since G is primitive and $m-1=2 q, \lambda=0$ or q. It follows easily from the fact that d is a square that $\lambda=q$ is impossible. Hence, $\lambda=0$ and $t \in\{2,4,6\}$.

Now we assume $m \cdots \quad 1=q$. The primitivity of G implies $\lambda=0$. Also, H is a doubly transitive Frobenius group. The involution equation reduces to:

$$
\begin{aligned}
& q=[(t+2) /(t+1)]\left(b_{O}+t b_{R}\right) \\
& 1=1 /(t+2)+\left(b_{O} /|Q|\right)+\left(b_{R} /|R|\right)
\end{aligned}
$$

The idea now is to solve the above equation for t. We will show:
$4.5 t \in T=\{2,4,6,8,10,12,14,16,18,22,28,34,38,46,82\}$
Suppose Q is isomorphic to the multiplicative group of one of the 7 exceptional near-fields (See [4], page 391). From a knowledge of the subgroups of $S L_{2}(5)$ and the fact that both t and $t+2$ divide $m-1=q$, it follows that $t \leqslant 12$. Hence, $t \in T$. For the remainder of this analysis we assume that Q is isomorphic to the multiplicative group of a nonexceptional near-field. A Sylow 2-subgroup S of Q is cyclic or generalized quaternion. In either case Q has a normal 2-complement. In addition, if S is generalized quaternion, then Q has a normal subgroup of index 2 which is the direct product of $O(Q)$ and a cyclic 2-group. (See [4], page 390.) R also has these properties, and the following analysis applies to R as well as Q.

Recall that b_{Q} is just the number of involutions in $z Q \cap K(x)$, where z is a conjugate of x which interchanges A and B. In particular b_{Q} is the number of
involutions in some union of Q-classes of involutions in $z Q$. We show that all numbers of this form can be written as $(1 / 2)[(1 / a)+(1 / b)]|Q|$, where a and b are positive integers. Since Q has an odd number of Sylow 2 -subgroups, we can assume that z normalizes S. If $y \in O(Q)$ and $z y$ is an involution, then $z y$ is $O(Q)$-conjugate to z by Sylow's Theorem. Hence, we are really interested in the S-classes of involutions in $z S$.

Suppose $S=\left\langle y, w \mid y^{2}=w^{w^{k-1}}, w^{y}=w^{-1}\right\rangle, k>1$, is generalized quaternion. Table 1 below lists the possible actions of z on S (with respect to appropriate choices of y and w) and the resulting Q-classes of involutions in $z Q$. Let $c=2^{k-1}$, and for $g \in Q\langle z\rangle$ let $K_{g}=\left\{h \in O(Q) \mid h^{g}=h^{-1}\right\}$. x denotes the unique involution in Q.

Suppose $S=\langle\boldsymbol{u}\rangle$ is a cyclic group of order 2^{k}. Table 2 lists the possible actions of z on S and the resulting Q-classes of involutions in $z Q$. Again let $c=2^{k-1}$.

TABLE 1

Action of z	Q-Classes of Involutions in $z Q$
1. $\begin{aligned} y^{z} & =y \\ w^{z} & =w \end{aligned}$	$\left\{z v \mid v \in K_{z}\right\},\left\{z x v \mid v \in K_{z}\right\}$
$\text { 2. } \begin{array}{ll} \text { } & y^{z}=y^{-1} \\ & w^{z}=w \end{array}$	$\left\{z v, z x v \mid v \in K_{z}\right\},\left\{z y w^{a} v \mid v \in K_{z y}, a\right.$ odd $\}$ $\left\{z y w^{a} v \mid v \in K_{z y}, a\right.$ even $\}$
3. $\begin{aligned} & y^{z}=y^{-1} \\ & w^{z}=w^{-1} \end{aligned}$	$\begin{gathered} \left\{z w^{a} v \mid v \in K_{z}, a \text { even }\right\},\left\{z w^{a} v \mid v \in K_{z}, a \text { odd }\right\} \\ \left\{z y v, z y x v \mid v \in K_{z v}\right\} \end{gathered}$
4. $\begin{aligned} y^{z} & =y w \\ w^{z} & =w^{-1} \end{aligned}$	$\left\{z \sim v^{a} v \mid v \in K_{z}\right\}$
5. $\begin{aligned} & y^{z}=y^{-1} \\ & w^{z}=w^{c+1} \end{aligned}$	$\left\{z v, z x v \mid v \in K_{z}\right\},\left\{z y w^{a} v \mid v \in K_{z y}, a \operatorname{even}\right\}$
6. $\begin{gathered} y^{z}=y^{-1} \\ w^{z}=w^{c-1} \end{gathered}$	$\left\{z y v, z y x v \mid v \in K_{z u}\right\},\left\{z w^{a} v \mid v \in K_{z}, a\right.$ even $\}$

