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Abstract: To study the fcasibility of carrying out shell-model calculations in nuclei with active
protons and neutrons in different major shells, the following simple idealized model has been
studicd: (i) Proton and neutron configurations are chosen to be (fzp3py)7e and (3dsd ;54 )0,
so that results for the separate proton and neutron basis states to be used in any approximation
scheme can be compared with the results for exact shell-model calculations. (ii) The proton and
neutron single-particle energies for these active shells are scparately taken to be degenerate.
(i1i) The two-body interaction is approximated by the simple surface delta interaction (SD1).
To effect the scvere truncation of the full shell-model space needed to make such a shell-
model study possible the scparate proton and neutron parts of the shcll-model basis are built
from a superposition of the favored pair states of the SDI (with J #£ 0, as well as J = 0). In
the neutron configuration (gg_d;d..zxs.})“n”, for example only three of the 94 shell-model states
with J, = 2 are retained in the truncation scheme. In this highly truncated basis both the cnergies
and the strong B (Ek} values for the transitions from these states to similar favored states with
other J-valucs are within a few percent (or better) of the results of exact shell-model calculations.
A truncation of the shell-modcl space based on such superpositions of favored pair states leads
to a manageable shell-model basis (dimensions = 200). (a) The number of states in the
separate proton and neutron parts of the basis are small enough (8-13 for the proton space,
15--30 for the neutron space). They are also the key states in the following sense. (b) They include
the low-lying energy cigenstates of the separate p-p and n-n parts of the interaction. (¢) They
contain most of the collective coherence of the separate proton and neutron configurations.
(d) The matrix elements of the n-p part of the intcraction between the favored states are in
general very large compared with the matrix elements between a favored and an excluded state.
The latter cffect is studicd from several aspects, in particular in terms of sum rules for the matrix
clements of the surface multipole operators from which the n-p part of the SDI is built. For
most of the low-lying favored states the sum over all favored states gives more than 90 % of the
total sum rule for the squares of matrix elements of the surfacc multipole operators. The
results of shell-model calculations in this truncation scheme, with n, — 4 or 6, and n, = 4,
show many of the features of a quadrupole vibrational spectrum. The presence and exact
nature of a 0* member of the 0+, 2+, 4* “two-phonon triplet” is dependent on the inclusion
of the key favored statcs with senioritics of 6.
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tt Operated by the US Atomic Energy Commission under Contract with the Union Carbide
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1. Introduction

Nature has presented us with many striking examples of series of nuclei which
exhibit the transition from shell structure to collective behavior. Nuclei with neutron
numbers of 50 and 82, for example, are “good shell-model nuclei”, described well in
terms of the properties of a few protons distributed over a few active shell-model
orbits 7). As neutrons are added to these nuclei, however, the spectra take on a dis-
tinctly vibrational character, and, if a sufficient number of neutrons are added, the
spectra may even become rotational. At first thought it seems impossible that the
transitional region could be understood in terms of a conventional shell-model de-
scription since the dimensionality of the shell-model space becomes prohibitively
large with even a small number of both protons and neutrons distributed over rela-
tively few single-particle orbits. Any description in terms of a microscopic model,
however, must somehow be based on a shell-model framework. The question there-
fore arises: Can the shell-model space be truncated sufficiently so that the shell-model
calculations for such nuclei are technically feasible and, more important, are simple
enough to lead to an understanding of the transition from shell structure to collective
behavior?

For a nucleus in which protons and neutrons are filling different major shells, such
a truncation scheme must be built from a relatively small number of key many-particle
states of the separate proton and neutron parts of the configuration, where these key
proton and neutron states must satisfy the following requirements:

(i) They must include the low-lying energy eigenstates («) of the proton part of
the configuration, where these must have built into them a major part of the collective
coherence associated with the separate proton part of the configuration. Similar
requirements hold for the key neutron states (8).

(ii) The n-p interaction must act mainly within the subspaces () and (f); thatis, the
matrix elements of the n-p interaction between two key states must be large compared
with the matrix elements between a key state and one built from proton and neutron
states excluded from the sets («) and (8).

(iii) The total number of key states in the sets (o) and (f) must be small. Even
though the requirement of good total angular momentum and parity somewhat re-
stricts the way in which the states from the sets (2) and () can combine, if the di-
mension of the full shell-model matrix is to be of the order of 100-200, the number of
key states from each set cannot be more than 10-20.

It is the purpose of this investigation to show by means of a simple, idealized model
that these requirements can be met, and hence demonstrate the feasibility of carrying
out shell-model studies of nuclei in which protons and neutrons are filling different
major shells.

2. The model

It is the ultimate aim of this investigation to follow a sequence of isotopes such as
the Ru or Pd family as neutron numbers are increased, starting with N = 50. Such
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nuclei involve the proton configurations (p;p,fyg;)™ and neutron configurations
(g3dzd;s;hy )™ In the simplified model these will be replaced by (pyp,f;)™ and
(g;d;dgs,)™ with even numbers of protons, n, and neutrons, n,. Obvious simplifica-
tions result from the exclusion of the single-particle states of opposite parity. The
primary motivation for eliminating them, however, is so that results for any truncation
scheme can be compared with more detailed exact shell-model calculations. The model
Hamiltonian to be studied will incorporate the following additional simplifying as-
sumptions:

(i) The single-particle energies of the proton configuration are assumed to be
degenerate: similarly for the neutron configuration. Since the interest is in proton and
neutron configurations with fairly large numbers of particles this may not be too
drastic a zeroth approximation. The qualitative features of spectra with nucleon num-
bers near the half-full shell mark (unlike the spectra for very small numbers of par-
ticles or holes) are not influenced very markedly by the cxact nature of the single-
particle spectra.

(i) The effective two-body interaction is to be approximated by the simple surface
delta interaction (SDI) [ref. *)]. This interaction has served as a remarkably good
effective interaction in many regions of the periodic table. Moreover, its key low-lying
states have a remarkably large overlap with the corresponding state vectors calculated
with more realistic interactions [see, ¢.g. table 4 of ref. 7)]. Finally, its matrix elements
arc relatively simple functions of the quantum numbers, making it possible to study
many approximations in analytical form (e.g. requirement (ii) on the n-p interaction
can be studied in terms of sum rules for the matrix elements of the muitipole compo-
nents of the interaction).

3. Properties of the model

The properties of the SDI are well known * 7). It may, however, be useful to re-
view some features which are important for our model.

(a) In the limit in which the n-p part of the interaction can be imagined to be
turned off, the total seniority numbers for the separate proton and neutron parts of
the configuration are good quantum numbers. The spectrum for a fixed number of
particles n (n, or n,) therefore contains the spectrum for n—2 particles (which is re-
peated with no change in spacing of the levels), and a set of additional levels corre-
sponding to scniority v = n (v, = n, or v, = n,). In trying to identify the key states
(low energy, high collectivity) of the separate proton and neutron configurations, it
is thus possible to examine in succession the spectra for 2, 4, 6, . . . particles (protons
or neutrons). The goodness of the seniority quantum numbers also simplifies calcula-
tions since it is possible to determine the n-dependence of matrix elements by quasi-
spin techniques ®), where the quasi-spin raising and lowering operators are related
to the usual J = 0 coupled-pair creation and annihilation operators of ordinary
pairing theory.
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(b) Matrix elements of the SDI are functions only of j, provided the relative pari-
ties of the single-particle states of the configuration are the same. In a configuration
(f;fyp;ps) of identical particles the SDI acts only on two-particle states coupled to
a spin S = 0. For configurations of the type (g;d;d,s,), it is possible to assign to a
single particle in the doublet g;d; pseudo-orbital and pseudo-spin '~ °) angvlar
momenta | = 3and§ = }, and to a single particle in the doublet d;s; pseudo-orbital
and spin angular momenta ] = 1, and § = 4, with j = I+5. In our model, in which
the pseudo-spin orbit coupling in the configuration (g;d,d;s,) is neglected (that is,
the g; d, splitting and the d, s, splitting are neglected), the total many-particle pseudo-
spin S is therefore a good quantum number. For any seniority the states with § = 0
(even v) lie lowest in energy. Candidates for the key states of the separate proton and
neutron configurations should therefore be found among the states with § = 0. In
the spectrum of the configuration (g;d,d,s,)*, for example, there are 94 states with
J = 2. Of these there are only 18 with § = 0, L = J = 2. Although this is a consider-
able saving, a truncation in terms of S alone is not nearly severe enough for our
present purposes, and it is necessary to search for additional criteria or quantum num-
bers to isolate from among the S = 0 states the key proton and neutron states from
which the shell-model space is to be built. The additional criterion is to be found in
the notion of the favored pair 7).

(c) One of the characteristic features of the SDI when acting in configurations of
identical particles is that it favors one specific superposition of two-particle states for
each value of J (J = even only, if the singlc-particle states of the configuration all
have the same parity, as in the present model). In the two-particle spectrum only a
single one of the several possible states for each J-value (with J = L = even, § = 0),
is depressed in energy; all others have eigenvalues of zero. Moreover, the favored pair
state with J # O exhausts entirely the sum rule for a 2/ pole transition connecting it
to the J = 0, v = 0 ground state (in the approximation in which the radial matrix
elements of the 27 pole operator can be replaced by a constant, the so-called surface
multipole approximation *#)). In the two-particle spectrum therefore the favored
J s 0 pairs satisfy the two key requirements of low energy and high collectivity. In
the spectra with v = 4 the key proton and neutron states will be built from superposi-
tions of such favored pair states. Before proceeding, it will be useful to re-examine
some of the mathematics of the favored pair and surface multipole operators.

4. Favored pair and surface multipole operators

In the /—s (or the analogous pseudo I-§) coupling scheme, the favored pair operators,
7 *(JM ), can be constructed from identical particle pair creation operators, coupled
toS=0,L=J=c¢ven

[al+ X a;‘]L=-”WJ;S=1Vs=0 = Z <lml'm,lJMJ><'%n1s% - ms|00>a;nm, ali-m'—'ms 3 (1 a)

mmg
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by
d+(.hw) — Zq(O)(”:J)[a‘#- xa;JJM;OO, (1b)
nw
where
2+ DU +1)7E,
Oy = [(___] 101'0]J0>. e
gy 271 < |JO> (1)

Although our configurations are made up of pseudo [-5 doublets, tildes will be omitted
to simplify the notation. It will be quietly understood that all /-values are to be inter-
preted as pseudo-orbital angular momental; e.g. I = 3; 1in the g;d;;d,s, configura-
tion; and [ = 2; 0 in the fsp;;p; configuration. The /-values are those for a major
oscillator (or rather pseudo-oscillator) shell, with / (or 1) =1,,1,—2,...0(or 1)
where I,, denotes the maximum J-value of the shell. The superscript (0) on g denotes
the favored pair combination. The companion favored pair ananihilation operators
are defined by

AIM) = (S (IM)", @)

while the one-body operators which are the natural partners of these pair operators
are given by

QM) = Y (= 1)'q'O1J)/2[a;f x a,JF7IM:5=Ms=0, (3a)
with i
V2al xa, Y00 = F dml' —m'[IMD Y. ayn, @y (— 1) (3b)
Alternatively e "
o(JM) = ;\I/EEYJM(OI' ®;)» (3¢)

where the dependence on the coordinates of the ith particle is on the angular coordi-
nates of the spherical harmonics only. Hence Q(J/M ) has been named a surface multi-
pole operator ®); it is the 2’ pole operator in which the radial dependence has been
replaced by the constant /4.

