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Abstract: To study the feasibility of carrying out shell-model calculations in nuclei with active 
protons and neutrons in different major shells, the following simple idealized model has been 
studied: (i) Proton and neutron configurations are chosen to be (f~:p]p ~)np and (g.~.dsdgs. k)m~, 
so that results for the separate proton and. neutron basis states to be used in any approximation 
scheme can be compared with the results for exact shell-model calculations. (ii) The proton and 
neutron single-particle energies for these active shells are separately taken to be degenerate. 
(iii) The two-body interaction is approximated by the simple surface delta interaction (SDI). 
To effect the severe truncation of the full shell-model space needed to make such a shell- 
model study possible the separate proton and neutron parts of the shell-model basis are built 
from a superposition of the favored pair states of the SDI (with J =g=- 0, as well as J : 0). In 
the neutron configuration (g:l_d~dl_s~) nn=4, for example only three of the 94 shell-model states 
with J ,  = 2 are retained in the truncation scheme. In this highly truncated basis both the energies 
and the strong B(Ek) values for the transitions from these states to similar favored states with 
other J-values are within a few percent (or better) of the results of exact shell-model calculations. 
A truncation of the shell-model space based on such superpositions of favored pair states leads 
to a manageable shell-model basis (dimensions ~ 200). (a) The number of states in the 
separate proton and neutron parts of the basis are small enough (8-13 for the proton space, 
15--30 for the neutron space). They are also the key states in the following sense. (b) They include 
the low-lying energy eigenstates of the separate p-p and n-n parts of the interaction. (c) They 
contain most of the collective coherence of the separate proton and neutron configurations. 
(d) The matrix elements of the n-p part of the interaction between the favored states arc in 
general very large compared with the matrix elements between a favored and an excluded state. 
The latter effect is studied from several aspects, in particular in terms of sum rules for the matrix 
elements of the surface multipole operators from which the n-p part of the SDI is built. For 
most of the low-lying favored states the sum over all favored states gives more than 90 % of the 
total sum rule for the squares of matrix elements of the surface multipole operators. The 
results of shell-model calculations in this truncation scheme, with np ~ 4 or 6, and nn = 4, 
show many of the features of a quadrupole vibrational spectrum. The presenec and exact 
nature of a 0 + member of the 0 +, 2 +, 4 + "two-phonon triplet" is dependent on the inclusion 
of the key favored states with seniorities of 6. 
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I. Introduction 

Nature has presented us with many striking examples of  series of  nuclei which 
exhibit the transition from shell structure to collective behavior. Nuclei with neutron 
numbers of  50 and 82, for example, are "good shell-model nuclei", described well in 
terms of the properties of  a few protons distributed over a few active shell-model 
orbits 1,2). As neutrons are added to these nuclei, however, the spectra take on a dis- 
tinctly vibrational character, and, if a sufficient number of  neutrons are added, the 
spectra may even become rotational. At first thought it seems impossible that the 
transitional region could be understood in terms of a conventional shell-model de- 
scription since the dimensionality of  the shell-model space becomes prohibitively 
large with even a small number of both protons and neutrons distributed over rela- 
tively few single-particle orbits. Any description in terms of a microscopic model, 
however, must somehow be based on a shell-model framework. The question there- 
fore arises: Can the shell-model space be truncated sufficiently so that the shell-model 
calculations for such nuclei are technically feasible and, more important,  are simple 
enough to lead to an understanding of the transition from shell structure to collective 
behavior? 

For a nucleus in which protons and neutrons are filling different major shells, such 
a truncation scheme must be built from a relatively small number of  key many-particle 
states of  the separate proton and neutron parts of  the configuration, where these key 
proton and neutron states must satisfy the following requirements: 

(i) They must include the low-lying energy eigenstates (cQ of the proton part  of 
the configuration, where these must have built into them a major part  of  the collective 
coherence associated with the separate proton part  of the configuration. Similar 
requirements hold for the key neutron states (/~). 

(ii) The n-p interaction must act mainly within the subspaces (cQ and (//); that is, the 
matrix elements of  the n-p interaction between two key states must be large compared 
with the matrix elements between a key state and one built from proton and neutron 
states excluded from the sets (~) and (/~). 

(iii) The total number of  key states in the sets (~) and (/~) must be small. Even 
though the requirement of  good total angular momentum and parity somewhat re- 
stricts the way in which the states from the sets (~) and (/~) can combine, if the di- 
mension of  the full shell-model matrix is to be of the order of  100-200, the number of 
key states from each set cannot be more than 10-20. 

It  is the purpose of this investigation to show by means of a simple, idealized model 
that these requirements can be met, and hence demonstrate the feasibility of  carrying 
out shell-model studies of  nuclei in which protons and neutrons are filling different 
major  shells. 

2. The model 

It is the ultimate aim of this investigation to follow a sequence of isotopes such as 
the Ru or Pd family as neutron numbers are increased, starting with N = 50. Such 
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nuclei involve the proton configurations (p~p~f~.g.~)"p and neutron configurations 
(g?d.~d.~s.~h~) "°. In the simplified model these will be replaced by (p~p_~)"p and 
(g~d~d~_s~) "n with even numbers of protons, np and neutrons, n.. Obvious simplifica- 
tions result from the exclusion of the single-particle states of opposite parity. The 
primary motivation for eliminating them, however, is so that results for any truncation 
scheme can be compared with more detailed exact shell-model calculations. The model 
Hamiltonian to be studied will incorporate the following additional simplifying as- 
sumptions: 

(i) The single-particle energies of the proton configuration are assumed to be 
degenerate: similarly for the neutron configuration. Since the interest is in proton and 
neutron configurations with fairly large numbers of particles this may not be too 
drastic a zeroth approximation. The qualitative features of spectra with nucleon num- 
bers near the half-full shell mark (unlike the spectra for very small numbers of par- 
ticles or holes) are not influenced very markedly by the exact nature of the single- 
particle spectra. 

(ii) The effective two-body interaction is to be approximated by the simple surface 
delta interaction (SDI) [ref. 3)]. This interaction has served as a remarkably good 
effective interaction in many regions of the periodic table. Moreover, its key low-lying 
states have a remarkably large overlap with the corresponding state vectors calculated 
with more realistic interactions [see, e.g. table 4 offer. 7)]. Finally, its matrix elements 
are relatively simple functions of the quantum numbers, making it possible to study 
many approximations in analytical form (e.g. requirement (ii) on the n-p interaction 
can be studied in terms of sum rules for the matrix elements of the multipole compo- 
nents of the interaction). 

3. Properties of thc model 

The properties of the SDI are well known 4, 5). It may, however, be useful to re- 
view some features which are important for our model. 

(a) In the limit in which the n-p part of the interaction can be imagined to be 
turned off, the total seniority numbers for the separate proton and neutron parts of 
the contiguration are good quantum numbers. The spectrum for a fixed number of 
particles n (r/p o r  nn)  therefore contains the spectrum for n - 2  particles (which is re- 
peated with no change in spacing of the levels), and a set of additional levels corre- 
sponding to seniority o = n (vp = n p  or v, = n,). In trying to identify the key states 
(low energy, high collectivity) of the separate proton and neutron configurations, it 
is thus possible to examine in succession the spectra for 2, 4, 6 . . . .  particles (protons 
or neutrons). The goodness of the seniority quantum numbers also simplifies calcula- 
tions since it is possible to determine the n-dependence of matrix elements by quasi- 
spin techniques 6), where the quasi-spin raising and lowering operators are related 
to the usual J = 0 coupled-pair creation and annihilation operators of ordinary 
pairing theory. 
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(b) Matrix elements of the SDI are functions only of  j, provided the relative pari- 
ties of the single-particle states of the configuration are the same. In a configuration 
(f~.f,.p3p~) of  identical particles the SDI acts only on two-particle states coupled to 
a spin S = 0. For configurations of the type (g_~d~d~s~), it is possible to assign to a 
single particle in the doublet g~d~ pseudo-orbital and pseudo-spin 7-9) angvlar 
momenta 7 = 3 and ~ = -2 ~, and to a single particle in the doublet d~.s, pseudo-orbital 
and spin angular momenta 7 = 1, and g = -~-, with j = 1 + s. In our model, in which 
the pseudo-spin orbit coupling in the configuration (g~d~l_d~s~) is neglected (that is, 
the g~d~. splitting and the d~_s~ splitting are neglected), the total many-particle pseudo- 
spin ~ is therefore a good quantum number. For any seniority the states with g = 0 
(even v) lie lowest in energy. Candidates for the key states of  the separate proton and 
neutron configurations should therefore be found among the states with ~ = 0. In 
the spectrum of the configuration (g~d, d~s~.) 4, for example, there are 94 states with 
J = 2. Of these there are only 18 with S = 0, J~ = J = 2. Although this is a consider- 
able saving, a truncation in terms of S alone is not nearly severe enough for our 
present purposes, and it is necessary to search for additional criteria or quantum num- 
bers to isolate from among the S = 0 states the key proton and neutron states from 
wlfich the shell-model space is to be built. The additional criterion is to be found in 
the notion of  the favored pair 7). 

(c) One of the characteristic features of  the SDI when acting in configurations of  
identical particles is that it favors one specific superposition of two-particle states for 
each value of J ( J  = even only, if the single-particle states of  the configuration all 
have the same parity, as in the present model). In the two-particle spectrum only a 
single one of  the several possible states for each J-value (with J = L = even, S = 0), 
is depressed in energy; all others have eigenvalues of zero. Moreover, the favored pair 
state with J # 0 exhausts entirely the sum rule for a 2 J pole transition connecting it 
to the J = 0, v = 0 ground state (in the approximation in which the radial matrix 
elements of the 2 J pole operator can be replaced by a constant, the so-called surface 
multipole approximation 4,8)). In the two-particle spectrum therefore the favored 
J # 0 pairs satisfy the two key requirements of low energy and high collectivity. In 
the spectra with v > 4 the key proton and neutron states will be built from superposi- 
tions of  such favored pair states. Before proceeding, it will be useful to re-examine 
some of  the mathematics of the favored pair and surface multipole operators. 