TABLE 2

Action of $z \quad Q$-Classes of Involutions in $z Q$

1.	$u^{z}=u$	$\left\{z v \mid v \in K_{z}\right\},\left\{z x v \mid v \in K_{z}\right\}$
2.	$u^{z}=u^{-1}$	$\left\{z u^{a} v \mid a\right.$ even, $v \in K_{\left.z u^{a}\right\}},\left\{z u^{a} v \mid a\right.$ odd, $\left.v \in K_{z u^{a}}\right\}$
3.	$u^{z}=u^{e-1}$	$\left\{z u^{a} v \mid a\right.$ even, $v \in K_{\left.z u^{u}\right\}}$
4.	$u^{z}=u^{c+1}$	$\left\{z v, z x v \mid v \in K_{z}\right\}$

If g is an involution acting on $O(Q)$, then $\left|K_{g}\right|$ equals the number of involutions in $O(Q)\langle g\rangle$, and so $|O(Q)|=\left|K_{g}\right|\left|C_{O(o)}(g)\right|$ by Sylow's Theorem. In particular $\left|K_{g}\right|$ divides $|O(Q)|$. Also, $\left|K_{g}\right|=\left|K_{h}\right|$ for any element h which is Q-conjugate to g. Thus, tables 1 and 2 show that the number of involutions in any Q-class of involutions in $2 Q$ can be written as $(1 / 2 a)|Q|$. Moreover, $b_{o} /|Q|$ can be written as $(1 / 2)[(1 / a)+(1 / b)]$, where a and b are (not necessarily distinct) positive integers. Similarly, $b_{R} /|R|=(1 / 2)[(1 / c)+(1 / d)]$. The involution equation reduces to:

$$
1=[1 /(t+2)]+(1 / 2)[(1 / a)+(1 / b)+(1 / c)+(1 / d)]
$$

The above equation has only finitely many solutions. These solutions yield values of t which lie in T.

4.5 The possible values for the parameters of \mathscr{G} are:

1. $t=2, \quad \mu=1, \quad m=3$
2. $t=2, \quad \mu=2, \quad m=5$
3. $t=2, \quad \mu-4, \quad m-9$
4. $t=6, \quad \mu=4, \quad m=25$
5. $t=18, \quad \mu=20, \quad m=361$

Proof. The possible values of t must be examined one at a time. We use the facts: $\mu=(m-1) / t, d=(\lambda-\mu)^{2}+4(i-\mu)$ is a square, $t+2$ divides $m-1$ unless $t=2$, and $h=\left[\left(\lambda-\mu+d^{1 / 2}\right)(n-1)+2 i\right] / 2 d^{1 / 2}$ is an integer. Also, since M is abelian and has at most $2 Q$-classes of nonidentity elements, M is elementary abelian. In particular m is a prime power.

Suppose $t=2$. A simple computation yields $h=4(2 \mu+1) /(\mu+2)$. Hence, $\mu+2$ divides 12 , and $\mu=1,2$, 4 , or $10 . \mu=10$ is impossible since then $m=2 \mu+1=21$ is not a prime power.

Suppose $t>2$. Since $d=\mu^{2}+4(t-1) \mu+4$ is a square, there is an integer b such that $\mu^{2}+4(t-1) \mu+4=(\mu+b+2)^{2}$. Then $4(t-2) \mu=$ $2 b \mu+b^{2}+4 b$, and so $b=2 c$ is even. Since $t-2 \neq 0, \mu=\left(c^{2}+2 c\right) /(t-2-c)$. For a fixed value of t there are only finitely many values of c which yield integral values of μ. The only values of t and c which satisfy all other parameter conditions are listed in 4.5. We illustrate this process in the case $t=18$.

Suppose $t=18$. Then $m=18 \mu+1$, and $\mu=\left(c^{2}+2 c\right) /(16-c)$. Clearly, $0<c<16$ since μ is positive. The possible integral values of μ are $2,7,10,20,42,65,112$, and 255 . The corresponding values of m are 37, 127, 181, 361, 757, 1171, 2017, and 4591. However, since $t+2=20$ divides $m-1$, only $m=181$ or 361 are possible. If $m=181$, then $h=$
$181 \cdot 344 / 56$ is not integral. Hence, the only possibility is $\mu=20$ and $m=361=19^{2}$.

$4.6 G \simeq A_{5}$, or G is solvable of order 320 .