The pair operators with J = 0 play a special role. They can be identified with the
quasi-spin raising and lowering operators. Specifically

Fo= L ato0), & =-1 400,
J2 J2

yo = %(Q(OO)_Q) = %(Nop_g)’ (4)
where Q is the pair degeneracy number: Q@ = Y (2/+1) = Y (j+1%); and where
L4, L, L satisfy the usual angular momentum commutation rules. The quantum
number ¥ associated with the operator 2 is related to the seniority quantum num-
berv by & = 1(Q—v), while M, = }(n—Q). (Note that both the terms “quasi-spin”
and “pseudo-spin” have been taken from earlier work; there should be no confusion
between the quasi-spin & and the pseudo-spin S. ) From the commutation properties
of the components of & with the operators /%, %/ and Q, it can be seen that these
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arc the three components of a rank-1 tensor in quasi-spin space. Specifically, the
tensor character of the operators is:

AHIM) =Ty o1, —QUM) =Ty, —(—1Y MII-M)=Ty _1, (5

where Ty ., denotes an operator which is a spherical tensor of rank J and spherical
component M in ordinary three-space, and rank .# and spherical component M,

in quasi-spin space, so that
[L+, Tiui] = (LFMNS Mo+ DI Ty vz (6)

This latter tensor property can be used together with the Wigner-Eckart theorem in
quasi-spin space to factor out the n-dependence of any matrix element in the seniority
scheme °).

In our model involving active protons and neutrons in different major shells it is
best to split the two-body interaction into p-p, n-n, and n-p parts

H=H, ,+H,+H,, @)

where the different parts of the interaction can be written entirely in terms of favored
pair and surface multipole operators

H (or H,,) = —1G Y A (IM)AL(IM), 3

where the favored pair operators are defined in terms of proton or neutron pairs,
respectively while
Hyp = G (~1)Q(kg)Q"(k ) O
q

where G is the common strength factor of the simple SDI. It is to be noted that the
n-p interaction involving particles in different major sheils has the simple form (9)
only if the interaction is the simple SDI with equal strengths in the two-particle states
coupled to isospin T = 0 and T = 1. (Note that this requirement has been relaxed
somewhat in the so-called modified surface delta interaction of Glaudemans et al. *°).)
Since the surface multipole operators Q(kq), like the favored pair operators, are
coupled to spin § = 0 (or rather § = 0), the n-p interaction of the simple form (9)
will, like the interactions H, and H,,, preserve the total pseudo-spins §p and S, of
the separate proton and neutron configurations. However, it is possible to modify
the strength factors of eqs. (8) and (9), using different values G, Gy, Gop (OF €ven
introduce a k-dependence into the coefficients G of eq. (9)), without changing the basic
symmetry which implies the goodness of §p and S,. More realistic forms of the n-p
interaction will in general include pseudo-spin breaking terms. Since the final states
with different values of §p or §, will be well separated in energy, the inclusion of such
pseudo-spin breaking terms will not change the essential thesis of this investigation,
provided their coefficients are relatively small compared with the coefficients of the
surface multipole terms of eq. (9).
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Since the two-body interaction of our simplified model is built entirely from favored
pair and surface multipole operators, it is natural to ask whether these operators form
a familty closed under the commutation process. For example

(2 + D)2k + 1))}

[Q(ka). 5 (IM)] = 3.2 [ e

} (IMkqld'M’>

< 3 Ll xal 0 [ 3 (=090 a0 ||| 2 o)

Ll

For values of I, and /, small enough such that /, +k = [, 1, +J < [,,, where [, is the
maximum possible /-value in the shell under consideration (I = 1,,,/,~2, ...,0(or 1)),
the sum over / in the curly bracket can be carried out,

{3 ...} = JOk0'0>q (1, 1, J"), (10b)
!

and the pair built from 4 and g is multiplied with the appropriate factor ¢'®
(!41,J") needed to make the favored pair combination. With J = 0 (or & = 0) this
condition is met for all values of /; and /,. The commutator of Q(kq) with &/~ (00)
gives only the favored pair &7 * (kq), a result which has already been expressed by onc
of the egs. (6). With both J # 0, k # 0, however, and large values of /; and /,, there
will be missing terms in the /-sum in the curly bracket (the product of one Racah and
two Wigner coeflicients cannot be summed to yield the two simple Wigner coefficients
needed for the right-hand side of eq. (10b)), and the resultant pair operators will
nvolve contributions from pair combinations other than the favored ones. With
k = 2, for example, if the missing terms with / = [, +2 are added and subtracted in
the coefficient for the pair creation operators with I, = [,,, the above commutator
can be expressed in the form

[Q(29), & (IM)] =23 (IM2q|lJ' M"Y {20 )L (I'M)= Y [af x a,] ™50
J’ ) I

x[5(20 + D¢, L, +2, 2)g (1, + 2, lz,J){J 12 1J+2}}, v
2 m

that is, the commutator gives a combination of favored pairs .&*(J'M’) with
J' =J+2, J and J—-2, except for a few additional terms involving only pairs built
from single-particle states with /, =/, and I, =1,,...|l,—J'|. In a heavy shell
(corresponding to a large value of /,), in particular, these additional terms are small
compared with the dominant favored pair terms, so that the favored operators form
a family which to some degree of approximation is (almost) closed under the commu-
tation process. Similarly, the commutator of favored pair operators &/ with &7,
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which is

[ (I M,), M+(J1 M))] = 205,5,0M,M, g: [‘1(0)(”71)]2

-2 ; I My Ty —Molkgy(— 1) Y /2[a) x a), ] °°

13¢5

Aol 7 ensnens. )

can be written
[J‘/(Jz Mz), M+(J1 Ml)] = 20;,4,0m,M, Ez: [q(O)(”IJl)]Z
-2 ; M T, =M, lkgy(—1)Y2 "M {q“”(Jl J, k)Q(kq)— ; V2[a; x a, J«°
182

x z q(O)(”z]z)q(O)(lll Jl) {{21 ';lz IIC} [(2J1+1)(2J2+1)]*} s (13)

1>y

that is, the commutator of a favored pair annihilation operator with a favored pair
creation operator, yields, besides a constant term, a linear combination of surface
multipole operators, and a few additional terms which are one-body operators built
only from single-particle creation and annihilation operators with /,, = I, =|/,,+2-J,|
and /,, = I, =|/,+2—J,]. These additional terms can again be expected to become
relatively unimportant compared with the favored surface multipole operators in the
limit in which /,, becomes large and J, and J, are relatively small.

5. The key states of the truncation scheme

The key states of the separate proton and neutron configurations should ideally
satisfy the following criteria. They should be limited to a relatively small set of states
dy, %y, . . . &y and By, Ba, . . ., By Which are eigenstates of H,, and H,, respectively,
with the following properties: They must have (i) low energy and (ii) the matrix ele-
ments for any surface multipole operators should satisfy the condition

HIQP(RNIx> =0, <R (R)IIBD = O (14)

for any proton state y excluded from the set («), and any neutron state y excluded
from the set (). If satisfied exactly, condition (2) would imply exact truncation of
the shell-model space for our simplified model Hamiltonian. If satisfied only approxi-
mately, conditions (2) will nevertheless lead to a very good approximate truncation
of the shell-model space if the states y; lie high in energy compared to the states in the
sets () and (f).
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5.1. STATES WITH v =2

Of the states with v < 2, only the favored pair states (with J = 0, 2,4, ... 21,),
are to be included in the sets (a) or (8). They are the only states depressed in energy.
The remaining two-particle states (all v = 2 states with § = 1, and all § = 0 states
other than the favored pair combinations) are not acted upon at all by the SDI and
form a degenerate sea above the favored pair states. These are the states to be excluded
from the sets of key states (%) or (B). Relative to these excluded v = 2 states, the
favored pair states have energies [see egs. (8) and (12)]

E, = —G 3 [¢OWI)" (15)

For major oscillator, rather pseudo-oscillator shells, with [ = /,, /,,~2,...,0 (or 1)
such as those of our model, these energies can be expressed in terms of /,, by

E, = —GQ,

E2=—GQ|:1— 3 ]
21,43

2
_Go [1—1—5~ 31, +91,,+2) ] ’
2 (21, +5)(21,+3)(2l+1)
where the pair degeneracy number 2 has the value 3(/,,+ 1)(/,,+2) in this case.

The favored pair state with J = 0 (v = 0) satisfies condition (2) above exactly. In
terms of the normalization coefficients N; for the favored pair states

|n = 2fav. JM) = N,/ *(JMO|)D,

E,

(16)

with

Ny=[2 ; LN, (17)
the reduced matrix elements of the surface multipole operators are
n(ZQ—n)} ¥2No(2k+1)* , (18)
2(2Q-2) Ny
where the n-dependent factor follows at once from a quasi-spin Wigner coefficient °).

Reduced matrix elements connecting favored pairs with J # 0 can also be written
in terms of /,,. For example,

(nv=2fav.J =2||0Q)|lnv = 2fav. J=2)

2 3 Q—n)
=10/l i— —2 =22, @9
V7[ 2(21,,,+3):| [Q—ZJ (192)
(nv =2fav. J=4||QQ2)|[nv = 2 fav. J=2)

{nv=2fav. k||Q(k)Ilnv =0J =0) = [

3

— 1— —2
10 _

= 6V— [1— 1503k, +5) ] 20y +3 ] [9—"} . (19b)
7 8+ 1531491, +2) Q-2

221 +5)2Ln+3)(21,+1)
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Matrix elements of the Q(kq) between a favored J # 0 pair state and an excluded
state with § = 1 are exactly equal to zero; while matrix elements between a favored
J # 0 pair state and an excluded state with § = 0 are in general small compared with
the matrix elements connecting two favored pair states; and very small in the limit
of rich configurations (large /,). This can be seen in several ways.

In the limit of large /,,, the commutator of a Q with a favored pair operator &7 *
will yield mainly favored pair operators, cq. (11), and the few additional terms will
have a small overlap with any one S = 0 state of the unfavored (excluded) variety.

To study the relative importance of matrix elements of Q it is useful to derive sum
rules for the reduced matrix elements, such as

Y <n = 2020 |Q(k)lln = v = 2 fav. J)*.
v'a'J’

Such sum rules will be discussed in detail in sect. 6. For the special case of the quad-
rupole operator and the favored v = 2, J = 2 state, they have been studied in detail
by Arvieu and Moszkowski *). (The present investigation was inspired in part by the
work of Arvieu and Moszkowski. Eqgs. (18) and (19a) can be found in somewhat
different form in ref. *); except for a disagreement in sign in the case of eq. (19a).)
For the favored state with » = 2, J = 2, the quadrupole sum over J' states of the
Jfavored variety only has a value of 100[1 — (a number which tends to zcro as /,, = «)];
see eqs. (18), (19) and (16), particularly for the nature of the /,, dependent terms. The
same sum over all states v’, ', J' other than favored pair states is a complicated func-
tion of /,, but a number which tends to zero as [, — 00. For/,, = 2, 3 and 4 it has the
values 3.12, 3.48 and 3.33, respectively. Although it goes to zero slowly as /, —» o
(for I,, = 10 it has the value 2.07), it is small compared with the factor of 100 which
appears in the sum over favored states. Even for /, = 2 or 3 (the cases needed in our
modet), therefore, the square of a matrix element of Q connecting a favored v = 2
state to any excluded v = 2 state must be expected to be only a few percent of the
square of one of the larger matrix elements, connecting a favored state to a favored
state.

Finally, for the v = 2 states it is of course easy to calculate a// such matrix elements
for the specific configurations of interest. For the (g;d;d;s,) configuration, for ex-
ample, there are, besides the favored pair states with J = 0, 2, 4 and 6, additional
v = 2 states with § = 0 and the following J-values: 0, 2, 2, 3 and 4. Let such excluded
pair states be expressed in terms of pair creation operators 4%%  with superscript
(a) = 1,2,... used to distinguish multiple occurrences of a given J,

lexcluded state n = v = 2, § = 0, JM) = N; A(JM)*|0)
= N, ¥ q®()at x at Ty, (20)
w
Note that a % 0 indicates an excluded pair state (427) while a = 0 indicates the

favored pair state A" = &/*; compare with eq. (1). For J-values for which there
is more than one pair state with @ # 0 the choice of ¢ with @ # 0 is made arbitrarily.