4. Favored pair and surface multipole operators 

In the l -  s (or the analogous pseudo 7-g) coupling scheme, the favored pair operators, 
d + ( J M ) ,  can be constructed from identical particle pair creation operators, coupled 
to S = 0, L ----- J = even 

= ( l m l  m ]JMj)(2ms-2-rn~lOO)az .... arm,-,, , ( la)  
rams  
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by 

where 

~¢+(JM) = ~. qW)(ll'J)[a~ x a+] J-~t; oo, 
ll" 

( lb)  

q(°)(ll'd) = F !2/+-1)(2/ '+ 1) 1 +</0/'0]d0). (lc) 
k 2 J + l  

Although our configurations are made up of pseudo 7-.~ doublets, tildes will be omitted 
to simplify the notation. It will be quietly understood that all l-values are to be inter- 
preted as pseudo-orbital angular momenta 7; e.g. 7 = 3; 1 in the gl d~;d+s~ configura- 
tion; and 7 = 2; 0 in the flPl;P½ configuration. The/-values are those for a major 
oscillator (or rather pseudo-oscillator) shell, with l (or 7) = 1,,, 1, . -2 . . . .  0(or 1) 
where l,. denotes the maximum/-value of the shell. The superscript (0) on q denotes 
the favored pair combination. The companion favored pair annihilation operators 
are defined by 

d ( J M )  = ( d + ( J M ) )  +, (2) 

while the one-body operators which are the natural partners of these pair operators 
are given by 

Q(JM) : E ( -  1)'q(°)(ll'J)\/2[ a+ x a,,] L = z'u; s =Ms = o, (3a) 
11" 

with 
4 2 [ a  + x av] sM;°° = E ( lm l ' - -m ' l JM)  E at,+,.,avm',.~( - 1) v-" ' '  (3b) 

rn(m')  ms  

Alternatively 
Q(JM) = Y" \/4rcYsM(O , (p,), (3c) 

i 

where the dependence on the coordinates of the ith particle is on the angular coordi- 
nates of  the spherical harmonics only. Hence Q(JM)has  been named a surface multi- 
pole operator 8); it is the 2 J pole operator in which the radial dependence has been 
replaced by the constant x/4z. 

The pair operators with J = 0 play a special role. They can be identified with the 
quasi-spin raising and lowering operators. Specifically 

+ - . /2  ~ d+(O0) '  ~ -  = ~)21 d(O0),  

50o = ½(Q(00)-E2) = ½(Nov-f2), (4) 

where f2 is the pair degeneracy number: I2 = Y ' ( 2 1 + l ) =  ~2(J+½); and where 
50+, 50- ,  500 satisfy the usual angular momentum commutation rules. The quantum 
number 50 associated with the operator cj2 is related to the seniority quantum num- 
ber v by 5" = ½(f2-v), while Ms, = ½(n-f2). (Note that both the terms "quasi-spin" 
and "pseudo-spin" have been taken from earlier work; there should be no confusion 
between the quasi-spin 5 ° and the pseudo-spin g. ) From the commutation properties 
of  the components of ~o ° with the operators ~¢+, d and Q, it can be seen that these 
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are the three components of a rank-I tensor in quasi-spin space. Specifically, the 
tensor character of the operators is: 

~I+(JM) = TsM, +1; - Q ( J M )  = T s,•, ~, - ( - l ) S - M d ( j - M ) - - -  T~. - I ,  (5) 

where -rl ~ denotes an operator which is a spherical tensor of rank J and spherical "~ M , M  yf 

component M in ordinary three-space, and rank ,9 ° and spherical component My 
in quasi-spin space, so that 

1 ]-]~ 'T 'J *~ [St'+, T sM, MZJU7 = [ ( , 9 O ~ M s , ) ( j + M y  + . , j  "~,(MS~-')" (6) 

This latter tensor property can be used together with the Wigner-Eckart theorem in 
quasi-spin space to factor out the n-dependence of any matrix element in the seniority 
scheme 6). 

In our model involving active protons and neutrons in different major shells it is 
best to split the two-body interaction into p-p, n-n, and n-p parts 

H = Hpp+H. ,+H, ,p ,  (7) 

where the different parts of the interaction can be written entirely in terms of favored 
pair and surface multipole operators 

Hpp(Or nnn ) = --~.G Z g + ( J N I ) , ~ ( J M ) ,  (8) 
JM 

where the favored pair operators are defined in terms of proton or neutron pairs, 
respectively while 

Hi, p : - -  G Z (-- 1)"QP(kq)Q"( k - q), (9) 
kq 

where G is the common strength factor of the simple SDI. It is to be noted that the 
n-p interaction involving particles in different major shells has the simple form (9) 
only if the interaction is the simple SDI with equal strengths in the two-particle states 
coupled to isospin T = 0 and T = 1. (Note that this requirement has been relaxed 
somewhat in the so-called modified surface delta interaction of Glaudemans et aL 1 o).) 
Since the surface multipole operators Q(kq),  like the favored pair operators, are 
coupled to spin S = 0 (or rather S = 0), the n-p interaction of the simple form (9) 
will, like the interactions Hpp and H. , ,  preserve thc total pseudo-spins Sp and S, of 
the separate proton and neutron configurations. However, it is possible to modify 
the strength factors of eqs. (8) and (9), using different values Gpp, Gnu ,Gnp  (or even 
introduce a k-dependence into the coefficients G ofeq. (9)), without changing the basic 
symmetry which implies the goodness of Sp and S.. More realistic forms of the n-p 
interaction will in general include pseudo-spin breaking terms. Since the final states 
with different values of Sp or ~. will be well separated in energy, the inclusion of such 
pseudo-spin breaking terms will not change the essential thesis of this investigation, 
provided their coefficients are relatively small compared with the coefficients of the 
surface multipole terms of eq. (9). 
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Since the two-body interaction of our simplified model is built entirely from favored 
pair and surface multipole operators, it is natural to ask whether these operators form 
a familty closed under the commutation process. For example 

[Q(kq), ~¢+(JM)] = ~ 2 

+"~J'M" O0 { 

lj.12 

I (2J + l ) (2k+ l)1 ~- 
- - -~ '~--1 l (JMkqlJ'M') 

~ (-l)lqW)(lll k)q(°)(ll2J) {lJ 12 / ' } [ 2 J ' + l ] ~ } .  (10a) 

For  values of 11 and 12 small enough such that Ii + k  < l,,, l 2 + J =< l,,, where ln, is the 
maximum possible/-value in the shell under consideration (l = l,,, 1,,- 2 . . . .  , 0  (or t )), 
the sum over I in the curly bracket can be carried out, 

{ Z . . . }  = (JOkOlJ'O)q(°)(l* lz J'), (10b) 
l 

+ and a + is multiplied with the appropriate factor q~O) and the pair built from a h t2 
(ll12J') needed to make the favored pair combination. With J = 0 (or k = 0) this 
condition is met for all values of 11 and 12. The commutator of Q(kq) with ~¢+ (00) 
gives only the favored pair .~+ (kq), a result which has already been expressed by one 
of the eqs. (6). With both J ~- 0, k :P 0, however, and large values of ll and 12, there 
will be missing terms in the/-sum in the curly bracket (the product of one Racah and 
two Wig~er coefficients cannot be summed to yield the two simple Wigner coefficients 
needed for the right-hand side of eq. (10b)), and the resultant pair operators will 
involve contributions from pair combinations other than the favored ones. With 
k = 2, for example, if the missing terms with l = / , ,+2 are added and subtracted in 
the coefficient for the pair creation operators with Ii = l,,, the above commutator 
can be expressed in the form 

[Q(2q),,~C+(JM)] = 2 Z <JM2qld'',4' {> q ( ° ) ( J 2 J ' ) ~ + ( J ' M ' ) -  Z [a,+ × at+] J'M'; °° 
J" 12 

x[5(2J+l)]~q(°'(l"' l"+2'2)q(°)(lm+2' I2'J) l., I z lm+2 ' (1l) 

that is, the commutator gives a combination of  favored pairs .~+(J 'M')  with 
J '  = J + 2 ,  J and J - 2 ,  except for a few additional terms involving only pairs built 
from single-particle states with l~ = l,, and lz =lm . . . .  II,.--J'[. In a heavy shell 
(corresponding to a large value of l,,), in particular, these additional terms are small 
compared with the dominant favored pair terms, so that the favored operators form 
a family which to some degree of approximation is (almost) closed under the commu- 
tation process. Similarly, the commutator of favored pair operators .p// with d " ,  
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which is 

[ d ( J 2  M2), ~¢+(J1 MI)] = 26s,J26MIM, Z [q(°)(ll'Jx)] 2 
ll" 

--2 ~, (J1 M1J2--M2lkq)(--1) s2.M2 ~ x/2[at + x al2] kq;O0 
k 1112 

X (~lq(°)([12J2)q(°)(lllJ,)(iJ: J2 ~} [(2Jl.~_l)(2J23vl)]~ } 
11 ' 

(12) 

can be written 

[d(Jz  M2), d + ( J ,  M,)]  = 26S,j26M,~2 ~. [q(°)(ll'J,)]2 
ll' 

--2 Z (J1 M, J 2  - -  M2lkq)(- 1) s~-~2 {q(O)(y a ']2 k)Q(kq)- Z ~/2[a,~ x a J  k~:° 
k 1112 

X 2 qt°)(ll2J2)q(°)(llaJt) 12 ii l> l,n 

that is, the commutator of a favored pair annihilation operator with a favored pair 
creation operator, yields, besides a constant term, a linear combination of surface 
multipole operators, and a few additional terms which are one-body operators built 
only from single-particle creation and annihilation operators with lm> 11 > [1,. + 2-J  11 
and lm> 12 >[l,,+2--Jz]. These additional terms can again be expected to become 
relatively unimportant compared with the favored surface multipole operators in the 
limit in which l,, becomes large and J1 and J2 are relatively small. 

5. The key states of  the truncation scheme 

The key states of the separate proton and neutron configurations should ideally 
satisfy the following criteria. They should be limited to a relatively small set of states 
~ ,  ~2 . . . . .  a~, and ill, f12 . . . .  , flk which are eigenstates of Hop and Ha, respectively, 
with the following properties: They must have (i) low energy and (ii) the matrix ele- 
ments for any surface multipole operators should satisfy the condition 

<yYllQP(k)ll~,> = O, ( ' / j l lQ:(k) l l /31)  = o (14) 

for any proton state ~, excluded from the set (a), and any neutron state 7 excluded 
from the set (fl). If satisfied exactly, condition (2) would imply exact truncation of 
the shell-model space for our simplified model Hamiltonian. If satisfied only approxi- 
mately, conditions (2) will nevertheless lead to a very good approximate truncation 
of the shell-model space if the states y~ lie high in energy compared to the states in the 
sets (~) and (/3). 
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5.1. STATES WITH v ~ 2 

Of the states with v < 2, only the favored pair states (with J = 0, 2, 4 . . . .  21,,), 
are to be included in the sets (~) or (fl). They are the only states depressed in energy. 
The remaining two-particle states (all v = 2 states with S --- 1, and all g = 0 states 
other than the favored pair combinations) are not acted upon at all by the SDI and 
form a degenerate sea above the favored pair states. These are the states to be excluded 
from the sets of key states (~) or (/3). Relative to these excluded v --- 2 states, the 
favored pair states have energies [see eqs. (8) and (12)] 

E a = - G  E [q(°)(tl 'd)] z" (15) 
I f '  

For major oscillator, rather pseudo-oscillator shells, with 7 = l,., l , . - 2 , . . . ,  0 (or 1) 
such as those of our model, these energies can be expressed in terms of l" by 