Proof. If $t=2$ and $\mu=1$, then $n=10$ and $|G|=60$. Since n is not a prime power, G is not solvable. The only possibility is that G is isomorphic to A_{5} acting on the unordered pairs of $\{1,2,3,4,5\}$. If $t=2$ and $\mu=2$, then $n=16$ and G has order 160 or 320. In either case G is solvable and so has a regular normal elementary abelian subgroup N of order 16. $H=G_{A}$ acts on N as a subgroup of $G L_{4}(2)$ of order 10 or 20 . The only possibility is $|H|=20$ and H acts on N as a degenerate Suzuki group $S z(2)$.

Suppose $t=2$ and $\mu=4$. Then $n=28$ and $|G|=1008$ or 2016. G is not solvable since $n=28$ is not a prime power. Consequently, G must have a normal subgroup N isomorphic to $P S L_{2}(7)$ or $P S L_{2}(8)$, and G is isomorphic to a subgroup of $\operatorname{Aut}(N)$. Since $\operatorname{Aut}\left(P S L_{2}(7)\right) \simeq P \Gamma L_{2}(7)$ has order $2 \cdot 168$ and $\operatorname{Aut}\left(P S L_{2}(8)\right) \simeq P \Gamma L_{2}(8)$ has order $3 \cdot 504$, this is not possible.

Suppose $t=6$ and $\mu=4$. Then $m=25$ and $q=12$ or 24 . Also, $\theta_{1}(1)=55$ and $\theta_{2}(1)=120$, where θ_{1} and θ_{2} are the two nontrivial constituents of the permutation character of G acting on $\mathscr{G} . \theta_{1}$ and θ_{2} are integral characters, and $\theta_{1}+\theta_{2}$ vanishes on $M^{\#}=M-\{1\}$. Assume $q=24$. Then all elements of M^{*} are conjugate. Hence, there is an integer b such that $\theta_{1}(g)=b=-\theta_{2}(g)$ for all $g \in M^{*} .\left(\left.\theta_{1}\right|_{M}, 1_{M}\right)_{M}=2+b+[(5-b) / 25]$ and $\left(\left.\theta_{2}\right|_{M}, 1_{M}\right)_{M}=$ $5-b-[(5-b) / 25]$ are nonnegative integers. The only possibility is $b=5$. But then $\left(\left.\theta_{2}\right|_{M}, 1_{M}\right)_{M}=0$, whereas by Frobenius reciprocity $\left(\left.\theta_{2}\right|_{M}, 1_{M}\right)_{M} \geqslant\left(\left.\theta_{2}\right|_{H}, 1_{H}\right)_{H}=1$. This contradiction shows that $q=24$ does not occur. A similar argument rules out $q=12$.

Finally suppose $t=18$ and $\mu=20$. In this case $q-m-1-360$ and $|R|=q / t=20$. Consider the action of $U=C_{G}(x)$ on the right cosets of $N=N_{G}(Q)$. According to 4.2(2), U acts doubly transitively on the 10 right cosets of N in U. Let \bar{U} denote the image of U acting on the right cosets of N. Since a Sylow 5-subgroup of Q is normal in Q and contained in R, \bar{U} has order 360 or 720 . The only possibility is that \bar{U} has a normal subgroup of index at most 2 which acts like $\operatorname{PSL}_{2}(9)$. But $P S L_{2}(9)$ has elementary abelian Sylow 3-subgroups, whereas \bar{U} has cyclic Sylow 3-subgroups. This contradiction shows that no groups occur in this case.

References

[^0]3. D. Gorenstein, "Finite Groups," Harper \& Row, New York, 1968.
4. M. Jr. Hall, "The Theory of Groups," MacMillan, New York, 1959.
5. D. G. Higman, Finite Permutation Groups of Rank 3, Math. Z. 86 (1964), 145-156.
6. D. G. Higman, Primitive Rank 3 Groups with a Prime Subdegree, Math. Z. 91 (1966), 70-86.
7. G. Higman, "Odd Characterizations of Finite Simple Groups," University of Michigan, 1968.
8. S. Montague, On Rank 3 Groups with a Multiply Transitive Constituent, J. Alg. 14 (1970), 506-522.
9. D. S. Passman, "Permutation Groups," Benjamin, New York, 1968.
10. D. Perin, Thesis, The University of Michigan, 1971.
11. T. Tsuzuki, On Primitive Extensions of Rank 3 of Symmetric Groups, Nagoya Math. J. 27 (1966), 171-178.

[^0]: 1. H. Bender, Doubly Transitive Groups with No Involution Fixing Two Points, to appear.
 2. W. Feit and J. Thompson, Solvability of Groups of Odd Order, Pacific Jour. Math. 13 (1963), 775-1029.