SHELL STRUCTURE TO COLLECTIVE BEHAVIOR 379

However, the ¢ must satisfy orthogonality conditions
S 4O NG ) = by s, alora’) =0,1,2,..., 1)
3153 21\7]
where N, eq. (17), is independent of a. The inverse of eqs. (17) and (20) is also useful:
[af xa; ™% = 2N} NLT(IM)+ Y, g9 NADIM)Y.  (22)
a¥0
In terms of this notation the reduced matrix elements of the surface multipole opera-
tors between two v = 2 states are

Knv' =2Ja'|lQk)llny =2 Ja) =

Q——n[ 4(2J'+1)(2J +1)(2k+1) ]
-2 4%, [q‘°’(ll’J)]2)(§ [4IT%)

@

For a matrix element connecting two favored pair states, @ = a’ = 0, the phases of
the ¢'® [viz.(—1)*®*¥*D]  are such that the three ¢(® factors in eq. (23), together
with the (— 1) factor, can be replaced by the absolute values of the ¢‘® factors, pro-
vided the matrix element is multiplied by an overall phase factor (—1)¥/*/*®
Moreover, the magnitudes of the factors ¢ (I’ J) with J # 0 are very mild functions
of [, I’ and J. (For the pseudo f-p shell with [, = 3, e.g., they vary between 1.095 and
1.366). Finally almost all of the 6-j symbols needed in the /-sums of eq. (23) are posi-
tive. The matrix clements connecting two favored pair states, @ = @' = 0, are thus
built from coherent superpositions of terms of comparable magnitudes, and hence
such matrix elements are large. With a = 0 and &’ # 0, however, the orthogonality
requirement (21) insures that the /-sums now give an incoherent superposition of
terms of comparable magnitudes, so that the cancellation of positive and negative
terms leads to the small values of the matrix elements connecting a favored state
(@ = 0) to an excluded state (a’ # 0).

x ¥ (= 1)'q O, k)q (1, 1, 1) (11,7

1155

5.2. THE v = 4 STATES

In the case of the states with v = 4 (the next set to be considered) the separation
into the two sets, favored and excluded, is less obvious. The large number of states
with § = 1 and § = 2 must clearly be excluded (they lie high in energy and have no
connections to favored v = 2 states via matrix elements of the surface multipole
operators). Since there are a large number of states with v = 4 and § = 0, however,
the additional criteria of low energy and high collectivity must be used to isolate the
key favored states. For the (fyp;p,) proton configuration of our model there are 12
v = 4 states with § = 0, with J-values: 0, 1, 2%, 3%, 4%, 5 and 6. For the (g;d;d,s,)
neutron configuration on the other hand, there are 86 v = 4 states with § = 0, with
J-values: 0%, 16,215 311 416 511 610 75 85 9 and 10. In these cases it is in principle
still possible to diagonalize the full Hamiltonian and calculate all matrix elements of
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surface multipole operators to choose the key states from among the many v = 4,
S = 0 states by a process of elimination. The full spectrum of v = 4 states for the
(3 3 1) configuration is shown as part of fig. 1. For the ( % § §) configuration the
low-lying v = 4 states are shown as part of fig. 2. The exact eigenvalues of the Hamil-
tonian (8) were calculated with the Oak-Ridge-Rochester shell-model code **). (For
the (3 3 4) configuration they have already been given by Arvieu and Moszkowski °).)
Clearly such a process of trial and error will no longer be feasible in the case of richer

_4.—
T (231
(3 3)
-6k e85
$=0
- . S =0 Favored
_ek
853 3
E F
G I Y-
1ok Rrrrrerrerereed oy
22804800 -996 [99516*
-1029(-10.29) 6*
J: 021224324 * —
<§=I. Felas ~11.35 FI11.061
-12+ oA A A r——— 4+
§.0:C=0,2 ~11.96 [-11.49]
-1273(273)L1273] 4+
= a* *Szoorzee 3
*T3a3 .
-lar- 1398 (138536912 —— ¢
1416 14091
r 20 v=6
*T5.43 v=4
_|6.—.
v=2
+
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Fig. 1. The spectrum for the configuration (f..«fpip%)G. Levels with § = 1 are indicated by dotted
lines, levels with § = 0 by solid lines. Favored states to be retained in the truncated shell-model
space are indicated by an additional dot. Numbers below the levels are exact cigenvalues. Numbers
in parenthcses are eigenvalues of H in the truncated subspace of favored v = 4 states constructed
from favored J 40 pairs according to egs. (24)-(26) (see table 4; notc that E(n =6,
v =4) = [E(n = v = 4)—6]). Numbers in square brackets arc cxpectation valucs of H in states
obtained by seniority projection techniques from single states built from the lowest favored J 0
pairs, as discussed in sect. 7.
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Fig. 2. The spectrum for the configuration (g_%d,}d%s%)‘. Only the lowest v = 4 states are shown.
Numbers below the levels are the exact eigenvalues. Numbers in parenthess are ¢igenvalues of H
in the truncated subspace of favored v = 4 states constructed from favored J = 0 pairs according to
eqs. (24)-(26) (sec table 3). Numbers in squarc brackets are expectation values of H in states
obtained by seniority projection techniques from single states built from the lowest favored J % 0
pairs, as discussed in sect. 7.

configurations or larger numbers of particles (higher seniorities) so that good approxi-
mation techniques must be developed to isolate and construct the key states to be
selected for our truncation scheme. The importance of favored J s O pair states will
again be used. It will be shown that the key v = 4 states can be constructed to very
good approximation from superpositions of favored J # 0 pair states. Let 11T xJ2]
IM,> be a normalized four-particle state constructed by coupling two favored J # 0
pair states:

(L x UMy = N(J T, 1) Z I M J, MZ[I‘WI>M+(J1 1”1)”%-’2 M,)10, (24)

MM
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where N(J,J/,7) is a normalization factor. Such a state will be a superposition of
v =4, v = 2and (for I = 0) v = 0 states. However, it is possible to construct pure
v = 4 states from linear combinations of such states

o = 4bIM)> =Y O, J,DI[J, x I, UM, (25)
Jad>

if the coefficients ¢”(J,J,1), b = 1,2, ..., are chosen such that the resultant four-
particle states are free of favored pair states coupled to J = 0; that is

Z00) Y O I, DI, x T, IMy = 0. (26)
JiJ2

The result of acting with .27(00) gives a combination of the various two-particle
states with § = 0 and J = I; so that the requirement (26) gives a number of condi-
tions on the ¢(J;J,7) equal to the number of independent two-particle states with
S=0and L=J =1 In the (3 53 4$) configuration, e.g., the favored J # 0 pair
states have J; (or J,) of 2, 4 and 6. The vector coupling triangle conditions A(J,J, 1)
restrict the possible number of combinations. In addition, states (24) with J; = J,
and 7 odd would be identically zero. For I = 3, e.g., only the combinations [J, x J,]
= [2x 4] and [4 x 6] are possible, while the relation (26) leads to a single condition
on the coefficients ¢(J, J, ) since there is only a single two-particle state with § = 0,
J = 3 in this case. Thus there is a single favored v = 4 state with / = 3 which can be
built from superpositions of favored J # 0 pairs. Table 1 shows the arithmetic for
the construction process for the (33 $1) configuration and gives the number of
favored v = 4 states for each of the possible I-values. Table 2 gives similar results for
the (3 3 1) configuration. The favored v = 4 states built through this process must of
course be linearly independent. For very high 7/, in particular, the requirement of

TABLE |
Favored v -- 4 states for the (3 § $ 3)* configuration

I Number of [J; XJ2] Number of Number of favored
combinations conditions v = 4 states

0 3 2 1
2 5 3 2
3 2 1 1
4 6 2 4
5 3 0 3
6 5 1 4
7 2 0 2
8 4 1%) 3
9 1 0 1
10 2 12) 1

22

*) From the requirement of linear independence.
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TABLE 2
Favored v = 4 states for the (§ 3 1)* configuration

I Number of [J; XJ3] Number of Number of favored
combinations conditions v = 4 state
0 2 2 0
2 3 2 1
3 1 0 1
4 3 1 2
5 1 0 1
6 2 12) 1

) From the requirement of lincar independence.

independence may add conditions over and above those of egs. (26) (see table 1).
For the (3 % 3 1) configuration this construction process for the favored v = 4 states
leads to a single state with I = 0, none with / = 1, two with I = 2, one with I = 3, four
with I = 4, etc. It is interesting to note that among all of the low-lying states with
v= 4 (fig. 2), there is a single one with I = 0, two with I = 2, one with I = 3, three
with I = 4 (the fourth one lies somewhat above the highest v = 4 states shown in
fig. 2) etc. To see whether the favored v = 4 states built from a superposition of
favored J # 0 pairs are indeed good approximations to the exact low-lying eigenstates
of the Hamiltonian (8), this Hamiltonian has been diagonalized in the subspace of
favored v = 4 states. Note that this is a highly truncated subspace. In the configura-
tion (% § 3 4)* there are, e.g., 94 states with 7 = 2. Of these 86 are states with ¢ = 4.
Of these only 15 have § = 0 and finally, of these only two can be built from super-
positions of favored J s O pairs and are to be retained in the truncation scheme. The
eigenvalues of H in the truncated subspace are shown in figs. | and 2 in parentheses
alongside the exact eigenvalues (from a diagonalization of H in the full space). The
agreement between the two is very good and spectacular in many cases, particularly
for the lowest eigenvalues of a given 7. It must therefore be expected that the v = 4
states built from superpositions of favored J = 0 pairs according to the prescription
(24)-(26) are very good approximations to the exact eigenvectors for the low-energy
v = 4 states. The eigenvectors of the favored v = 4 states in the truncated subspace
are shown in tables 3 and 4 for the (3 3 4) and (3 3 %) configurations, respectively.
These cigenvectors form an orthonormal set (they are eigenvectors of the Hermitian
operator H ); although state vectors |[J; x J,1IM,> and |[J; x J;1IM, ) arc not ortho-
gonal to each other and frequently have large overlaps. (Since these overlaps are also
related to the 4 — 2 x 2 particle fractional parentage cocflicients, they are numbers
basic to the technique of calculation used in this investigation; see appendix A.) To
further test the goodness of the eigenvectors of tables 3 and 4 it might be interesting
to calculate their overlaps with the eigenvectors of the full shell-model space. Since
matrix elements of the surface multipole operators are the crucial numbers of our
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model, we have chosen instead to compare the reduced matrix elements for Q(k) as
calculated with our approximate state vectors (eigenvectors of H in the truncated
subspace of favored v = 4 states) with those calculated with the exact eigenvectors
(eigenvectors of H in the full space). Some sample comparisons are given for the two

TABLE 3
Favored v —= 4 states for the configuration (% § § $)*4

I b?) Ey J1J2 22 24 44 26 46 66

o 1 —12.03 0.4971 ~0.6008 0.1358

2% 1 —14.04 0.8052 0.2976 0.0357 0.1691 0.0280

2% 2 —10.46 0.1898 —0.2874 —0.8452 0.0360 0.1918

3+ 1 —12.29 0.9374 0.2166

4+ 1 —13.29; 0.8381 0.1417 —0.1049 --0.2362 0.1165 —0.0517

4+ 2 —11.64 0.0576 0.5865 —0.1246 0.6253 —0.0688 —0.0164

4+ 3 — 9.43 0.0146 0.3779 0.7797 --0.2527 —0.1886 —0.0883

4+ 4 — 5.34 0.0329 0.0647 0.3638 0.1523 0.7418 0.6015

5* 1 —10.83 0.9068 -~0.4028 0.1120

5+ 2 —10.35 0.4221 0.8545 —0.2215

5% 3 -— 6.07 0.0217 0.3424 0.9741

6% 1 --10.36 0.6427 0.2071 0.3180 -—-0.2523 0.0982

6+ 2 — 8.51 --0.0343 0.7945 —0.5055 0.0109 0.0438

6+ 3 — 6.92 0.0421 0.2906 0.4887 0.7987 —0.1176

6t 4 — 4.27 0.0681 0.1659 0.1253 —0.2075 —0.9776

7+ 1 — 8.62 1.0015 --0.0968

7t 2 — 0.62 0.0328 0.9974

8+ 1 — 8.13 0.3597 --0.7705 —0.0373

8+ 2 — 7.44 1.1221 0.9040 0.0533

8t 3 — 3.95 0.5301 0.4635 1.1383
2) The label b orders the cnergies: 6 — 1,2,... for the lowest, next lowest, ... cigenvalucs,

Ly, of H in the subspace of favored ¢ — 4 statcs.
The table gives the cocfficients ¢®(J,J,T) for:

lo =4, IM/ by = Y ¢P(J I, DT x J)IMD.