Eo = - Gf2, 

E 2 = - G O  [1 

E 4 = - GI'2 [1 

3] 
2l~+3 ' 

15 (312+91=+2) i l  
2 (21"+5)(21"+3)(21, .+1 ' 

(16) 

where the pair degeneracy number f2 has the value ½(l"+ 1)(l,,+2) in this case. 
The favored pair state with J = 0 (v = 0) satisfies condition (2) above exactly. In 

terms of the normalization coefficients Nj for the favored pair states 

In = 2 fay. J M )  = N j d + ( J M O [ ) ) ,  
with 

N, = [2 ~] [qC°)(tl'd)]2] -~, (1.7) 
l l"  

the reduced matrix elements of the surface multipole operators are 

~ n ( 2 f 2 - n ) ]  ~ 2 N ° ( z k + l ) ½  (18) 
<n v = 2 fav. kllQ(k)lln v = 0 J = 0> = L2~-~A Nk ' 

where the n-dependent factor follows at once from a quasi-spin Wigner coefficient 6). 
Reduced matrix elements connecting favored pairs with J --/: 0 can also be written 
in terms of l". For example, 

(n v = 2 fav. J = 2IlQ(2)lln v = 2 fav. J = 2 )  

V 2 " [  3 )] VQT"] (19a) 
= - 1 0  7 1 2(21,.+3 k f a - 2 J '  

(n v = 2 fav. J = 4]lQ(2)l[n v = 2 fav. J=2>  

= 6]/F617 [1--  15(31"+5) 21,.+3 
l_5_~m +_~_m + 2) [ -~_~]  . (19b) 

8(21"+3)(21"+1)] 1 2 ( 2 1 " 7 ~ { 2 / ~ 3 ) ~ + 1  
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Matrix elements o f  the Q(kq) between a favored J :¢ 0 pair  state and an excluded 
state with S = 1 are exactly equal to zero; while matrix elements between a favored 
J -¢ 0 pair state and an excluded state with .~ = 0 are in general small compared  with 
the matrix elements connecting two favored pair  states; and very small in the limit 
o f  rich configurations (large l,,). This can be seen in several ways. 

In the limit o f  large l,,, the commuta to r  o f  a Q with a favored pair  operator  d + 
will yield mainly favored pair operators,  eq. (11), and the few additional terms will 
have a small overlap with any one S = 0 state o f  the unfavored (excluded) variety. 

To study the relative importance o f  matrix elements o f  Q it is useful to derive sum 
rules for the reduced matrix elements, such as 

~" (n = 2 v'e'J'llQ(k)[[n = v = 2 fav. j ) 2 .  
o's'J" 

Such sum rules will be discussed in detail in sect. 6. For  the special case o f  the quad-  
rupole operator  and the favored v = 2, J = 2 state, they have been studied in detail 
by Arvieu and Moszkowski  5). (The present investigation was inspired in par t  by the 
work o f  Arvieu and Moszkowski.  Eqs. (18) and (19a) can be found in somewhat  
different form in ref. 5); except for a disagreement in sign in the case o f  eq. (19a).) 

For  the favored state with n = 2, J = 2, the quadrupole  sum over J '  states o f  the 
favored variety only has a value o f  I00[1 - (a number  which tends to zero as/,1 ~ co)]; 
see eqs. (18), (19) and (16), particularly for the nature o f  the lm dependent terms. The 
same sum over all states v', ~', J' other than favored pair  states is a complicated func- 
tion of/, , ,  but a number  which tends to zero as l,, --, oz. For  1,, = 2, 3 and 4 it has the 

values 3.12, 3.48 and 3.33, respectively. Al though it goes to zero slowly as lm ~ oz 
(for l m =  10 it has the value 2.07), it is small compared  with the factor  o f  100 which 
appears in the sum over favored states. Even for l m =  2 or  3 (the cases needed in our  
model),  therefore, the square of  a matrix element o f  Q connecting a favored v = 2 
state to any excluded v = 2 state must  be expected to be only a few percent o f  the 
square o f  one o f  the larger matrix elements, connecting a favored state to a favored 
state. 

Finally, for the v = 2 states it is o f  course easy to calculate all such matrix elements 
for the specific configurations o f  interest. For  the (gg d~d~s.~) configuration, for ex- 
ample, there are, besides the favored pair  states with J = 0, 2, 4 and 6, additional 
v = 2 states with S = 0 and the following J-values: 0, 2, 2, 3 and 4. Let such excluded 
pair  states be expressed in terms of  pair  creation operators A~f.~ ÷ with superscript 
(a) = I, 2 . . . .  used to distinguish multiple occurrences o f  a given J, 

[excluded state n = v = 2, ~ = 0, JM)  = N j A ( a ) ( J M ) + [ O )  

= NJ Z q~)(ll'J)[a[ x a+] s'~t;°°[O). (20) 
11' 

Note  that  a -¢ 0 indicates an excluded pair state (A (")÷) while a = 0 indicates the 
favored pair state A (°)" ~ d + ;  compare  with eq. (1). For  J-values for which there 
is more than one pair  state with a -¢ 0 the choice o f q  (") with a 4 : 0  is made arbitrarily. 
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However, the q must satisfy orthogonality conditions 

1 a(or a') = 0, 1, 2, (21) E q(a)(ll 12J)q(a')(ll 12J) = 3'~a" 2N-~ . . . . .  
l l l2  

where N s, eq. (17), is independent ofa .  The inverse of eqs. (17)and (20)is also useful: 

I-a + x a~]  Jm; oo = 2NZ{q(O)(ii,J)d+(jM)+ E q(")(ll'd)A(")(JM)+} • (22) 
a # : 0  

In terms of  this notation the reduced matrix elements of the surface multipole opera- 
tors between two v = 2 states are 

(n v' = 2 d' a'lla(k)lln v --- 2 Ja)  - Q - n  [ 
4(2J '+  1)(2J+ 1)(2k+ 1) 73 

Q -  2 _( 2 [ ~ J ) - ~  ~ ' ) ] z i J  
ll" ll" 

X 2 (-- l)'q(°)(lll k)q(")(lt 12 J)q(~"(ll2d') 12 it " 
11112 

For a matrix element connecting two favored pair states, a = a' = 0, the phases of 
the q(O) [viz.(-1)~(t+v+s)], are such that the three q(0) factors in eq. (23), together 
with the ( - 1 )  ~ factor, can be replaced by the absolute values of the q(O) factors, pro- 
vided the matrix element is multiplied by an overall phase factor ( - 1 )  4~s+s'+t'). 
Moreover, the magnitudes of the factors q(O) (ll 'J) with J :~ 0 are very mild functions 
of / ,  1' and J. (For the pseudo f-p shell with 1,, = 3, e.g., they vary between 1.095 and 
1.366). Finally almost all of  the 6-j symbols needed in the/-sums of eq. (23) are posi- 
tive. The matrix elements connecting two favored pair states, a = a' = 0, are thus 
built from coherent superpositions of terms of  comparable magnitudes, and hence 
such matrix elements are large. With a = 0 and a' 4: 0, however, the orthogonality 
requirement (21) insures that the /-sums now give an incoherent superposition of 
terms of  comparable magnitudes, so that the cancellation of positive and negative 
terms leads to the small values of the matrix elements connecting a Favored state 
(a = 0) to an excluded state (a' # 0). 

5.2. THE v = 4 STATES 

In the case of the states with v = 4 (the next set to be considered) the separation 
into the two sets, favored and excluded, is less obvious. The large number of states 
with ~ = 1 and ~ = 2 must clearly be excluded (they lie high in energy and have no 
connections to favored v = 2 states via matrix elements of the surface multipole 
operators). Since there are a large number of  states with v = 4 and S = 0, however, 
the additional criteria of low energy and high collectivity must be used to isolate the 
key favored states. For the (f~p~p~.) proton configuration of our model there are 12 
v = 4 states with S = 0, with J-values: 0, 1, 23, 3 2, 4 3, 5 and 6. For the (g~d.~d.~.sl) 
neutron configuration on the other hand, there are 86 v = 4 states with ~ = 0, with 
J-values: 05, 16, 2t s, 311,4a 6, 5 ~ 1, 61 o, 75, 85, 9 and 10. In these cases it is in principle 

still possible to diagonalize the full Hamiltonian and calculate all matrix elements of 
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surface multipole operators to choose the key states from among the many v = 4, 
= 0 states by a process of  elimination. The full spectrum of v = 4 states for the 

(~-~--~-) configuration is shown as part of  fig. 1. For the (~--~--~ ½) configuration the 
low-lying v = 4 states are shown as part of  fig. 2. The exact eigenvalues of  the Hamil- 
tonian (8) were calculated with the Oak-Ridge-Rochester shell-model code z 1). (For  
the (~ -~- ½) configuration they have already been givenby Arvieu and Moszkowski s).) 
Clearly such a process of  trial and error will no longer be feasible in the case of  richer 
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Fig. 1. The spectrum for the configuration (f.,l_p?rp~) 6. Levels with ~ ~ 1 are indicated by dotted 
lines, levels with ~q = 0 by solid lines. Favored states to be retained in the truncated shell-model 
space are indicated by an additional dot. Numbers  below the levels are exact eigenvalues. Numbers  
in parentheses are eigenvalues of  H in the truncated subspace of  favored v = 4 states constructed 
f rom favored J : ; ~ 0  pairs according to eqs. (24)-(26) (see table 4; note that  E(n  = 6, 
v = 4) = [E(n = v = 4)--6]) .  Numbers  in square brackets are expectation values of  H in states 
obta ined by seniority projection techniques from siaagle states built from the lowest favored J :/: 0 

pairs, as discussed in sect. 7. 
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Fig. 2. The spectrum for the configuration (g~.d~dl.s.~) 4. Only the lowest v = 4 states are shown. 
Numbers below the levels are the exact eigenvalues. Numbers in parenthess are eigcnvalues of H 
in the truncated subspace of favored o = 4 states constructed from favored J ~ 0 pairs according to 
eqs. (24)-(26) (see table 3). Numbers in square brackets are expectation values of H in states 
obtained by seniority projection techniques from single states built from the lowest favored J ~ 0 

pairs, as discussed in sect. 7. 

conf igura t ions  or  larger  numbers  o f  part icles  (higher seniori t ies)  so tha t  good  approx i -  

ma t ion  techniques mus t  be deve loped  to isolate and  cons t ruc t  the  key states to be 

selected for  our  t runca t ion  scheme. The  impor t ance  o f  favored  J ~ 0 pa i r  states will 

again  be used. I t  will be shown that  the key v = 4 states can be cons t ruc ted  to very 

good  app rox ima t ion  f rom superposi t ions  o f  favored  J ~ 0 pa i r  states. Let  [[J~ x d2] 