JiJ2

TaBLE 4
Favored v — 4 states for the configuration (3 § $)*

1 b Epp i 22 24 44

2 1 —7.93 0.6889 0.4823 0.0265
3 1 ---6.86 1

4 1 -6.73 0.6958 0.3630 —0.2029
4 2 —-3.47 0.0890 0.5160 0.9187
5 1 —5.14; 1

6 1 —4.28¢ 1 {(or0) 0 (or1)

The table gives the coeflicients ¢ (J, J,I) for:

v =4;IM;b) =Y PJ,J,DI[J, xJ,]IM).
JiJ2
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configurations of our model in tables 5 and 6. It can be seen that the two sets of num-
bers are in very good agreement, particularly for the larger values of the reduced
matrix elements, for which the numbers calculated with the approximate eigenvectors
of tables 3 and 4 are always within a few percent of the exact values. The technique of
choosing the favored v = 4 states in terms of appropriate superpositions of favored
J 5 0 pairs thus not only gives a ready prescription for isolating the low-energy v = 4
states but gives us a simple and excellent approximation scheme. A slightly different
but closely related technique based on seniority projection from a single state
[[Jy % J, UM, > will be discussed in sect. 7. The question remains whetber the favored
v = 4 states of tables 3 and 4 satisfy the crucial condition (2) of eq. (14). Are these
favored states the only ones with important connections to the favored v = 2 states via
large matrix elements of the surface multipole operators? The v = 4 states excluded
from the favored class lie higher in energy; but do they have only weak surface multi-
pole matrix connections to the key states retained in our truncation scheme? These
conditions are indeed satisfied. For the richer configurations (large /,), this can be
seen qualitatively from the general commutation properties of the favored pair and
surface multipole operators, eq. (10). A more quantitative estimate of the relative
magnitudes of favored — favored versus favored — excluded matrix elements can
be given in terms of multipole sum rules to be presented in sect. 6.

TABLE §
Reduced matrix elements <v'I'{|Q(k)|{vI) for the (§ § 3)* configuration

Samplc comparisons between exact and approximate calculations

kK v v I I exact approx. kK v o I' I ecxact approx.
2 2 0 2 0 4.276 4.276 4 2 0 4 0 3.703 3.703
4 2 2 2 4.82 4.89 4 2 2 2 2.02 1.99
3 2 0 0 302 3.52 3.53
4 2 5.80 5.81 4 2 2.21 2.21
5 2 3.71 3.71
2 4 3.13 3.09 6 2 1.82 1.82
3 4 545 —5.48
4 4 3.42 3.43 2 4 0.73 0.55
5 4 =574 —5.74 4 4 245 —2.43
6 4 2.82 2.82 6 4 6.31 6.31
4 4 3 2 6.60 6.47 4 4 3 2 --122 —1.28
4 2 --141 —1.47 4 2 4.06 4.13
5 2 0.81 0.84
4 3 2.63 2.51 6 2 -—1.82 --1.73
S 3 —447 —4.41 4 3 2.37 2.39
S 3 —-093 —0.85
5 4 2.19 2.25 6 3 1.62 1.80
6 4 5.57 5.55 S 4 =502 —4.99
6 5 —6.03 —6.03 6 4 0.23 0.31

The calculations marked “approximate’ have used the v — 4 state vectors of table 4. Only v = 4
states with & — 1 are included in the table.
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TABLE 6

Reduced matrix elements (v'1°d°(|Q(k)||vIb) for the (3 § § $)* configuration

Sample comparisons between exact and approximate calculations

k v o I’ ¥ I b exact approx. kK v v I' b I b exact 4approx
22 0 2 0 4.869 4.869 4 2 0 4 0 5.021 5.021
2 4 2 01 2 1.73 1.68 4 4 2 2 1 2 1.37 1.43
2 1 2 5.18 5.17 2 2 2 —1.30 —1.18
2 2 2 0.91 1.05 31 2 —3.68 —3.73
31 2 0 0 4 1 2 0.93 0.95
4 1 2 6.78 6.79 4 2 2 2.90 2.95
4 2 2 0.62 0.58 4 3 2 1.59 1.67
4 3 2 0.0 —0.06 51 2 —3.98 —4.11
52 2 -2.18 —1.95
2 4 2 2 1 4 1.78 1.86 6 1 2 3.63 3.64
2 2 4 —1.69. —1.54 6 2 2 0.22 0.22
31 4 4.79 4.86
41 4 1.21 1.23 4 4 2 2 1 4 0.24 0.32
4 2 4 3.77 3.84 2 2 4 —4.10 —4.35
4 3 4 2.07 2.17 31 4 0 0
51 4 5.18 5.35 4 1 4 —1.23 —1.21
5 2 4 2.84 2.54 4 2 4 —0.83 —0.88
6 1 4 4.72 4.73 4 3 4 4.10 5.12
6 2 4 0.30 0.28
4 4 4 41 0 1t 1.95 2.00
2 4 4 01 2 1 276 =255 4 2 0 1 1.92 1.86
2 221 -—1.8 —1.80 4 3 01 -268 =279
31 2 1 6.52 6.70
4 1 2 1 =310 —3.06 2 2 2 1 1.78 1.66
4 2 2 1 4.15 4.10 31 2 1 —062 —0.63
4 3 2 1 1.29 1.32 4 1 2 1 5.33 5.43
4 2 2 1 4,06 3.89
2 4 43 1 41 —046 —037 4 3 21 —099 —0.67
4 2 4 1 1.72 1.75 51 2 1 —079 -—0.55
4 3 4 1 0.56 0.80 5 2 2 1 5.29 5.19
51 41 3.37 3.47 6 1 2 1 —047 --0.35
52 4 1 1:.19 0.99 6 2 2 1 —2.60 --2.58
6 1 4 1 8.51 8.50
6 2 4 1 0.20 0.18

The calculations marked ‘“approx.” have used the ¢ — 4 statc vectors of table 3.

‘Finally, the total number of favored v = 4 states to be retained in the truncation
scheme is not unreasonably large. In the (% § $ §) shell there are altogether 22 v =
states which can be constructed from superpositions of favored J # 0 pairs (table 1).
A few of these, particularly a few of those with large 7, lie relatively high in energy and
have no important surface multipole connections to low-encrgy favored states so
that they can also be excluded. In the final calculations only the 13 v = 4 states shown
in fig. 2 have been retained in the truncation scheme.
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6. Multipole sum rules

To estimate the relative importance of matrix elements of the surface multipole
operators connecting a favored state to an excluded state versus those connecting
favored states to favored states, it is useful to calculate sum rules for these reduced
matrix elements, such as

Y o' I Q(k)||nv fav. JY* = S(v'vJ), 27)
x’J’

where the states in the right-hand side of the matrix element is a particular state of
the favored variety, while the sum is over all states J', «’ for a fixed v’. Such sums are
calculated from the relation

Y. (nv'a'J'||Q(K)]|ne fav. JH?
v'x’J’
= (2J+1)Cnv fav. J| Y (= 1)10(kq)Q(k — q)|nv fav. J). (28)

The sum can then be restricted to particular values of v’ by successive choices of n
and with the use of quasi-spin techniques. For the special case k = 2, v = 2, J = 2
(favored state) these sums have been given by Arvieu and Moszkowski ®) using the
above technique.

Since the n-p interaction of the SDI involves all possible surface multipole operators
with equal weight, it may be most instructive to give a sum rule of the above type
which involves a sum over the multipole order k as well. Such sum rules are partic-
ularly simple. Since the operator Q with kK = 0 is just the number operator (with
diagonal matrix elements only), it will be excluded in order to obtain the most critical
estimate of the relative importance of favored — favored versus favored — excluded
matrix elements. For the favored states with v = 2 the sum rules are,

for v = 2 > v = 2 connections:

Y, YAnv' =2aJ|QK)|n v = 2 fav. J)?

k#0 z'J’

Q—n\? 1 ]
=|—} 27+ 1)(Q-2){1+ = ©Oarazt, (29
(55) 2+ n@-2 1+ Lo o], 9
for v = 2 - v = 4 connections:

Y S nv =4dJQK)|Inv = 2fav. J>?

k¥0 2'J’

 [(1—2)(2Q—n—2) Q-3 i ooy 1e a2
- [ s }4(2JT1)Q-_—2{9+ o7 2 Laar)] } (30)

Here, Q is again the pair degeneracy number, Q = Y (2/+1). The n-dependent factors
follow from quasi-spin Wigner coefficicnts 6) and show the increased importance of

the v = 2 — v = 4 relative to the v = 2 - v = 2 connections as n approaches the
middle of a shell, n - Q.
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Sum rules for a fixed multipole order k can also be given although they are much
more complicated than the simple results of egs. (29) and (30). The case k = 2 may
be of greatest interest, since the quadrupole operators may be the most important (the
real n-p interaction may have more quadrupole content than indicated by the SDI
which gives equal weight to all multipole orders). For the special case of a major
oscillator (or pseudo-oscillator) shell with /-values: /,, /,—2, ..., 0 (or 1), sum rules
for the lower favored states with v = 2 are:

(i) J = 2; v = 2 —» v = 2 connections:

Y(nv' =2a'JQQ0Nnv = 2fav. J = 2)°
2'J’

_ 2
=(g ;)5[16 155, +7) 301, __3_0_7___+_1_2_]

2020, + )2l +3)  (2h+1)(20+3)? 20,41 20,43
(31)

(ii) J = 2; v = 2 > v = 4 connections:

Y inv' =4aJQ@)nv = 2fav.J = 2)?
a'J’
[(n 2)(2Q-n— 2)} {89(392—9Q+7) [1 3 }

2(22-6) (@—-1)(Q-2)° 21,+3
_40(9—1)[1_ 3(51,,+7) }
(Q-2)* 4(21,,+1)(21,,+3)

_ .40 [1— 3 . 3 2]} s (32)
(@-2)° 2L, +1 (2L, +1)(21,+3)
(iii) J = 4; v = 2 - v = 2 connections:

Ynv =24JQ@)nv = 2fav.J =4Y* =9 (9———2)2[20—30F(I,,,)], (33a)
'’ Q-2

where F(/,) has been introduced for short-hand notation,
F(L,) = 221, +5)(2l,+1)
" [2(26,+5) (2L, +3) (2L, + 1) = 15(312+91,+2)]
9 {2_ [59(2213,+207l,f,+3951,,,—— 168)(21,,,_+ 3)—9001,,,(1,,,+3)]}
421, + 7)1 + 5) (2l +3)* (2L, + 1)(21,,— 1) ’

(33b)

(iv) J = 4; v = 2 - v = 4 connections:

Y(nv =4aTNQQR)no =2fav. J = 4)°
a’'J’

- [ AN )
40

-2 ("')_(Q— 2)?

[2— 3F(1,,,)]} (342)
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TABLE 7
Sum rules ?)

Sum rule V=2 v =4 v 2 v =4
case Yk #0 Yk #£0 k = 2 only k = 2 only

hell

j==1%3s
J=2 94.1% 97.9% 92.5% 96.8 %
J =4 77.6% 94.8% 97.3% 99.4%
j=3%3%3%shell
J =2 93.9Y% 95.5% 93.4% 98.8%
J=4 88.0% 94.7% 93.6 % 95.6 %
J=6 66.0% 922% 96.0 %

?) Defined as
, v ,0=242
Y @PINQUNIEY S
fav. states only

pReHI[(]3] s
alla’d’

where F(/,) is given by eq. (33b), and

2 -1
G(l,) = [1_ 15312491, +2) :I
2(2L,,+5)(21,,+3)(21,+ 1)
3 2 _
8 { (o3 151,(374,+1301,+431,—98) } . (34b)
20,+3  8(2L,+5)(2l,+3)* (2L, + 1)(21,,—1)

Eqgs. (31) and (32) have been given in somewhat different form by Arvieu and Mosz-
kowski °). Part of the derivation of egs. (29)-(34) is sketched in appendix B insofar
as the techniques used are different from those of ref. *), and may shed some light on
the structure of the commutator algebra for the favored pair and surface multipole
operators.

Since the reduced matrix elements of Q(k) connecting any favored state to any
other favored state have been calculated explicitly, the sums over favored states only
(«'J’ = favored states only in egs. (27)) can also be calculated. The full sum rules of
eqgs. (29)-(34) (where the sums over «'J’ run over both favored and excluded states)
can be used to estimate the orders of magnitude of the neglected matrix elements of
Q(k) connecting a favored state to an excluded state. The results are shown in table 7
in terms of percentage ratios of favored state sums relative to full sums. Results are
given for the J = 2 and 4 favored v = 2 states of the (5 3 %) shell and the favored
J = 2,4 and 6 v = 2 states of the (3 §  }) shell, both for the pure quadrupole sum
rules (k = 2 only) and the sums over all multipole orders (other than k& = 0). The
percentage ratios are well over 90 9 in almost all cases. The excluded states make
important contributions to the sum rules only in the case of the favored pair states of
the highest J and here largely through matrix elements connecting these to excluded
states with o' = 2 through the highest possible multipoles (k = 2/,). Thus the major
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part of the missing 34 % of the ¢" = 2 sum rule for the J = 6 state of the (353 %)
neutron configuration comes via matrix elements of Q(6). However, matrix elements
with & = 6 do not enter into the calculation of the n-p interaction of our simplified
model, since the (3 4 1) proton configuration of the model has a maximum k-value of
4. The results of table 7 show in particular the small contributions made by excluded
states to matrix connections between the favored v = 2 states and the totality of
v = 4 states. In this case the sum over favored states soaks up all but a few percent
of the total sum rule. Since the number of excluded v = 4 states is much, much larger
than the number of favored v = 4 states, any one matrix element connecting a favored
state to a specific excluded state is likely to be very small and will in addition connect
states which are separated by large energy differences. Our prescription for separating
the v = 4 states into two sets, the favored states built from superpositions of favored
J # 0 pairs, and the states to be excluded from the truncated shell-model space,
should therefore be expected to be good.

Finally, some of the largest matrix elements of Q(k) involve connections between
favored v = 2 states and low-lying v = 4 states, particularly as » approaches @ (half-
full shell). It is therefore to be expected that there are equally important connections
between favored v = 4 states and certain v = 6 states, particularly if some of these lie
relatively low in energy.

7. States with v = 6; seniority projection techniques

In a rich configuration the number of states with v = 6 and § = 0 is very large.
In the (1 3 $ 4) configuration, for example, states with v = 6 and S = 0 include 18
states with J = 0 and 48 states with J = 2. Even if these were further restricted to
v = 6 combinations made up only of superpositions of three favored J # 0 pair states,
the number of v = 6 states would exceed the limits set by the requirements of the
truncation scheme. For states with v = 6 therefore very stringent requirements arc
needed to select from among the lowest energy states a very small number having
large multipole connections to the favored states of lower v.

In this connection it is useful to note that Arvieu and Moszkowski have suggested
that the lowest 2%, 47, 0* “triplet” of v = 4 states might be approximated well by
the v = 4 state projected from |[2 x 2]/M, ), with 7 = 0, 2 and 4. An examination of
the very lowest v = 4 states shows that they do indeed have very large overlaps with
v = 4 states projected from single states of the type |[J; x J,1IM, > involving only
the very lowest favored J # O pairs, such as |[2 x 2]IM; > and |[2 x 4]IM, . The three
lowest v = 4 states of the (3 § 2 1) shell (fig. 2) arc indeed 2%, 4* and 0%, with a
center of gravity at — 13.52 energy units (G), compared with — 13.33 units, the double
excitation of the favored J = 2 pair in the extreme “pairing vibration” limit *?). In
the (53 1) shell, 2* and 4" states are again among the lowest v = 4 states. The o+
“member of the triplet”, however, lies at somewhat higher energy (fig. 1) and
does not have particularly large Q(k) matrix connections to v = 2 states. (Ac-
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cording to our earlier prescription it has in fact not been included in the family of
favored v = 4 states). Nevertheless, in the limit of large /,, the work of Arvieu and
Moszkowski suggests that the lowest v = 4,0%, 2% and 4™ states might be approxi-
mated well by the v = 4 states projected from [[2 x 2]IM, ).

The seniority projection can be carried out by means of projection operators, For
example, the operator

1 2
P(v) = N{1— (Q—)d (00).%7(00) + 8(9—3)(—9—4) E:4 (00)] [/(00)]
1

T a8(@-2)(Q-3)(Q-4)

[%*(00)]3[&1(00)]3}, (35)

(N is a normalization factor) can be used to project a v = 6 state from an arbitrary
state with n = 6. Even simpler (and more direct) techniques employ overlaps of the
type {n = 4 valM,|[J, x J,]IM,) with v < 4 which follow directly from our method
of calculation. Details are given in appendix A; egs. (A.9) and (A.10) give general
expressions for the normalized v = 4 vectors projected from a single state of the type
[[J; xJ MM, >. Numerical results are shown in table 8 for both the configurations
($3 1) and (3 3 31) for the v = 4 state vectors with / = 0, 2 and 4 projected from
[[2x2)IM, . For the richer (3 3 3 §) configurations, table 8 also shows the v = 4
state vectors for a 2%, 3*, 4% 5%, 6% multiplet projected from |[2x4]/M,;>. The
amplitudes of the components with v < 2, needed to subtract out the unwanted
v £ 2 content of [[J; xJ, IM,), are in general quite small, though by no means
ncgligible. The expectation values of the Hamiltonian (8) in these » = 4 projected
states are also shown in table 8 and are in general again in very good agreement with
the exact shell-model eigenvalucs (cf. figs. 1 and 2). In two cases, the 0" and second
2% states of the (3 5 3 4) shell, they seem to be in better agreement with the exact
eigenvalues than our earlier approximation, although in general the eigenvectors of H
in the truncated subspace of v = 4 states constructed according to egs. (25)-(26)
arc in better agreement with the results of the exact calculation. To further compare
the two types of approximations, table 8 shows the overlaps between the correspond-
ing state vectors. In almost all cases these overlaps are very close to unity, showing
that both approximation techniques would give acceptable state vectors for the fa-
vored v = 4 states to be retained in the approximation scheme. (It should perhaps be
noted that the v = 4 state with I = 2, projected from |[4 x4]2M ), has an overlap
of —0.971 with the second 2* v = 4 state of the (% § 3 ) configuration, compared with
the overlap of —0.513 for the v = 4 state projected from |{2x 4]2M ).) Undoubtedly,
the accuracy of these state vectors could be improved further by diagonalizing H in
a subspace of v = 4 state vectors projected from a few states |[J, x J,)IM,); e.g.
[[2x21IM; 5, |[2x4)IM;) and |[4 x4]IM,)>. Although the accuracy of such state
vectors would rival that of our carlier approximation and lead to overlaps closer to
unity between the two types of vectors, the method of calculation becomes somewhat
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more cumbersome, since the state vectors of the type shown in table 8 contain small
pieces of the v = 2 states, with @ # 0, which had previously been excluded from the
shell-model space. For v = 4 therefore, the favored states built from linear combina-
tions of states |{J; x J,1IM, ), (tables 3 and 4) are to be retained in our approximation
scheme; but they are preferred on grounds of simplicity as much as on grounds of
accuracy.

For v = 6, however, the seniority projection technique seems to afford the best
chance of isolating the small number of key states to be retained in the truncation
scheme. In a relatively rich shell the lowest v = 4 states are approximated well by the
v=42% 4% 0% triplet projected from |[2 x 2]IM, . It might therefore be expected
that the lowest v = 6 states could to a good approximation be projected from the
vector |[2x [2x2]I,1IM,), constructed from three identical favored pairs with
J = 2, where

s x [y xJ, UMy = N([J3x[Jy x I, ), ]0) Z IyM I M| ML)

M M>M3

X<J3M3112M12|IM1>°‘%+(J3M3)&[+(J1 MI)M+(J2M2)|0>' (36)

With J, = J, = J; = 2, the possible values of I are restricted to 0, 2, 3, 4, and 6
(the three-quadrupole phonon spectrum). (With J, = J, = J; = 2, states with dif-
ferent values of I,, have overlaps of 1 (or —1); expansions in terms of fractional
parents I,, are not needed since states (36) are automatically totally antisymmetric
in nucleons but totally symmetric in the identical J = 2 pairs.)

For the (3 3 %) shell the full v = 6 spectrum is known (see fig. 1). It is interesting
to note that the S = 0 part of the v = 6 spectrum contains each of the J-values 0, 2,
3, 4, 6 twice. No other J-values occur. The two 0, 4, 3, 6, 2 § = 0, v = 6 multiplets
are each other’s mirror image. The lower 0, 4, 3, 6, 2 multiplet lies in the region of

TABLE 9

The » == 6 § = 0 spectrum for the (2 3 })¢ configuration; comparison of exact cnergies with
expectation values of Hfor v — 6 states projected from !'[2X [2x2]1712 )

1 E (cxact) E (proj.) ®)
—14.161 —14.09
— 3.893

2 - 9.958 — 9.28
-~ 8.042

3 --11.347 (---11.06) ®)
— 6.653 - 6.74

4 —11.962 --11.49
— 6.038

6 -- 9.958 - 9.95
— 8.042

*) E(proj.) = <(P(v = 6)[2x [2x2] Lo 11} H |P(v = 6) 2X [2X2], 11>
®) For this entry: E(proj.) = (P(v = 6)[4x [2x2] 413| H |P(v = 6)[4x [2X2]43).
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favored v = 4 states. The lowest v = 6 0* state actually lies below the lowest v = 4
state. For the (3 § % 1) shell the exact eigenvalues of the full v = 6 spectrum have not
been calculated. However, the exact diagonalization has been carried out in the full
shell-model space for the 0* states. The lowest v = 6 0% state with S = 0 (at —22.895
energy units (G)) is almost degenerate with the favored v = 4 0% state (it lies 0.07
units of G below it); while the next v = 6 0% state lies above the main region of
favored v = 4 states (actually just below the 7%, 6% and 8* v = 4 states shown in
fig. 2).