IMt) be a normal i zed  four-par t ic le  state cons t ruc ted  by coupl ing  two favored  J # 0 

pa i r  states:  

I I J ;  x Jz]IMr) = N ( J I  J z  I )  X ( J r  M t  J2 M2lIMt)~c+(Jt M[)'~C+(Jz M2)I0) ,  (24) 
MIM2 
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where N(J1,I21) is a normal iza t ion  factor .  Such a state will be a superpos i t ion  of  

v = 4, v = 2 and (for I = 0) v = 0 states. However ,  it is poss ible  to const ruct  pure  

v = 4 states f rom l inear  combina t ions  o f  such states 

Iv = 4 b lM, )  = ~ C(b)(,J 1 J2 I)[[d~ x J2]IM,) ,  (25) 
JIJ2 

i f  the coefficients c(h)(JxJ2I), b = l ,  2 . . . . .  are chosen such that  the resul tant  four-  

par t ic le  states are  free o f  favored  pa i r  states coupled  to J = 0; tha t  is 

d ( 0 0 )  Z c<b)(J~ J2 I ) l [ J l  x Jz]I,Vl,) = 0. (26) 
dlJ2 

The result  o f  ac t ing  with ,~¢(00) gives a combina t ion  o f  the var ious  two-par t ic le  

states with S = 0 and  J --- I ;  so tha t  the requi rement  (26) gives a number  o f  condi-  

t ions on  the c(J1J2I ) equal  to the number  o f  independent  two-par t ic le  states with 

= 0 and  L = J = L In the (-} ~z ~ ½) configurat ion,  e.g., the favored J ¢ 0 pa i r  

states have J1 (or  J2)  o f  2, 4 and  6. The  vector  coupl ing  t r iangle  c o n d i t i o n s / k  ( J l  3"2 I )  

restr ict  the possible  number  o f  combina t ions .  In addi t ion ,  states (24) with J1 = ./2 

and I odd  would  be identical ly zero. F o r  I = 3, e.g., only the combina t ions  [Ja x .12] 
= [2 x 4] and  [4 x 6] are possible,  while the re la t ion (26) leads to a single condi t ion  

on the coefficients c(J1 J2 I) since there is only  a single two-par t ic le  state with g = 0, 

J = 3 in this case. Thus there is a single favored v = 4 state with I = 3 which can be 

buil t  f rom superpos i t ions  o f  favored J ¢ 0 pairs.  Table  1 shows the ar i thmet ic  for  

the const ruct ion  process  for  the (~-~ ~: 5) conf igurat ion and  gives the number  o1' 

f avored  v = 4 states for  each o f  the poss ib l e / -va lues .  Table  2 gives s imilar  results for 

the (s  ~_ .}) configurat ion.  The  favored  v = 4 states buil t  th rough  this process  must  o f  

course be l inearly independent .  F o r  very high I, in par t icular ,  the requi rement  of  

TABLE 1 

Favored v ~- 4 states for the (5 ~ .~ ½)4 configuration 

I Number of [31 × 32 ] Number of Number of favored 
combinations conditions v = 4 states 

0 3 2 1 
2 5 3 2 
3 2 1 1 
4 6 2 4 
5 3 0 3 
6 5 1 4 
7 2 0 2 
8 4 1") 3 
9 1 0 1 

10 2 I ~) 1 

22 

~) From the requirement of linear independence. 
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TABLF 2 

Favored v = 4 states for the (~ ~ x)4 configuration 

383 

I N u m b e r  o f  [Jl  × Jz ] N u m b e r  o f  N u m b e r  o f  favored 
c o m b i n a t i o n s  condi t ions  v = 4 state 

0 2 2 0 
2 3 2 1 
3 1 0 1 
4 3 1 2 
5 1 0 1 
6 2 1 a) 1 

") From the requirement of  linear independence. 

independence may add conditions over and above those of eqs. (26) (see table 1). 
For the (~ ~ .s_ ½) configuration this construction process for the favored v = 4 states 
leads to a single state with I = 0, none with I = 1, two with I = 2, one with I = 3, four 
with I = 4, etc. It is interesting to note that among all of  the low-lying states with 
v =  4 (fig. 2), there is a single one with I = 0, two with I = 2, one with I = 3, three 

with I = 4 (the fourth one lies somewhat above the highest v = 4 states shown in 
fig. 2) etc. To see whether the favored v = 4 states built from a superposition of 
favored J ~ 0 pairs are indeed good approximations to the exact low-lying eigenstates 
of  the Hamiltonian (8), this Hamiltonian has been diagonalized in the subspace of 
favored v = 4 states. Note that this is a highly truncated subspace. In the configura- 
tion (7 ~ ~ ½)4 there are, e.g., 94 states with I = 2. Of  these 86 are states with v = 4. 
Of these only 15 have S = 0 and finally, of  these only two can be built f rom super- 
positions of  favored J ~ 0 pairs and are to be retained in the truncation scheme. The 
eigenvalues of  H in the truncated subspace are shown in figs. l and 2 in parentheses 
alongside the exact eigenvalues (from a diagonalization of H in the full space). The 
agreement between the two is very good and spectacular in many cases, particularly 
for the lowest eigenvalues of  a given L It  must therefore be expected that the v = 4 
states built from superpositions of  favored J = 0 pairs according to the prescription 
(24)-(26) are very good approximations to the exact eigenvectors for the low-energy 
v = 4 states. The eigenvectors of  the favored v = 4 states in the truncated subspace 
are shown in tables 3 and 4 for the (~ 5 ~ 1,) and (~_ ~z -1) configurations, respectively. 
These eigenvectors form an orthonormal set (they are eigenvectors of  the Hermitian 
operator H) ;  although state vectors [[Jx × J2]IMr)  and ] [ J ~  × J~]IMt)  arc not ortho- 
gonal to each other and frequently have large overlaps. (Since these overlaps are also 
related to the 4 ~ 2 × 2 particle fractional parentage coefficients, they are numbers 
basic to the technique of calculation used in this investigation; see appendix A.) To 
further test the goodness of  the eigenvectors of  tables 3 and 4 it might be interesting 
to calculate their overlaps with the eigenvectors of  the full shell-model space. Since 
matrix elements of  the surface multipole operators are the crucial numbers of  our 
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model, we have chosen instead to compare the reduced matrix elements for Q(k) as 
calculated with our approximate state vectors (eigenvectors of  H in the truncated 
subspace of  favored v = 4 states) with those calculated with the exact eigenvectors 
(eigenvectors of  H in the full space). Some sample comparisons are given for the two 

TABLE 3 

F a v o r e d  v = 4 s t a t e s  f o r  t h e  c o n f i g u r a t i o n  (~- .~ ] ½)4 

I b a) &)b JlJ2 2 2  24  4 4  26  46  66  

0 + 1 - - 1 2 . 0 3  0 .4971 - - 0 . 6 0 0 8  
2 + 1 - - 1 4 . 0 4  0 . 8 0 5 2  0 . 2 9 7 6  0 . 0 3 5 7  0 .1691 
2 + 2 - - 1 0 . 4 6  0 . 1 8 9 8  - - 0 . 2 8 7 4  - - 0 . 8 4 5 2  0 . 0 3 6 0  
3 + 1 - - 1 2 . 2 9  0 . 9 3 7 4  0 . 2 1 6 6  
4 + 1 - - 1 3 . 2 9 3  0 .8381 0 . 1 4 1 7  - - 0 . 1 0 4 9  - - 0 . 2 3 6 2  0 . 1 1 6 5  
4 + 2 - - 1 1 . 6 4  0 . 0 5 7 6  0 .5865  - - 0 . 1 2 4 6  0 .6253  - - 0 . 0 6 8 8  
4 + 3 - -  9 .43 0 . 0 1 4 6  0 . 3 7 7 9  0 . 7 7 9 7  - - 0 . 2 5 2 7  - - 0 . 1 8 8 6  
4 + 4 - -  5 .34  0 . 0 3 2 9  0 . 0 6 4 7  0 . 3 6 3 8  0 .1523  0 .7418  
5 + l - - 1 0 . 8 3  0 .9068  - - 0 . 4 0 2 8  0 . 1 1 2 0  
5 + 2 - - 1 0 . 3 5  0 .4221 0 . 8 5 4 5  - - 0 . 2 2 1 5  
5 + 3 - -  6 .07  0 . 0 2 1 7  0 . 3 4 2 4  0 .9741 
6 + 1 - - 1 0 . 3 6  0 . 6 4 2 7  0 .2071 0 . 3 1 8 0  - 0 .2523  

6 + 2 - -  8.51 - 0 . 0 3 4 3  0 .7945  - - 0 . 5 0 5 5  0 . 0 1 0 9  
6 + 3 - -  6 .92  0 .0421 0 . 2 9 0 6  0 . 4 8 8 7  0 . 7 9 8 7  
6 + 4 - -  4 .27  0 .0681 0 . 1 6 5 9  0 .1253  - - 0 . 2 0 7 5  
7 + 1 - 8 .62  1 .0015 - 0 . 0 9 6 8  
7 + 2 - -  6 .62  0 .0328  0 . 9 9 7 4  
8 + 1 - -  8.13 0 . 3 5 9 7  - - 0 . 7 7 0 5  
8 + 2 - -  7 .44  1.1221 0 . 9 0 4 0  
8 + 3 - -  3 .95  0 .5301 0 . 4 6 3 5  

0 .1358  
0 . 0 2 8 0  
0 .1918  

- - 0 . 0 5 1 7  
- - 0 . 0 1 6 4  
- - 0 . 0 8 8 3  

0 . 6 0 1 5  

0 . 0 9 8 2  
0 . 0 4 3 8  

- - 0 . 1 1 7 6  
- - 0 . 9 7 7 6  

- - 0 . 0 3 7 3  
0 .0533  
1 .1383 

~) T h e  l a b e l  b o r d e r s  t h e  e n e r g i e s :  b ~ 1, 2 . . . .  f o r  t he  l owes t ,  n e x t  l owes t ,  . . .  c i g e n v a l u c s ,  
E ~ ,  o f  H in  t h e  s u b s p a c e  o f  f a v o r e d  v ~ 4 s t a t es .  

T h e  t a b l e  gives  t he  coef f ic ien t s  cta)(J 1 J2 I) fo r :  

lv = 4; IM,  b)  = ~ c(b)(d, J2 I)l[J1 x Jz]IMt). 
dlJ2 

TABLE 4 

F a v o r e d  v ~ 4 s t a t e s  f o r  the  c o n f i g u r a t i o n  (._s, ~ ½)4 

I b Etb Jt Jz 22 2 4  4 4  

2 1 - - 7 . 9 3  0 . 6 8 8 9  0 .4823  0 .0265  
3 1 - - 6 . 8 6  1 
4 1 - 6 . 7 3  0 .6958  0 . 3 6 3 0  - - 0 . 2 0 2 9  
4 2 - -  3 .47  0 . 0 8 9 0  0 . 5 1 6 0  0 .9187  

5 1 - - 5 . 1 4 3  1 
6 1 - - 4 . 2 8 6  1 (o r  O) 0 (o r  1) 

T h e  t a b l e  g ives  the  coef f ic ien ts  c(~)(J~ J2  I )  fo r :  

Iv = 4; IM, b) = ~ c(b)(d, J2 I)l[J1 × J2]IM,). 
JIJ2 
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configurations of  our model in tables 5 and 6. It  can be seen that the two sets of  num- 
bers are in very good agreement, particularly for the larger values of  the reduced 
matrix elements, for which the numbers calculated with the approximate eigenvectors 
of  tables 3 and 4 are always within a few percent of  the exact values. The technique of 
choosing the favored v = 4 states in terms of appropriate superpositions of  favored 
J q: 0 pairs thus not only gives a ready prescription for isolating the low-energy v = 4 
states but gives us a simple and excellent approximation scheme. A slightly different 
but closely related technique based on seniority projection from a sin#le state 
[[Jt x J2]IM~) will be discussed in sect. 7. The question remains whether the favored 
v = 4 states of  tables 3 and 4 satisfy the crucial condition (2) of  eq. (14). Are these 
favored states the only ones with important connections to the favored v = 2 states via 
large matrix elements of  the surface multipole operators? The v = 4 states excluded 
from the favored class lie higher in energy; but do they have only weak surface multi- 
pole matrix connections to the key states retained in our truncation scheme? These 
conditions are indeed satisfied. For the richer configurations (large lm), this can be 
seen qualitatively from the general commutat ion properties of  the favored pair and 
surface multipole operators, eq. (10). A more quantitative estimate of  the relative 
magnitudes of  favored ~ favored versus favored - ,  excluded matrix elements can 
be given in terms of  multipole sum rules to be presented in sect. 6. 

TABLE 5 

Reduced mat r ix  elements (v'l"i]Q(k)]ivl) for the Q.,.~ -zx) +. ,  configurat ion 

Sample compar i sons  between exact and approx imate  calcula t ions  

k v" v 1" 1 exact  approx,  k v' v I" 1 exact  approx.  

2 2 0 2 0 4.276 4.276 4 2 0 4 0 3.703 3.703 
4 2 2 2 4.82 4.89 4 2 2 2 2.02 1.99 

3 2 0 0 3 2 3.52 3.53 
4 2 5.80 5.8t 4 2 2.21 2.21 

5 2 3.71 3.71 
2 4 3.13 3.09 6 2 1.82 1.82 
3 4 --5.45 --5.48 
4 4 3.42 3.43 2 4 0.73 0.55 
5 4 --5.74 --5.74 4 4 --2.45 --2.43 
6 4 2.82 2.82 6 4 6.31 6.31 

4 4 3 2 6.60 6.47 4 4 3 2 -- 1.22 -- 1.28 
4 2 --1.41 --1.47 4 2 4.06 4.13 

5 2 0.81 0.84 
6 2 +- 1.82 -- 1.73 
4 3 2.37 2.39 
5 3 - 0 . 9 3  --0.85 
6 3 1.62 1.80 
5 4 -- 5.02 --4.99 
6 4 0.23 0.31 

4 3 2.63 2.51 
5 3 --4.47 --4.41 

5 4 2.19 2.25 
6 4 5.57 5.55 
6 5 --6.03 - 6 . 0 3  

The calcula t ions  marked  " a p p r o x i m a t e "  have used the v ~ 4 state vectors of  table 4. Only v = 4 
states with b ~ 1 are included in the table. 
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TABLE 6 

Reduced matrix elements (v ' l 'b ' [ IQ(k) l lv lb)  for the (=7, .~ ~ ½)4 configuration 

2 4 

2 4 

Sample comparisons between exact and approximate calculations 

v' v l '  b" I b exact 

0 2  0 
2 0 1 2  

2 1 2  
2 2 2  
3 1 2  
4 1 2  
4 2 2  
4 3 2  

2 2 
2 
3 
4 
4 
4 
5 
5 
6 
6 

1 4 
2 4 
1 4 
1 4 
2 4 
3 4 
1 4 
2 4 
1 4 
2 4 

approx, k v" v 1' b'  

4.869 4.869 4 2 0 4 
1.73 1.68 4 4 2 2 1 
5.18 5.17 2 2 
0.91 1.05 3 1 
0 0 4 1 
6.78 6.79 4 2 
0.62 0.58 4 3 
0.01 --0.06 5 1 

5 2 
1.78 1.86 6 1 

- -1 .69  --1.54 6 2 
4.79 4.86 
1.21 1.23 
3.77 3.84 
2.07 2.17 
5.18 5.35 
2.84 2.54 
4.72 4.73 
0.30 0.28 

I b exact approx 

0 5.021 5.021 
2 1.37 1.43 
2 --1.30 --1.18 
2 --3.68 - 3 . 7 3  
2 0.93 0.95 
2 2.90 2.95 
2 1.59 1.67 
2 --3.98 --4.11 
2 --2.18 --1.95 
2 3.63 3.64 
2 0.22 0.22 

4 4 2 2 1 4 0.24 0.32 
2 2 4 --4.10 --4.35 
3 1 4 0 0 
4 1 4 --1.23 --1.21 
4 2 4 - 0 . 8 3  --0.88 
4 3 4 4.10 5.12 

4 4 4 4 1 0 1 1.95 2.00 
4 0 1 2 1 --2.76 --2.55 4 2 0 1 1.92 1.86 

2 2 2 1 --1.88 --1.80 4 3 0 1 --2.68 --2.79 
3 1 2 1 6.52 6.70 
4 1 2 1 --3.10 --3.06 2 2 2 1 1.78 1.66 
4 2 2 1 4.15 4.10 3 1 2 1 --0.62 --0.63 
4 3 2 1 1.29 1.32 4 1 2 1 5.33 5.43 

4 2 2 1 4.06 3.89 
4 3 1 4 1 --0.46 --0.37 4 3 2 1 --0.99 --0.67 

4 2 4 1 1.72 1.75 5 1 2 1 --0.79 --0.55 
4 3 4 1 0.56 0.80 5 2 2 1 5.29 5.19 
5 1 4 1 3.37 3.47 6 1 2 1 -0 .47  --0.35 
5 2 4 1 IA9 0.99 6 2 2 1 - 2 . 6 0  .... 2.58 
6 1 4 1 8.51 8.50 
6 2 4 I 0.20 0.18 

The calculations marked "approx ."  have used the v ~ 4 state vectors of  table 3. 

F i n a l l y ,  t h e  t o t a l  n u m b e r  o f  f a v o r e d  v = 4 s t a t e s  to  b e  r e t a i n e d  in  t h e  t r u n c a t i o n  

s c h e m e  is n o t  u n r e a s o n a b l y  l a rge .  I n  t h e  (}  ~ -~} az) she l l  t h e r e  a r e  a l t o g e t h e r  22 v = 4 

s t a t e s  w h i c h  c a n  b e  c o n s t r u c t e d  f r o m  s u p e r p o s i t i o n s  o f  f a v o r e d  J ¢ 0 p a i r s  ( t a b l e  I ) .  

A f e w  o f  t h e s e ,  p a r t i c u l a r l y  a f e w  o f  t h o s e  w i t h  l a r g e  I ,  l ie r e l a t i v e l y  h i g h  in  e n e r g y  a n d  

h a v e  n o  i m p o r t a n t  s u r f a c e  m u l t i p o l e  c o n n e c t i o n s  t o  l o w - e n e r g y  f a v o r e d  s t a t e s  so  

t h a t  t h e y  c a n  a l s o  b e  e x c l u d e d .  I n  t h e  f ina l  c a l c u l a t i o n s  o n l y  t h e  13 v = 4 s t a t e s  s h o w n  

in  fig. 2 h a v e  b e e n  r e t a i n e d  in  t h e  t r u n c a t i o n  s c h e m e .  
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6. Multipole sum rules 

To estimate the relative importance of matrix elements of  the surface multipole 
operators connecting a favored state to an excluded state versus those connecting 
favored states to favored states, it is useful to calculate sum rules for these reduced 
matrix elements, such as 

<nv':(J'llQ(k)llnv fay. j> z = S(v'vJ), (27) 

where the states in the right-hand side of  the matrix element is a particular state of 
the favored variety, while the sum is over all states J ' ,  e '  for afixed v'. Such sums are 
calculated from the relation 

<nv'~'d'llQ(k)llnv fav. j>2 
v'~t'J' 

= ( 2 J +  1)<nv fay. JI ~ ( -1)~Q(kq)Q(k - q)lnv fay. J>. (28) 
q 

The sum can then be restricted to particular values of  v' by successive choices of  n 
and with the use of  quasi-spin techniques. For the special case k = 2, v = 2, J = 2 
(favored state) these sums have been given by Arvieu and Moszkowski 5) using the 
above technique. 

Since the n-p interaction of the SDI involves all possible surface multipole operators 
with equal weight, it may be most instructive to give a sum rule of  the above type 
which involves a sum over the multipole order k as well. Such sum rules are partic- 
ularly simple. Since the operator Q with k = 0 is just the number operator (with 
diagonal matrix elements only), it will be excluded in order to obtain the most critical 
estimate of  the relative importance of favored ~ favored versus favored ~ excluded 
matrix elements. For the favored states with v = 2 the sum rules are, 

for v = 2 ---, v = 2 connections: 

~ <n v' = 2 ~'d'llQ(k)l[n v = 2 fay. j>2 
kq:O :t'J" 

= (~--_~)z2(2J+ 1 ) ( O - 2 ) { 1 +  1 ~ [q(O)(ll,j)]2} ' (29) 

for v = 2 ~ v = 4 connections: 

2 2 (n v' = 4 ct'J'llQ(k)lln v = 2 fav. j>2 
k ¢ O  ~t'd' 

---- kV(n-2)(2f2-n-2)12(2f2- 6) -J 4(2J + I)I2-f2~-32 {f2+ f2-iI ~, [qtO,(ll,j)]2} . (30) 

Here, f2 is again the pair degeneracy n umber, f2 = ~ ( 2 l +  1). The n-dependent factors 
follow from quasi-spin Wigner coefficients 6) and show the increased importance o f  
the v = 2 ---, v = 4 relative to the v = 2 --+ v = 2 connections as n approaches the 
middle of a shell, n ~ f2. 
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Sum rules for a fixed multipole order k can also be given al though they are much 
more complicated than the simple results of  eqs. (29) and (30). The case k = 2 may 
be of  greatest interest, since the quadrupole operators may be the most important  (the 
real n-p interaction may have more quadrupole content than indicated by the SDI 
which gives equal weight to all multipole orders). For the special case of  a major 
oscillator (or pseudo-oscillator) shell with/-values: 1=, 1 " - 2  . . . . .  0 (or 1), sum rules 
for the lower favored states with v = 2 are: 