In the (3 % }) configuration the v = 6 § = 0 spectrum, although quite simple, is
nevertheless rich enough to test the hypothesis that the key low-energy v = 6 states
should be given to good approximation by the v = 6 projections from |[2x [2x 2]
I,,)IM; . The details of the calculation for the seniority projection technique for
v = 6 states are given in appendix A. Results for the energies are given in table 9,
while the state vectors are shown in table 10. It can be seen that the expectation values
of H for the vt = 6 states projected from |[2 x {2 x 2]/,,]/) are in very good agreement
with the lower of the two exact eigenvalues for I = 0, 2, 4 and 6. For I = 3, however,
the v = 6 state projected from |[2x [2x2]2]3)> seems to approximate the higher of
the two / = 3 states, at —6.653 in units of G, the wrong one from the point of view
of our model. (The / = 3 state at —11.347 in units of G satisfies the criteria of (1)
low energy and (2) important multipole connections to favored v = 4 states.) The
difficulty may arise partly from the fact that the state {{2 x [2x 2]2]3) has very little
v = 6 content, compared with the corresponding states for I = 0, 2, 4 and 6. The
v = 6 content of the various states can be read off from table 10. (It is given by the
square of the inverse of the coefficient of the leading term.) Thus the states |[2 x [2x 2]
I,1I> with I = 0, 4, 6 and 2 have v = 6 components of the following percentages,
76.9 %, 52.5 %, 50.0 95 and 31.2 %, the remaining percentages being made up by the
components with v = 4. The state |[2x [2x 2]2]] = 3) on the other hand contains
only a 6.4 9 v = 6 piece. In general one might expect the v = 6 content in the states
[[2x [2x 2]1;,11) to increase in richer configurations (larger values of /,,). The four-
particle states |[2x2]/M, >, for example, are more nearly pure » = 4 states in the
richer configurations. The state |[2x 2]/M, ) with I = 2 contains only a 4.6 %, piece
with » = 2 in the (3 §  §) shell, compared with 16.5% v = 2 content in the (3 3 %)
shell. For I = 4, the corresponding numbers are 3.8 %, and 13.4 % (see table 8). It is
nevertheless possible to find an / = 3 state built from a superposition of three favored
J # 0 pairs with a large v = 6 component. As an example, the state |[4 x [2x 2]4]3)
has a v = 6 content of 69.8 %. The full v = 6 state projected from this state is also
shown in table 10. Moreover, the expectation value of H in this v = 6 state is in good
agreement with the exact eigenvalue for the Jower of the two [ = 3 v = 6 states (table
9) and the state vector is a good approximation for the corresponding exact eigen-
vector. To test the goodness of the v = 6 state vectors projected from |[J x [2x 2]
1y2]7> the matrix elements of the surface multipole operators have again been cal-
culated both with the exact eigenvectors (from the diagonalization in the full shell-
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TasLE |1
Reduced matrix elements <v == 4 I'|Q(k)i|v = 6 I> for the (§ § 1)® configuration; comparison
between exact and approximate calculations

k r 1 exact approx. k I’ I exact approx.
2 2 0 —4.74 —4.66 4 4 0 —2.27 —2.25
2 2 4 —5.99 —6.13 4 2 4 —2.21 ---2.26
3 —3.84 —3.81 3 4.66 4.64

4 —6.38 —6.37 4 —4.57 —4.43

5 —3.64 —3.42 5 --1.92 —1.73

6 —6.05 —6.04 6 1.69 1.94

2 2 3 —0.24 —0.52 4 2 3 3.09 3.18
3 6.72 7.06 3 —0.91 —0.84

4 0.00 0.06 4 —3.71 —3.69

5 - 4.17 - 4.15 5 2.18 2.28

6 —1.50 --1.37

The matrix elements shown are those for the 3 lowest v —= 6 states with 7 = 0, 4 and 3; and the 5
lowest favored v = 4 states, with I’ —= 2, 3, 4, 5 and 6. Calculations marked ‘‘approx.” have used
the v = 4 state vectors of table 4, with 5” = 1; and the v = 6 state vectors of table 10, the latter
being projected from |[2 X [2X2}y2 1) for I — 0, 4 and from [[4 X [2Xx2]4]3> for I = 3.

model space) and with the » = 6 states constructed by means of the seniority projec-
tion technique. Some sample comparisons are shown in table 11. The good agreement
between the two sets of numbers shows that our method of construction gives an ex-
cellent approximation scheme for the key states of the v = 6 § = 0 spectrum.

Experience with the simple (3 4 1) configuration shows that it may be necessary to
resort to some process of trial and error in finding the v = 6 states corresponding to
the key low-energy states of the spectrum. By projecting the v = 6 pieces out of a few
states built from superpositions of favored J # O pairs, such as |[2x [2x2]{,]I,
[[4x[2x2],,)I> and possibly also [[2x [4x4]f;,]I), it is possible to find good
approximations for the eigenvectors corresponding to the lower v = 6 eigenvalues
for each I. The accuracy of these eigenvectors could be improved further by diago-
nalizing H in the 2 x 2 (or possibly 3 x 3) subspaces of the vectors |[P(v = 6)[2 x [2x 2]
1,1, [P(v = 6)[4x [2x2]1,,]1) (possibly including |P(v = 6)[2x [4x4])1,,1>).
The details for the construction of high-seniority states for the richer configurations
will be left to a subsequent investigation.

8. Shell-model calculations

Without considering the highest seniorities, it will be interesting to see whether the
simplified model of this investigation throws some light on how a nucleus begins to
make the transition from shell structure to collective behavior. For this purpose the
Hamiltonian of the model, egs. (7)-(9), has been diagonalized in the truncated shell-
model space for the configurations (f; p,p;)"(g;d;d;s,)™ for two cases; n, = n, = 4
and n, = 6, n, = 4. The truncated shell-model basis is made up of the favored v = 4
states of tables 3 and 4. In the (3 3 1) shell the highest v = 4 state of table 4, with
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I = 4, has no large surface multipole connections to the favored J = 2 pair state. (If
this high v = 4, I = 4 state is excluded, the sums of table 7 to the favored J = 2 state
are reduced by only about 2 9 while the sum to the favored J = 4 state is reduced
by 13%.) For this reason the v = 4 proton part of the truncated shell-model
basis has been restricted to the proton states with b = 1 only; i.e. the five
lowest states of table 4 with I, = 2, 3, 4, 5 and 6. For similar reasons the 22 favored
v = 4 states of tables | and 3 have been restricted to the 13 states with v, = 4,1, < 8,
shown in fig. 2. For case (i), n, = n, = 4, the truncated shell model basis is therefore
built from a total of 8 proton states |¢,[,(b,)> and 17 neutron states |v, [,(b,)>. With
this truncation the full shell-model basis |v,1,(b,); v, I,(b,); IM; ), withl = [, +I,,
leads to dimensions of 22, 45,81, 91, 108, 101, 99, 80 and 67 for the shell-model matrices
for I-values of 0-8, respectively. For case (i), n, = 6, n, = 4; the lower v, = 6 multi-
plet with I, = 0, 4, 3, 2, 6 (from table 10) has been added to the proton part of the
basis, expanding the number of favored proton states from 8 to 13. In this case the
dimension of the shell-model basis is again largest for 7 = 4, leading to a dimension
of 171 for this shell-model matrix.

From the reduced matrix elements of the QP(k) and Q"(k), calculated earlier, the
full Hamiltonian matrix is constructed through straightforward application of the
angular momentum coupling formalism. The results of the diagonalization are shown
in figs. 3 and 4. For the configuration with n, = n, = 4 (fig. 3) the low-energy part
of the spectrum has many of the features of a vibrational spectrum (except for the
missing 0" member of a two-phonon 07, 27, 4* “triplet™). Fig. 3 shows the spec-
trum calculated for equal strengths of the n-p, p-p and n-n parts of the interaction
(Gup = G, = G,,)for the coeflicients of egs. (8) and (9). However, the qualitative
features of the spectrum are not sensitive to the ratios of these strengths; for the range
Gop/Gop = 0.510 2.0, for example. In addition, a change in the relative strength of the
k = 2to the k = 4 components of H,, again does not change the qualitative features
of the spectrum.

To try to gain a further understanding of this spectrum the eigenvectors for the
four lowest levels of fig. 3 are given below expanded in terms of vectors {v,1,,; v, I(5,)).
(Note that the ordering index (b,) is given only when needed; i.e. for neutron states
with v, = 4, 1, = 2, 4, 5 and 6. To save space the total angular momentum / is not
written explicitly in each ket.) In this notation,

[0 = 0.583[00;00) +0.629[22;22> +0.246|24;24) +0.22942;42(1))
+0.275[44:44(1)> +0.104]46;46(1)> +0.147|00;40> —0.084/22;42(1)>
—0.114[22;42(2)>+. . .,

125> = 0.465]00;22) +0.443]22;00) — 0.289(22;22) +0.315|22;44(1))
+0.274(44;22) +0.18522;42(1)> +0.209]42;22) +0.149]22;40
+0.148]22;24> +0.086|24;22) —0.141]00;42(1)) — 0.073|00;42(2)>
—0.093]42;00) —0.160|44;44(1) +0.130[44;46(1)) +0.12543;42(1)>
—0.099]43;24(1)> —0.090/42;44(1)> +. . .,
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123> = 0.286]00;42(1)) —0.092|00;42(2)) +0.409|42;00) +0.332{22;22)
+0.285(42;22) +0.084|22;42(1)> —0.121{22;42(2)> — 0.363]43;22)
+0.156/22;43) +0.240]24;44(1)> +0.169]44;24) +0.109]22;44(2)>
+0.188]22;00) +0.064/00;22) +0.092|22;24> +0.190|24;22>
—0.175[42;42(1)> —0.154]43;44(1)> +0.115]43;42(1)) +0.143}42;40)
+0.097144:44(1)>+ .. .,

147> = 0.396]00;44(1)> —0.085]00;44(2)) +0.285|44;00> +0.436|122;22>
—0.228]44;22 — 0.322]22;44 +0.221]22;46(1)> +0.114/46;22)
—0.181]22;42(1)> +0.104|22;42(2)> — 0.16542;22) +0.138]24;42(1))
—0.076]24;42(2)> +0.129]00;24) — 0.014{24;00 + 0.10644;40>
+0.18044;44(1)> +0.09543;42(1)> — 0.096]43;43> +0.117]42;42(1)>
—0.115|44;46(10> — 0.076]46;44(1)> —0.082(45;42(1)> +. . .. (37)

Kets with amplitudes less than 0.08 are not shown. It can be seen that the significant
amplitudes are spread among many different pieces. The results are therefore far from
what might have been expected from an extreme weak-coupling approximation. How-
ever, the 0" ground state is made up predominantly (74 %) of two pieces, built from
the coupling of favored proton and neutron pairs withJ, = J, = Oand J, = J, = 2.
The largest pieces of the first excited 2 state (41 %) come from the coupling of the
favored pair combinations J, = O(v, = 0), J, = 2(v, = 2) and J, = 2(v, = 2),
J, = 0(v, = 0). On the other hand the 27, 4] doublet, at roughly twice the excitation
of the 2] state, has predominant pieces of seniority-4 states coupled to seniority-0
states; i.e., v, = 4, I, = [ coupled to v, = 0, /, = 0, and v, = 0, [, = 0 coupled to
v, = 4, I, = I, which together with the coupling of two favored J = 2 pair states
(v, = v, = 2), make up 37 % and 44 % of the 2; and 4; state vectors. The remaining
(smaller) pieces of these two eigenvectors also have enough similarity that these two
eigenvectors can be identified as two members of a doublet.

Fig. 3 also shows the relative B(E2) values for the transitions among the lower
energy levels. For simplicity these have been calculated with the surface quadrupole
operators of eq. (3) (corresponding to the approximation in which all radial parts
of matrix elements of the real Q(2) operator have been replaced by a single constant).
However, this should be a very good approximation. For example, the proton matrix
elements v’ = 4, I;(b;) - v, = 2, I, = 2, when compared to the matrix element for
v, =21, =2-0v,=0,1, =0, lead to relative B(E2) values of 1.29, 0.00025 and
1.03 for 7, = 2, 3 and 4, respectively, as calculated with proper radial (harmonic os-
cillator) parts of the matrix elements for the (f;p,p,)* configuration *). In the sur-
face multipole approximation, the corresponding numbers are 1.27, 0 and 1.03; where
the B(E2) value for the transition v, = 2,1, =2 —> v, = 0, I, = 0 has been nor-
malized at 1.00 in both cases.

The pure numbers in fig. 3 show B(E2) values relative to the B(E2) valuc for the
transition 2 — 0] which has been given a strength of 1 unit, where these numbers
have been calculated by assigning effective charges e, = 0.7 and e, = 1+0.7 to the
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neutron and proton E2 operators, respectively. (The magnitude 0.7 has been picked
quite arbitrarily; but the relative numbers in fig. 3 are insensitive to small changes in
this magnitude for the effective charge.) Fig. 3 also shows the B(E2) values in terms of
separate proton and neutron amplitudes, X, and X, given by the reduced matrix
elements of Q(2) connecting the states v = 0,/ = 0tov = 2, ] = 2, as given by eqs.
(18) or (A.23). These have been denoted X (X,) since they exhaust the full quadru-
pole sum rule for the transitions from the ground states to the favored v =2, =2 states
in the separate proton (or neutron) configurations (again, in the surface multipole
approximation.) From the numbers in fig. 3 it can be seen that the proton and neutron
matrix elements add coherently for all the strong transitions, leading to enhancements
in the E2 rates. In the extreme weak-coupling limit with similar proton and neutron
spaces, assuming a ground state of [[v,/,;v,1, 1) = [[00;00]0> and a 2] state of
(1/+/2)(1[22;0012) + [ [00;22]2)) the B(E2) value for the transition 2, — 0, would be
1(0.7072,+40.707%,)*. Relative to this value the E2 rate for the transition 2, — 0,
of fig. 3 is enhanced by a factor of ~ 1.4-1.6 depending somewhat on the effective
charges assigned to the proton and neutron parts of the E2 operators. In the extreme
quadrupole-phonon vibrational limit the B(E2) values for the transitions 4, — 2, and
2, — 2, would be enhanced by a factor of 2 relative to the transition 2, — 0,. Al-
though the B(E2) value for the transition 4, — 2, of fig. 3 is larger than that for the
transition 2, — 0,, the 2, — 2, transition is considerably too weak. It should be
noted, however, that this particular B(E2) value is a fairly sensitive function of the
n-p interaction strength. For interaction strength ratios G, /G, , = 0.5, 1.0 and 2.0
(with G, , = G, ,) the reduced matrix element for the 2, — 2, transition varies,
from (0.82%,+0.62%,) to (0.62%,+0.46X,) to (0.37%,+0.17%,), respectively; whereas
the corresponding numbers for the 2, — 0, transition are relatively more constant,
viz. (0.87X,+0.88%,), (0.85X,40.96Z,) and (0.79%,40.98Z,); similarly for the
4, - 2, transition for which the corresponding numbers are (1.34Z,41.46X,),
(1.222,+1.49Z,) and (1.11Z,+1.42Z,). For somewhat weaker n-p interactions there-
fore the 2, — 2, E2 transition rate is at least comparable with that for 2, — 0,. The
spectrum of fig. 3 thus shares the essential properties of a vibrational spectrum:
strong E2 rates for the transitions 2, — 0,, 4, — 2, and 2, — 2,, particularly com-
pared with the E2 rates for the cross-over transition 2, — 04, and a4, — 2, transition
involving no change in vibrational excitation. However, a 0* member of a 0%, 2%, 4"
“two-phonon triplet” is missing. From the weak E2 rate for the transition 0, — 2,,
it can be seen that the second 0% state is not merely pushed into the wrong energy
region of the spectrum. -

To see whether the spectrum becomes more vibrational or collective, it is interesting
to compare fig. 3 with the spectrum for the somewhat richer configuration, case (ii):
n, = 6, n, = 4, shown in fig. 4. The main difference between the two spectra involves
the appearance of a 0% state at about twice the excitation energy of the lowest 27+
state, seemingly the missing member of the two-phonon triplet. The v £ 4 compo-
nents of the eigenvectors for the 0,, 2,, 2, and 4, states show no qualitative changes
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over those for the configuration with n, = n, = 4. These eigenvectors also have rela-
tively small components of state vectors built from the seniority-6 part of the proton
space, the percentages being 3.8 %, 10.2 %, 15.9 % and 14.7 %, respectively. The 0,
state on the other hand has a fairly large piece built from v, = 6 components (~ 34 %);
more significantly, it contains large pieces (& 50 %) built from v, = 4, v, = 2,
v, = 2,v, = 4and I, = I, = 2 states; which can lead to large E2 matrix elements to
the 2, state (through the v, v, = 2,2 or 2,4; 4,2 components of the latter). In the
notation of eq. (37) the eigenvector for the second 07 state is

107> = 0.228]00;00> —0.097]00;40% +0.106|22;22) +0.170{24;24>
+0.612]42;22) +0.331]22;42(1)> +0.13144;24) + 0.127|24;44(1))
+0.139(44;44(2)> — 0.511]60;00 — 0.10360;40> +0.108|64;24>
+0.197/64:44)> + . . .. (38)

The B(E2) values for the transitions among the lower-energy levels are shown in
fig. 4 (with the notation used in fig. 3). The enhancements of the 2; — 0, and 4, — 2,
transitions are similar to those for the case n, = n, = 4. The 2, — 2, transition is
again much weaker than might be expected for a vibrational spectrum but is again,
the one E2 rate which is a sensitive function of the ratio G,,/G,,, and again approaches
the strength of the 2, — 0, transition for a somewhat smaller value of this ratio
(=~ 0.4). The E2 rates for transitions involving the 0 state also are far off the extreme
quadrupole-phonon limit. Although the 0, — 2, transition (corresponding to a change
of one unit of vibrational excitation) has gained some strength compared with the
configuration with n, = n, = 4, it is still weak and in fact weaker than the 2, — 0,
transition (corresponding to no change in vibrational excitation) which should be
very weak according to the predictions of the quadrupole-phonon model.

In summary, however, the spectra of figs. 3 and 4 do contain many of the essential
features of a vibrational spectrum and are perhaps more reminiscent of the spectra
of real doubly cven “‘vibrational” nuclei which are frequently not in good quantitative
agreement with the extreme harmonic quadrupole-phonon model.

In conclusion, it seems clear that still richer configurations are required to approach
the extreme vibrational limit and, even more so, to gain the further collective enhance-
ment needed to make the transition from vibrational to rotational character. How-
ever, the technigue used in this investigation to effect the severe truncation of the shell-
model space needed for shell-model studies of configurations with active proton and
neutron numbers, # £ 6, can be generalized to even richer configurations. It should
therefore be feasible to carry out more realistic shell-model studies for real doubly
even nuclei in the transition region, around 4 = 110 or 4 = 146, for example. On
the other hand it is perhaps somewhat disappointing that the state vectors in the
Hvply; v I, 1M ) basis, such as those of egs. (37) and (38), show fragmentation into
such a large number of pieces. A description of the low-energy states of the spectrum
in terms of such a basis may therefore not lead to a simple understanding of the tran-
sition from shell structure to collective behavior.



402 K. T. HECHT et al.

The initial phases of this work were carried out while the principal author was a
visitor at Oak Ridge National Laboratory as an NSF Senior Postdoctoral Fellow.
Both the hospitality of ORNL and the support of the fellowship are gratefully ac-
knowledged. Itis also a pleasure to acknowledge the help of W. K. Bell who did much
of the programming for the computer work carried out at ORNL.

Appendix A

CALCULATIONAL TECHNIQUE

Since all of the state vectors used in this investigation are built from two-particle
operators coupled to § = 0, the fractional parentage techniques to be used will be
based on the direct uncoupling of a full § = 0 pair (rather than the uncoupling of
two single particles in succession). For the four-particle states the basic numbers fol-
low from the scalar products

COI[A“P*(J3)x AT (L) IMI[A“YY (1) x A“P(JT,) T NIMI0Y, (A1)

where A‘“*(JM ) are the pair creation operators defined in egs. (1) and (20). (Note
that the superscript (0) denotes the favored pair combination AQ*(JM) = o~
(JM).) The overlaps (A.1) are also related to reduced matrix elements of the opera-
tors A”(JM ). Straightforward recoupling techniques give
COILA“(J5)" % A“(1) T IMALA“O(J,)" x AP 7 (J)]IM10)

= (AT NADINAI )T x A“I,) T2 +1]7F

= 4{ ; [q(O)(”IJl)]Z}{ ”Z [q(O)(”,JZ)]Z}{é-hJs (50103 512-’4 5aza4

+(_~ ]‘)1 s _1251114 daxaa 512J3 50203} - 8[[;} (—‘ 1)1+Jl +12‘J3—hq(al)(10 l‘]l)
0f1£2

X q(GZ)(ll L, Jz)q(aa)(]o L J3)q(‘“)(llz J4)

x [0+ 1) (2, + 1)(2 3+ 1)(2T o + 1)]'%'{ 10 14} : (A.2)
lo I, Js

with Jyas = Jyay; J,a, = J,a,, this also gives the normalization factor N(J,"

J,%1) for the four-particle states
LI % JE2TIM > = NIISPDIAC(T1)T x A“2(J,)T]IM,10)
and gives the reduced matrix element of the normalized two-particle annihilation
operator N; A(JM) between normalized four- and two-particle states
TGN AT DNNITEY x TP [21+1]7
_ Ny NoQOITAT5)" x A ) T IMALAC )" X ACT)TJIMN0) 4
[OI[A“(J )™ x AT L) ] IM,|[A“2(JT )" x A2(T,) " ]IML|0)]*
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Except for an n-dependent factor, these are 4 — 2 x 2 particle fractional parentage
coefficients. To save writing it will be convenient to rename these Z-coefficients:

Z(J ay,J2ay5 I35, J4a55 1) = UGONN,, AT x IS D20 +1]7%
= [n(n - DIKI Y x IV 3(a5); Jalaa)). (A4)

These Z-coefficients satisfy the sum rule

Y [Z(Jya,,Jdza5; 0505, 040, D] = In(n—1)x% = 3. (A.5)
J3aszJsaa
The additional factor of 4 (the dimension ratio of the irreducible representations [2]
relative to [22] for the permutation groups of 2 and 4 particles) comes from the fact
that the c.f.p. sum is not over all two-particle states — the sum in eq. (A. 5) is over
S = 0 two-particle states only. With these Z-coefficients, matrix elements of H are
calculated by conventional c.f.p. techniques.
In terms of these Z-coefficients, we also have

NEDIEDT) = Ny N[ZUay, Jyay; Ja,, a5 D)7 (A.6)
and the overlap between two normalized four-particle states is:
LIS ) JEOUMTED X JENM,

_J181,758530585, Jaaas 1) Z(J3as,Jaa43 01 a0,05855])

= . A7
Z(Jsas,Jaas; J3ay,Jsas3 1) Z(Jya,,J 05050y, 05a550) (7

For the special case when one of the four-particle states is a normalized state with
v = 2 or v = 0, these overlaps reduce to

+
(n=4dv=2,JOM[J xJFITIMY = [593_] Z(J,a,,Jya,;Ja,00;1 = J),
(A.8)
{n=4v=0,1=0[J"xJ¥]00) = [E(QBT)} Z(Jyay, Jya,;00,00;0). (A9)

Knowing these overlaps it is then straightforward to project the v = 4 components
out of the four-particle states |[J, x J,]JIM,>, built from a superposition of two fa-
vored pair operators. For I # 0, the normalized v = 4 state vector is

. Q -1
v = 4 proj. from [J, xJ,]IM;) = [1— Z-Q—EZZ(JIO,JZO;Ia", OO;I)—I
a” J

Q 7! ,
x {|[Jr1 FAILIHEDY [5_5] Z(J,0,J,0;Ia’,00;)jn = 4v = 2 I ’M,>} .

(A.10)
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For 7 = 0 the normalized v = 4 state vector is:

|v = 4 proj. from [Jx JI = 0)

-3
- [1— 25 72230, 40; 00, 0a"; 0)— ——2 Z2(s0, J0; 00; 00; 0)]
Q-2.0 2Q—-1)
+
x {![JXJ]I — 0y L)%} Y Z(J0, J0; 00, 0a’; O)fn = 4v = 21 = 0(a')>
- a+0

2 1%7(70,.40;00,00;0)1 = 45 = 01 = 05} . (A1)
_[2_(5:_1)} (J0, J0; 00, 00; 0)n = 4v = 01 = >}. .