(i) J = 2; v = 2 -~ v = 2 connections: 

~, <n v' = 2 a'J'llQ(2)lln v = 2 fay. J = 272 
~ t ' d "  

= (O-n' la5  [16- 15(51"+7).-+ 301,. 30 + 12 ] 
\ 1 2 - 2 1  2(21,.+I)(21,.+3) (21m + 1)(2l"+3)  z 21,.+1 21m+3 ' 

(31) 

4o } 
( f 2 -  2) 2 [ 2 -  3F(I")] , 

(ii) J = 2; v = 2 ~ v -- 4 connections: 

~, <n v' = 4 ct'J'llQ(2)lln v -- 2 fav. d = 2> 2 

4 0 ( O - 1 )  F1 -3(-5-I'+7-)-- q 
( f 2 -  2) 2 L 4(21,. + 1)(21,. + 3)_] 

40 [1 3 + 31,. ]}  
( f 2 -  2) 2 21,. + ~  i-21,. + 1 )~ i"  + 3)2_] ,  (32) 

(iii) J = 4; v = 2 --+ v = 2 connections: 

2 <n v' = 2 ='J'llQ(2)[ln v = 2 fav. d = 4 >  2 = 9 [20-30F(1,,)], (33a) 

where F(I") has been introduced for short-hand notation,  

F(l,.) = 2(21, + 5)(2l.  + 1) 
[2(21,. + 5)(21, + 3)(21,. + 1)-- 15(312 + 91,. + 2)] 

{2 -- [5f2(2213 + 20712 + 395 l"-- 168)(21,. + 3) -- 9001,.(l,, + 3)] t 
4(2-~= +7)~1., +-5~-21,. +~-2L+-I )~m - 0  J' (33b) x 

(iv) J = 4; v = 2 ~ v --- 4 connections: 

<n v' = 4 ~ 'J ' l la(2)l ln v = 2 fav. J = 4> 2 
ct ' , V  

=91F(n--2)(292--n--2)l/20Q2(~~--~- -d [~ - -2  [1 21.!+3] 

40 
- - -  G ( I " )  ( 3 4 a )  

f ~ - 2  
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TABLE 7 

Sum rules a) 

"-"----.•um rule v' - - 2 v' = 4 v' -.- 2 v .... 4 
case ~ .  Y2k -7'-- 0 Zk :~ 0 k 2 only k = 2 only 

j : :  ~ .~-~ shell 
J = 2 94.1% 97.9 % 92.5 ~o 96.8 ~o 
J .... 4 77.6 % 94.8 % 97.3 % 99.4 ~o 

j - ~ s h e l l  
J -- 2 93.9 % 95.5 % 93.4 % 98.8 
J = 4 88.0 % 94.7 % 93.6 % 95.6 % 
J = 6 66.0 % 92.2 % 96.0 % 

a) Defined as 
n,V" n , v = 2  2 (~,j, I[Q(k)llfav.j ) 

fay. states only 
n ,v  n , v = 2  2 

(='s '[l(Qk) ]fa~.s > 
all c~'J" 

where F(l,n) is given by eq. (33b), and 

[ 15(3/2m+9/m+2) } ] - 1  

G(l,,) = 1 -  2(21m+S)(21,,+3)(21m+ l 

× {1 3 15lr"(3713+130l~+431"-98) }.  (34b) 

2/m+3 8(21m+5)(21m+3)2(21,n+l)(21,,--l) 

Eqs. (31) and (32) have been given in somewhat  different form by Arvieu and Mosz-  
kowski 5). Par t  o f  the derivation o f  eqs. (29)-(34) is sketched in appendix B insofar 
as the techniques used are different f rom those o f  ref. s), and may shed some light on 

the structure o f  the commuta to r  algebra for  the favored pair and surface multipole 
operators.  

Since the reduced matrix elements o f  Q(k) connecting any favored state to any 
other  favored state have been calculated explicitly, the sums over favored states only 
(o~'J' = favored states only in eqs. (27)) can also be calculated. The full sum rules of 
eqs. (29)-(34) (where the sums over ~ ' J '  run over both favored and excluded states) 
can be used to estimate the orders o f  magnitude o f  the neglected matrix elements of 
Q(k) connect ing a favored state to an excluded state. The results are shown in table 7 
in terms of  percentage ratios o f  favored state sums relative to full sums. Results are 
given for the J = 2 and 4 favored v = 2 states o f  the (-[ -~ ½) shell and the favored 

J = 2, 4 and 6 v = 2 states o f  the (2 -~ ~ 2 x) shell, both for the pure quadrupole  stun 
rules (k = 2 only) and the sums over all multipole orders (other than k = 0). The 
percentage ratios are well over 90 % in almost  all cases. The excluded states make 
impor tan t  contr ibutions to the sum rules only in the case o f  the favored pair  states ot 
the highest J and here largely th rough  matrix elements connecting these to excluded 
states with v' = 2 through the highest possible multipoles (k = 21m). Thus the major  
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part  of  the missing 34% of  the v' = 2 sum rule for the J = 6 state o f  the (~ } ~ ½) 
neutron configuration comes via matrix elements o f  Q(6). However,  matrix elements 

with k = 6 do not enter into the calculation o f  the n-p interaction o f  our  simplified 
model,  since the (3 3.21.) proton configuration of  the model has a maximum k-value of 
4. The results o f  table 7 show in particular the small contributions made by excluded 
states to matrix connections between the favored v = 2 states and the totality of 
v = 4 states. In this case the sum over favored states soaks up all but  a few percent 

o f  the total sum rule. Since the number  o f  excluded v = 4 states is much, much larger 
than the number  o f  favored v = 4 states, any one matrix element connecting a favored 

state to a specific excluded state is likely to be very small and will in addit ion connect  
states which are separated by large energy differences. Our  prescription for separating 
the v = 4 states into two sets, the favored states built f rom superpositions o f  favored 

J -~ 0 pairs, and the states to be excluded from the truncated shell-model space, 
should therefore be expected to be good. 

Finally, some of  the largest matrix elements o f  Q(k) involve connections between 
favored v = 2 states and low-lying v = 4 states, particularly as n approaches (2 (half- 
full shell). I t  is therefore to be expected that there are equally important  connections 
between favored v = 4 states and certain v = 6 states, particularly if some of  these lie 
relatively low in energy. 

7. States with v >-- 6; seniority projection techniques 

In a rich configuration the number  o f  states with v = 6 and S = 0 is very large. 

In the (~ ~ ~ ½) configuration, for example, states with v = 6 and S = 0 include 18 
states with J = 0 and 48 states with J = 2. Even if these were further restricted to 
v = 6 combinat ions made up only ofsuperposi t ions  o f  three favored J ~= 0 pair states, 

the number  o f  v = 6 states would exceed the limits set by the requirements o f  the 
truncation scheme. For  states with v _>_ 6 therefore very stringent requirements are 
needed to select f rom among  the lowest energy states a very small number  having 

large multipole connections to the favored states o f  lower v. 
In this connect ion it is useful to note that Arvieu and Moszkowski have suggested 

that  the lowest 2 +, 4 +, 0 + "tr iplet"  o f  v = 4 states might be approximated well by 
the v = 4 state projected f rom [ [2 × 2]IM t), with I = 0, 2 and 4. An  examination of  
the very lowest v = 4 states shows that they do indeed have very large overlaps with 
v = 4 states projected from single states o f  the type l[J1 × J2]IMI) involving only 
the very lowest favored J ~ 0 pairs, such as [ [2 x 2]IMI) and 1 [2 × 4]IMI). The three 
lowest v = 4 states o f  the (5-~ ~ ½) shell (fig. 2) are indeed 2 +, 4 + and 0 ÷, with a 
center o f  gravity at - 13.52 energy units (G), compared with - 13.33 units, the double 
excitation o f  the favored J = 2 pair in the extreme "pair ing vibrat ion" limit 12). In 
the ([  ~ ½) shell, 2 + and 4 + states are again among  the lowest v = 4 states. The 0 + 
"member  o f  the triplet", however, lies at somewhat  higher energy (fig. 1) and 
does not have particularly large Q(k) matrix connections to v = 2 states. (Ac- 
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cording to our earlier prescription it has in fact not been included in the family of 
favored v = 4 states). Nevertheless, in the limit of  large lm the work of Arvieu and 
Moszkowski suggests that the lowest v = 4, 0 +, 2 + and 4 + states might be approxi- 
mated well by the v = 4 states projected from I [2 x 2]IM 1 >. 

The seniority projection can be carried out by means of projection operators. For 
example, the operator 

1 _ _  

P(v) = N 1 2 ( 0 - 4 )  8 ( O - 3 ) ( f 2 - 4 )  

-- 48( f~- -2) ( f~- -3) (~- -4) [d+(00)]3[ '~(00) ]3  ' (35) 

(N is a normalization factor) can be used to project a v = 6 state from an arbitrary 
state with n = 6. Even simpler (and more direct) techniques employ overlaps of  the 
type (n  = 4 vaIM~ l[Jl x J2]IMI > with v < 4 which follow directly from our method 
of  calculation. Details are given in appendix A; eqs. ( A . 9 ) a n d  (A.10) give general 
expressions for the normalized v = 4 vectors projected from a single state of the type 
I [ J  1 x J2]IM~ >. Numerical results are shown in table 8 for both the configurations 
(.} -~ ½) and (-} -52 _t ½) for the v = 4 state vectors with I = 0, 2 and 4 projected from 
112× 2]IMI>. For the richer (,} ~} .3 ½) configurations, table 8 also shows the v = 4 
state vectors for a 2+, 3+, 4 +, 5 +, 6+ multiplet projected from 1[2x4]IMl>.  The 
amplitudes of  the components with v __< 2, needed to subtract out the unwanted 
v =< 2 content of  [[J1 x J2 ]IMp>, are in general quite small, though by no means 
negligible. The expectation values of the Hamiltonian (8) in these v = 4 projected 
states are also shown in table 8 and are in general again in very good agreement with 
the exact shell-model eigenvalues (cf. figs. 1 and 2). In two cases, the 0 + and second 
2 + states of  the (5 ~s ~a ½) shell, they seem to be in better agreement with the exact 
eigenvalues than our earlier approximation, although in general the eigenvectors of  H 
in the truncated subspace of v = 4 states constructed according to eqs. (25)-(26) 
are in better agreement with the results of  the exact calculation. To further compare 
the two types of  approximations, table 8 shows the overlaps between the correspond- 
ing state vectors. In almost  all cases these overlaps are very close to unity, showing 
that both approximation techniques would give acceptable state vectors for the fa- 
vored v = 4 states to be retained in the approximation scheme. (It should perhaps be 
noted that the v --= 4 state with I = 2, projected from 114 x 412M>, has an overlap 
o f -0 .971  with the second 2 + v = 4 state of  the (-~- ~z ~, ½) configuration, compared with 
the overlap of -0 .513  for the v = 4 state projected from 112 × 412M).)  Undoubtedly, 
the accuracy of  these state vectors could be improved further by diagonalizing H in 
a subspace of v = 4 state vectors projected from a few states I [J  1 ×J2]lMt); e.g. 
112×2]IMI) ,  112×4]IMI)  and 114×4]IMI>. Although the accuracy of such state 
vectors would rival that of  our earlier approximation and lead to overlaps closer to 
unity between the two types of  vectors, the method of calculation becomes somewhat 
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more  cumbersome,  since the state vectors o f  the type shown in table  8 conta in  small  

pieces o f  the v = 2 states,  with a # 0, which had  previous ly  been excluded f rom the 

shel l -model  space. F o r  v = 4 therefore,  the favored  states buil t  f rom l inear  combina -  

t ions o f  states l I J1 x J2 ]IMr ), ( tables 3 and 4) are  to be re ta ined  in our  app rox ima t ion  

scheme; but  they are prefer red  on g rounds  o f  s implici ty as much as on g rounds  of 
accuracy.  

F o r  v = 6, however,  the seniori ty p ro jec t ion  technique seems to afford the best 

chance  o f  isolat ing the small  number  o f  key states to be re ta ined in the t runca t ion  

scheme. In a relat ively r ich shell the lowest  v = 4 states are a p p r o x i m a t e d  well by the 

v = 4 2 +, 4 +, 0 + t r iplet  p ro jec ted  f rom 112 x 2]IM x). I t  might  therefore  be expected 

tha t  the lowest  v = 6 states could  to a good  app rox ima t ion  be pro jec ted  f rom the 

vector  l [ 2 x  [2x2]It2]IM1), cons t ruc ted  f rom three identical  favored pai rs  with 
J = 2, where 

I[S3 × [J1 x Jz]I,z]IMz) = N(I'J3 x [ J ,  × dz]l ,z]l) Z (J, M, J2 MzlIla M, 2) 
MIMzM3 

x (J3M3112Mt21IMr)~'+(J3M3)~+(JI M~)d+(JzM2)lO). (36) 

Wi th  J1 = J2 = J3 = 2, the possible  values o f  I are restr icted to 0, 2, 3, 4, and  6 

(the th ree -quadrupo le  p h o n o n  spectrum).  (With  J~ = Jz = J3 --- 2, states with dif- 

ferent values o f  I t2 have over laps  o f  1 (or  - 1 ) ;  expansions  in terms o f  f rac t ional  

parents  It2 are  no t  needed since states (36) are  au tomat ica l ly  tota l ly  an t i symmetr ic  

in nucleons but  to ta l ly  symmetr ic  in the  identical  J = 2 pai rs . )  

F o r  the (=)~-½) shell the full v = 6 spec t rum is known (see fig. 1). I t  is interest ing 

to note  tha t  the ~q = 0 pa r t  o f  the v = 6 spec t rum conta ins  each o f  the J -values  0, 2, 

3, 4, 6 twice. N o  o ther  J -values  occur.  The  two 0, 4, 3, 6, 2 ~ = 0, v = 6 mul t ip le ts  

are  each o ther ' s  mi r ro r  image.  The  lower 0, 4, 3, 6, 2 mul t ip le t  lies in the region of 

TABLE 9 

The v -- 6 g = 0 spectrum for the (~ .~ .})6 configuration; comparison of exact energies with 
expectation values of Hfor  v ~ 6 states projected from ! [ 2 x [ 2 x 2 l l a z ] l )  

I E (exact) E (proj.) ") 

0 --14.161 --14.09 
-- 3.893 

2 --- 9.958 -- 9.28 
-- 8.042 

3 -11.347 (--11.06) b) 
-- 6.653 --- 6.74 

4 -- 11.962 - 11.49 
- -  6.038 

6 -- 9.958 -- 9.95 
- -  8.042 

~) E(proj.) ~ (P(v = 6)[2x [2x2] 1~2]I;~ H iP(v = 6) [2x [2x2]I tz] l ) .  
b) For this entry: E(proj.) = ( P ( v  --6)[4×[2x2] 4]3[ H!P(v =6)[4x12x2]413). 
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favored v = 4 states. The lowest v = 6 0 + state actually lies below the lowest v = 4 

state. For  the (5 a-2 2) shell the exact eigenvalues o f  the full v = 6 spectrum have not  
been calculated. However,  the exact diagonalization has been carried out  in the full 
shell-model space for  the 0 + states. The lowest v = 6 0 + state with S = 0 (at - 2 2 . 8 9 5  
energy units (G))  is almost  degenerate with the favored v = 4 0 + state (it lies 0.07 
units o f  G below it); while the next v = 6 0 + state lies above the main region of  
favored v = 4 states (actually just below the 7 +, 6 + and 8 + v = 4 states shown in 

tig. 2). 
In the (g~ ~ ½) configuration the v = 6 ,g = 0 spectrum, al though quite simple, is 

nevertheless rich enough to test the hypothesis that  the key low-energy v = 6 states 
should be given to good  approximat ion by the v = 6 projections f rom [[2 x [2 x 2] 

I12]Ij91i). The details o f  the calculation for the seniority projection technique for 
v = 6 states are given in appendix A. Results for the energies are given in table 9, 
while the state vectors are shown in table 10. It  can be seen that the expectation values 
o f  H for the v = 6 states projected f rom 112 x [2 x 2]I,z]I > are in very good  agreement 
with the lower o f  the two exact eigenvalues for I = 0, 2, 4 and 6. For  I = 3, however, 

the v = 6 state projected from 112 x [2 x 21213) seems to approximate the higher of 
the two I = 3 states, at - 6 . 6 5 3  in units o f  G, the wrong one f rom the point  o f  view 
of  our model. (The I = 3 state at - 11 .347  in units o f  G satisfies the criteria o f  (1) 
low energy and (2) important  multipole connections to favored v = 4 states.) The 

difficulty may arise partly f rom the fact that  the state [ [2 x [2 x 21213) has very little 
v = 6 content,  compared  with the corresponding states for I = 0, 2, 4 and 6. The 
v = 6 content o f  the various states can be read off f rom table 10. (It is given by the 

square o f  the inverse o f  the coefficient o f  the leading term.) Thus the states 112 x [2 x 2] 
Ilz]l ) with I = 0, 4, 6 and 2 have v = 6 components  o f  the following percentages, 

76.9 ~ ,  52.5 ~ ,  50.0 ~o and 31.2 ~ ,  the remaining percentages being made up by the 
components  with v < 4. The state 112 x [2 x 2]2]• = 3> on the other  hand contains 
only a 6.4 ~ v = 6 piece. [n general one might expect the v = 6 content  in the states 
112 x [2 x 2]I12]I> to increase in richer configurations (larger values o f  I,,). The foar-  
particle states ][2 x 2]IMI) , for example, are more nearly pure v = 4 states in the 

richer configurations. The state 112 x 2]IMj ) with I = 2 contains only a 4.6 ~ piece 
with v = 2 in the (~} ~ ~ ½) shell, compared  with 16.5 ~ v = 2 content  in the (~- ~2 ½) 
shell. For  I = 4, the corresponding numbers  are 3.8 ~ and 13.4 ~ (see table 8). It is 
nevertheless possible to find an I = 3 state bull t f rom a superposit ion o f  three favored 
J =/: 0 pairs with a large v = 6 component .  As an example, the state [[4 x [2 x 21413> 
has a v = 6 content  o f  69.8 ~ .  The full v = 6 state projected from this state is also 
shown in table 10. Moreover ,  the expectation value o f  H in this v = 6 state is in good 
agreement with the exact eigenvalue for the lower of  the two I = 3 v = 6 states (table 
9) and the state vector is a good  approximat ion for the corresponding exact eigen- 
vector. To test the goodness o f  the v = 6 state vectors projected f rom I [ J  x [2 x 2] 
I,z]I) the matrix elements o f  the surface multipole operators have again been cal- 
culated both with the exact eigenvectors (from the diagonalization in the full shell- 
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TABLE 11 

R e d u c e d  m a t r i x  e l e m e n t s  ( v  ~ 4 l'ijQ(k)ilv-- 6 1) f o r  t he  (,~ ] ~)6 c o n f i g u r a t i o n ;  c o m p a r i s o n  

b e t w e e n  e x a c t  a n d  a p p r o x i m a t e  c a l c u l a t i o n s  

k I '  1 e x a c t  a p p r o x ,  k 1 '  I e x a c t  a p p r o x .  

2 0 - - 4 . 7 4  - - 4 . 6 6  4 4 0 ---2.27 .... 2 .25 
2 4 - - 5 . 9 9  - - 6 . 1 3  4 2 4 - - 2 . 2 1  • 2 . 2 6  
3 - - 3 . 8 4  - - 3 . 8 1  3 4 .66  4 .64  
4 - - 6 . 3 8  - - 6 . 3 7  4 .... 4 .57  - - 4 . 4 3  
5 - - 3 . 6 4  - - 3 . 4 2  5 ~- 1.92 - -  1.73 
6 - -  6 .05 - -  6 .04  6 1.69 1.94 
2 3 - - 0 . 2 4  - - 0 . 5 2  4 2 3 3 .09 3 .18 
3 6 .72  7 .06 3 - - 0 . 9 1  - - 0 . 8 4  
4 0 .00  0 .06  4 - -3 .71  - - 3 . 6 9  
5 .... 4 .17  - 4 .15  5 2 .18  2 .28  

6 - -  1.50 - 1.37 

T h e  m a t r i x  e l e m e n t s  s h o w n  a r e  t h o s e  f o r  t he  3 l o w e s t  v = 6 s t a t e s  w i th  1 = 0, 4 a n d  3; a n d  t h e  5 
l o w e s t  f a v o r e d  v - 4 s t a t e s ,  w i t h  1 '  - ,  2,  3, 4,  5 a n d  6. C a l c u l a t i o n s  m a r k e d  " a p p r o x . "  h a v e  u s e d  
the  v = 4 s t a t e  v e c t o r s  o f  t a b l e  4 ,  w i t h  b"  =- 1; a n d  the  v = 6 s t a t e  v e c t o r s  o f  t a b l e  10, t i le l a t t e r  
b e i n g  p r o j e c t e d  f r o m  112× [2X2]l~z]l) f o r  1 = 0, 4 a n d  f r o m  i [ 4 x  [2 × 2 1 4 1 3 )  f o r  I = 3. 

model  space) and with the v = 6 states constructed by means of  the seniority projec- 
tion technique. Some sample compar i sons  are shown in table 11. The  good agreement  
between the two sets o f  numbers  shows that  our  method  of  construct ion gives an ex- 
cellent approx imat ion  scheme for  the key states of  the v = 6 g = 0 spectrum. 