Finally, reduced matrix elements of Q(k) connecting v = 4 to v = 2 states can also
be related to the Z-coefficients, since such matrix elements can be related to scalar
prodacts of the type (A.1) by means of egs. (5) and (6). For a v = 4 state of the type
of eq. (25)

3 O I = 40 = 21'(@)IQ(K)II[I, x I, 11>

JiJ2

1+1) Y. [q“01'k)]?
11

Q-2

= 3 O, S, 122(J,0, J,0; k0, I'a’; 1)[ J L (A12)
JiJ2

The matrix elements between two v = 4 states on the other hand can, by commutator
techniques, be reduced to matrix elements of Q(k) between two-particle states and
scalar products of the type (A.1). Thus

(nv=4IV||QK)|ln v = 4 1b)

il Y I I DEI T )k I IS 0 T, ), (A.132)
Q—4 15,070,
where
Ok; JL IS T 0 I, 1) = (= D)V r+D)r + 1)) 2(J,0, 5,03 J,0,J,0; 1] ™!
’ A .7’ '1 JZ Jl}
X J;JZ(JIO,JZO,JZO,h%,I)Us Pt

x{n=v=2J3a3)|0k)lln = v=2J,a; =0)

A

(=1 Y Z(570, 05050, 0, J3a55 1) Jy kT

Jaas

x{n=v=2J3a;]|Qk)lIIn =v=2J,a, = 0)} , (A.13b)

and where (n = v = 2J'q')|Q(k)lin=v = 2Ja) is given by eq. (23).
For the six-particle states of the type introduced in eq. (36), the uncoupling of one
§ = 0 pair is accomplished by the relation (illustrated for the most important case
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Jo=Jd,=J3=2)
A (IM)A Q) x [T (2)x AT ()1 1IM,10)
20+17F N,
2+ 1] N, N2
X F([2% (2% 21,1 JOR0x J'a']I'),  (A.14)

=2 (= 1) MM J - M|I'] \41>[ [ *(2)x A“YJ7) ' M}|0)
with
F([2x [2x2]1,,}1; JO[20x J'a'|I')
. . , T2
= 812852800001, + (=) [+ 121, + 1) {J, ] 1,}
x Z(20, 20; JO, J'a’; i)Z(20, 20; 20, 20; i)

x . i 2 2 112‘ [i+(- 1)]0125120” |
{6"2'+2(2+]){2 I if[ [Z(20, 20; 20, 20; )] ]J' (&.15)

In terms of these F-coefficients the normalization factor for the state |[2 x [2x 2]1;, >
(see eq. (36)) is:

N([2x 2% 2]1,,]1)
= NI Y F([2x[2x 21,15 20[20 x J'a I’ = I,,)Z(20,20;20, J'a’; I,,)
Ja
x Z(20,20;20,20; 1,,)]"%.  (A.16)

Other quantities needed for the calculation are the scalar products of the states
{[2x [2x 2],y and (normalized) six-particle states with v < 6. With I # 0, for
example, using eq. (A.10),

{n =6P(v==a[2xI(a)|[2x[2x2]I,,]I) = MI2x[2x2]1.10) [Q—QJ i

73
N3

Q =
x |1— -2 ZZ2O,Ja;00,Ia”;I]
a5 )
x { Y F([2x [2x 2)1,,]1; 00[20 x J'a’]1) [2(20, Ja;20,J'a’; 1)
J'a’

Q
- 0 Y Z(20,Ja; 00, Ia'""; 1)Z(20, J'a’; 00, Ia'’; 1)Z(20, J'a’; 20, J'a’; 1)]} ,

(A.17)
while

(n =60 = 21(a)[2x [2x 2]1,,J1) = SN2 x[2x2]1,51D)

N3[2(@-2)(2~3))*
x Y F([2x[2x2]1,,}1;00[20x J'a’]1)Z(20, J'a’; 00, Ia; I)
J'a’
x Z(20,J'a’;20,J'a’;1). (A.1R)
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The states [P(v = 6)[2 x [2x2]1;,]I) can be constructed, using such scalar products,
or with the aid of the seniority projection operator (35). Finally, the expectation value
of H for a state |[2x [2x 2], > can be written in terms of F- and Z-coefficients

C2x2x 230,00 i x 2 x2g, Q= —3 3 V2 [2x2)0,1)
G J N3 Nj
x Z ] F([2 x[2x 211,115 JO[20x J'a"JI")F([2x [2x 2]1,,]I; JO[20x J""a""]1")
e X Z(20,J'a’; 20, J'd’; I')Z (20, J'a’; 20, J"a"; I').  (A.19)
Matrix elements of Q(k) connecting v = 4 states to states of the type |P(v = 6)) can

be reduced to combinations of eqs. (A.14), (A.13) and (A.12) by means of egs. (5)
and (6) of the text.

Appendix B
MULTIPOLE SUM RULES

The multipole sum rules of sect. 6 follow from eq. (28) and the calculation of the
matrix element
(nufav. J1Q(k) - Q(k)n v fav. J ).

For » = v = 2, this matrix element can be calculated by double application of the
commutator, eq. (10a). By using well-known properties of the 6-f symbols, the sums
over the J’ introduced by eq. (10a) can be carried out. The matrix element then be-
comes

{n =v =2fav. J|Q(k) - Qk)ln = v = 2 fav. J)

1
= 4N2(2k+1) [Z —= [q0L; &) [, 1) T?
i, 2141

+ 3 g g g1 )| P U] a20)
0 1

Holyls

The simplest sum rules are those involving sums over all possible k-values, since sums
over k of the products of Wigner and Racah coefficients implicit in eq. (A.20) can be
performed to give

n=0v=2fav.J| Y k) Qk)n =rv = 2fav. J> = 2{Q+ ¥ [¢V(I'])]*}. (A.21)
k ITa
Now, using

(2J +1Kn =v =2fav. J| Y Q(k)- Q(k)|n = v = 2 fav. J)
%

= Y Y ¥<n=20a7)Qk)ln =0v =2fav.J)?, (A.22)

v'=0,2 k a'J’

{n =20 =0J"=0/0N)ljn = v =2fav. J) = [&g}—)g [q(o)(ll'J)]z] -z;(A.23)
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and the fact that Q(00) = N,,, with eigenvalue n, these equations lead to the sum rule
(29) of the text. To obtain the sum rule for v’ = 4, the matrix element (A.20) must be
evaluated for n = 4. For this purpose it is useful to note that the Hamiltonian (8)
can be put in the form

Qlxz

= —1 ;ld*(JM)d(JM) = —}Qn—} ; Q(k) - (k)
+1Y Ok, ky = 1) : Ok, k, = 1), (A.24)

where Q(kg, k.q,) is a one-body operator with the same orbital factors as Q(k) but
coupled to rank 1 in spin space:

kg, ky = 1 g)) = %;(——])'q(o)(ll’k)[af x g JekT s (A.25)

where again, k = even only. (Note a difference of /2 in the definitions of egs. (A.25)
and (3a)). The double dot in (A.24) denotes scalar products in both orbital and spin
space. The operators Q(kq, k.q,) with k+k, = odd are scalars in quasi-spin space
so that matrix elements of the last term in eq. (A.24) are independent of » and can
therefore be evaluated for n = v. For v = 2, the eigenvalues of H are given by (sce

eq. (15)):
(YG)E(mv = 2fav. J) = — {3 [ PI'T)]* +4(n—2)Q}. (A.26)
234
Together with egs. (A.21) and (A.24) this gives
n=v=2fav.Ji}Y Ok, k, = 1) : Q(k, k, = 1)jn = v = 2 fav. J)
k
= #{e- 2 [d@Wnyry. a2
i
Since this result is independent of n, eq. (A.24) can be used once more to evaluate
the matrix element of ZQ(k) - Q(k) for n = 4:
(n=4v=2fav.J|y Qk)-Q(k)n = 4v = 2fav. J> = 6Q+2 Y [¢“(I'N]>.
k w

(A.28)
Finally, for arbitrary n, eq. (28) of the text leads to

2J+1nv =2fav. J| Y, Q(k)- Q(K)|nv = 2 fav. J)
. K70

= rl_(?_(%—jl) — r __ ’ — oy — 2
2(22-2) n=2v"=0J"=0[QU)ln =v =2fav. J)

Q— 2
+ ( ") Z Z(n = =2aJ|QKk)|In = v = 2 fav. J>2
Q-2/ k%o 27

(n=2)20-n-2) o —ayy L )
i 220-6) 5o ,ZJK” =0 =4aJ)|Q(K)lin = 4v = 2 fav. JH*.

(A.29)
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To obtain the n-dependent factors, we have used the fact that operators Q(k) with
k # 0 (even) are tensors of rank 1 in quasi-spin space. Matrix elements connecting
states n, v to n, v* are thus proportional to Wigner coefficients

(PMLN0 S My = (HQ— 0] (n— QO 0')}(n—2)).

For n = 4 all but the last term of eq. (A. 29) are now known (through eqs. (A.28),
(A.23) and (29), combined with Q(00) = N,,, with eigenvalue #). Hence the last
term can be evaluated leading to the sum rule of eq. (30) of the text.

So far these sum rules are completely general, valid for any configuration, that is
any combination of lvalues (or j-values if Y- [¢*P(/'J)]* is replaced by |E(n = v
= 2, fav. J)|1/G). The sum rules for specific multipole orders such as k = 2, on the
other hand, have been evaluated only for major oscillator (or pseudo-oscillator) shells
with / = /,, [,—2,...0 (or 1). The technique used involves carrying out the sums

over /in eq. (A.20) after adding and subtracting the terms with the missing /-values
corresponding to / > /,,. For example

Z@-— [q"1, K)]* = Y. CI0kO]1, 0% = 1~ Y <I0kO|I, 0%,  (A.30)
53 L >l

where, with k = 2, the sum over /; > [, has non-zero terms only for / = [, and then
contains but a single term with /, = 7 +2. Using such techniques

(n=1v=2fav.J|QQ) O2)n = v = 2fav. J}

= 20—20N2(2L,, +1)<1,,020]1,,+ 20> [3—2 Y <1,000)1,0) 2

12> 1m

— S (20011, 032 — (21, + 1)(1,, 0JO|,, + 20)° { g ;"’Zﬂ (A31)
>l m m

To obtain the matrix element for Q(2) - O(2) for n = 4, we follow ref. °) and intro-
duce the operators 77~ ® and T7 =2, tensors of rank 0 and 2 in quasi-spin space:

0= 0(k)- Q(k)+ Y. L (kM) (kM)+ Y A (kM) *(kM), (A.32)
TY7% = 20(k) - Q(k)— Y. L (kM)AL (kM) — Y. L (kM)Z *(kM), (A.33)

so that, using the Wigner-Eckart theorem in quasi-spin space
{ne = 2fav. JIQ(k) - Q(k)lnv = 2 fav. J)
=Kn=v=20v.J|]T" %n =v =2fav. J)
2
i [ZQ +‘2—f2-(1—-3—")15’7’—} (n=v=2fav.J|T" *n = v = 2fav. J).(A.34)
2(2-2)(Q-3) :

Using AL A+ A A+ = 200" of + [, o), the matrix elements on the right-hand
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side of (A.34) can be evaluated from
{n=v=2fav.JRY LT (kM)A (kM)in = v = 2fav. J)
M
= 45,; ), [4°(I'N]% (A35)
w

¥ [k, of (k)] = 22k DT LOERY [1- S va)]. a9
M w 2l+1
where the expectation value for (No,); = Y s @immsQimms N @ favored pair state is
(Nop.): 2 v La(1I))?
n=v=2fav.J|22T|n =v=2fav.J) = 4N7 Y =~——— =
< ) ’ 2 20+1
= 4N3[1- Y <10JO[I"0Y*]. (A.37)
17> 1y

By substituting explicit algebraic expressions for Wigner coefficients such as </, 020]
|4,+20>, and by combining egs. (A.31), (A.34) for n =4, (A.35)-(A.37), the
multipole sum rules of egs. (31)-(34) of the text are obtained.
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