Experience with the simple t~..~. _t~ configurat ion shows that  it may  be necessary to K2 2 21 

resort  to some process of  trial and error  in finding the v = 6 states corresponding to 
the key low-energy states of  the spectrum. By project ing the v -- 6 pieces out  o f  a few 
states built f rom superposi t ions o f  favored J ¢ 0 pairs, such as J [2 x [2 x 211 l z ] l ) ,  
[[4 x [2 x 2 ] I  121I) and possibly also 112 x [4 x 4] I12]I ) ,  it is possible to find good  
approximat ions  for the eigenvectors corresponding to the lower v = 6 eigenvalues 
for  each L The accuracy o f  these eigenvectors could be improved  further  by diago- 
nalizing H in the 2 x 2 (or possibly 3 x 3) subspaces of  the vectors IP(v = 6)[2 x [2 x 2] 
I~211), [P(v = 6)[4 x [2 x 2 ] I ,2 ]1)  (possibly including [P(v = 6)[2 x [4 x 4] I~2]I ) ) .  
The details for  the construct ion of  high-seniority states for the richer configurations 
will be left to a subsequent investigation. 

8. Shell-model calculations 

Without  considering the highest seniorities, it will be interesting to see whether the 
simplified model o f  this investigation throws some light on how a nucleus begins to 
make  the transit ion f rom shell structure to collective behavior.  For  this purpose  the 
Hami l ton ian  o f  the model,  eqs. (7)-(9),  has been diagonalized in the t runcated shell- 
model  space for  the configurations (f~p~. ~ p~)"~(g~d,!.d~s~) " n ~  for two cases; n p =  nn = 4 
and n p =  6, n. = 4. The  t runcated shell-model basis is made  up of  the favored v = 4 
states of  tables 3 and 4. In the (~ ~ 1,) shell the highest v = 4 state of  table 4, with 
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I = 4, has no large surface multipole connections to the favored J = 2 pair  state. (If 
this high v = 4, I -- 4 state is excluded, the sums of  table 7 to the favored J = 2 state 
ale  reduced by only abou t  2 % while the sum to the favored J = 4 state is reduced 
by 13 %.) For  this reason the v = 4 p ro ton  par t  of  the t runcated shell-model 
basis has been restricted to the pro ton  states with b = I only; i.e. the five 
lowest states of  table 4 with Ip = 2, 3, 4, 5 and 6. For  s imilar  reasons the 22 favored 
v = 4 states of  tables 1 and 3 have been restricted to the 13 states with v n = 4, I n =< 8, 
shown in fig. 2. For  case (i), np = nn = 4, the t runcated shell model  basis is therefore 
built f rom a total o f  8 p ro ton  s t a t e s  [vplp(bp)) and 17 neutron states Ivjn(b.) ). With 
this t runcat ion the full shell-model basis ]vplp(bp); v,I,(bn); 1Mi), w i t h / =  lp+l, ,  
leads to dimensions of  22, 45, 81,91,108, 10 I, 99, 80 and 67 for  the shell-model matrices 
fo r / -va lues  of  0-8, respectively. For  case (ii), np = 6, n, = 4; the lower Vp = 6 multi-  
plet with Ip = 0, 4, 3, 2, 6 ( f rom table 10) has been added to the p ro ton  par t  o f  the 
basis, expanding the number  of  favored p ro ton  states f rom 8 to 13. In this case the 
dimension of  the shell-model basis is again largest for ! = 4, leading to a dimension 
of  171 for this shell-model matrix.  

F rom the reduced matrix elements of  the QP(k) and Q"(k), calctdated earlier, the 
full Hami l ton ian  matrix is constructed through s t ra ightforward applicat ion of  the 
angular  m o m e n t u m  coupling formalism. The  results o f  the diagonalizat ion are shown 
in figs. 3 and 4. For  the configurat ion with np = nn = 4 (fig. 3) the low-energy par t  
of  the spec t rum has many  o f  the features of  a vibrat ional  spectrum (except for  the 
missing 0 + member  of  a two-phonon  0 +, 2 +, 4 + " t r iplet") .  Fig. 3 shows the spec- 
t rum calculated for equal strengths of  the n-p, p-p  and n-n parts  o f  the interaction 
(Gnp = Gpp = G,n ) fo r  the coefficients o f  eqs. (8) and (9). However ,  the qualitative 
features o f  the spectrum are not sensitive to the ratios of  these strengths; for  the range 
Gnp/Gpp = 0.5 to 2.0, for  example.  In addition, a change in the relative strength of  the 
k = 2 to the k = 4 components  of  IInp again does not  change the qualitative features 
of  the spectrum. 

To  try to gain a further unders tanding of  this spectrum the eigenvectors tbr  the 
four  lowest levels o f  fig. 3 are given below expanded in terms of  vectors [vplp; vn l,(b,)). 
(Note  that  the ordering index (bn) is given only when needed; i.e. for neutron states 
with v n = 4, I n = 2, 4, 5 and 6. To  save space the total angular  m o m e n t u m  I is not  
written explicitly in each ket.)  In this notat ion,  

[0~ ) = 0.583 [00;00) + 0.629 [22;22) + 0.246124;24) + 0.229142;42(1 ) )  
- '0 .275144;44(1))+0.104146;46(1))+0.147100;40)-0 .084122;42( l ) )  
-0 .114122;42(2))  + . . . .  

12~) -- 0 .465100;22)+0.443t22;00)-0 .289122;22)+0.315122;44(1))  
+ 0.274144;22) + 0.185122;42(1 ) )  + 0.209142;22) + 0.149122;40) 
+ 0.148122;24) + 0.086124;22) -- 0.141100;42(1)) - 0.073100;42(2)) 
-0 .093142;00)  -0 .160144;44(1))  +0.130144;46(1)) +0.125143;42(! ) )  
-0 .099143;24(1))  - 0.090142;44(I)) + . . . .  
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12~) = 0 .286100;42(I) ) -0 .092100;42(2))  + 0.409[42;00) +0.332122;22) 
+ 0.285[42;22) +0.084122;42(1)) -0 .121  ]22;42(2)) -0 .363[43 ;22)  
+ 0.156]22;43) + 0.240124;44(1 ) )  + 0.169144;24) + 0.109122;44(2)) 
+ 0.188122;00) + 0.064100;22) + 0.092[22;24) + 0.190124;22) 
- 0.175142;42(1 ) )  - 0.154143 ;44(1 ) )  + 0.115143;42(1)) + 0.143142;40) 
+0 .097144;44(1) )+  . . . .  

14~') --- 0 .396100;44(1))-0 .085100;44(2))+0.285144;00)+0.436122;22)  
- 0.228144;22) - 0.322122;44) +0.221122;46(1 ) )  +0.114146;22) 
- 0.181122;42(1 ) )  + 0.104122;42(2)) - 0.165142 ;22) + 0.138124;42(1 ) )  
- 0.076124;42(2)) + 0.129100;24) - 0.014124;00) + 0.106144;40) 
+0.180144;44(1)) +0.095143;42(1)) -0 .096143;43)+0.117142;42(I  ) )  
-0 .115144;46(10)  -0.076146;44(1 ) )  -0 .082145;42( I ) )  + . . . .  (37) 

Kets  with ampli tudes  less than 0.08 'are not  shown. It can be seen that  the significant 
ampli tude~ are spread a m o n g  many  different pieces. The  results are therefore far f rom 
what  might  have been expected f rom an extreme weak-coupl ing approximat ion .  How-  
ever, the 0 ÷ ground state is made up predominant ly  (74 %) of  two pieces, built f rom 
the coupl ing o f  favored p ro ton  and neutron pairs  with Jp = Jn = 0 and Jp = Jn = 2. 
The  largest pieces of  the first excited 2 + state ( 4 1 % )  come f rom the coupling of  the 
favored pair  combina t ions  Jp = 0(Vp = 0), J ,  = 2(v, = 2) and J ,  = 2(Vp = 2), 
J ,  = 0(v,  = 0). On the other  hand the 2 +, 4~ doublet ,  at  roughly twice the excitation 
o f  the 2 + state, has p redominan t  pieces of  seniority-4 states coupled to seniority-0 
states; i.e., vp = 4, lp = I coupled to v. = 0, In = 0, and vp = 0, lp = 0 coupled to 
v n = 4, I ,  = / ,  which together  with the coupling of  two favored J = 2 pair  states 
(vp = v, = 2), make  up 37 % and 44 % of  the 2 + and 4i ~ state vectors. The  remaining 
(smaller)  pieces of  these two eigenvectors also have enough similarity that  these two 
eigenvectors can be identified as two members  of  a doublet.  

Fig. 3 also shows the relative B(E2) values for the transit ions a m o n g  the lower 
energy levels. For  simplicity these have been calculated with the surface quadrupole  
opera tors  of  eq. (3) (corresponding to the approx imat ion  in which all radial par ts  
o f  matr ix  elements  of  the real Q(2) opera to r  have been replaced by a single constant) .  
However ,  this should be a very good approximat ion .  For  example,  the p ro ton  matr ix  
elements v' = 4, I'p(b'p) ~ Vp = 2, I~ = 2, when compared  to the matr ix  element for  

t t 

Vp = 2, I£ = 2 -~ Vp = 0, Ip = 0, lead to relative B(E2) values of  1.29, 0.00025 and 
1.03 for  I~ = 2, 3 and 4, respectively, as calculated with p roper  radial (harmonic  os- 
cillator) parts  o f  the matr ix  elements for the (f.~p~p~)4 configurat ion s). In  the sur- 
face mult ipole  approximat ion ,  the corresponding numbers  are 1.27, 0 and 1.03; where 
the B(E2) value for  the transit ion V'p = 2, I~ -= 2 ~ vp = 0, lp = 0 has been nor- 
malized at  1.00 in bo th  cases. 

The  pure  numbers  in fig. 3 show B(E2) values relative to the B(E2) value for  the 
transi t ion 2 + --. 0 + which has been given a strength of  1 unit, where these numbers  
have been calculated by assigning effective charges en = 0.7 and ep = l +0 .7  to the 
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neutron and proton E2 operators, respectively. (The magnitude 0.7 has been picked 
quite arbitrarily; but the relative numbers in fig. 3 are insensitive to small changes in 
this magnitude for the effective charge.) Fig. 3 also shows the B(E2) values in terms of 
separate proton and neutron amplitudes, Sv and 27n, given by the reduced matrix 
elements of Q(2) connecting the states v = 0, I = 0 to v = 2, I = 2, as given by eqs. 
(18) or (A.23). These have been denoted 27p(_r.) since they exhaust the full quadru- 
pole sum rule for the transitions from the ground states to the favored v = 2, I =  2 states 
in the separate proton (or neutron) configurations (again, in the surface multipole 
approximation.) From the numbers in fig. 3 it can be seen that the proton and neutron 
matrix elements add coherently for all the strong transitions, leading to enhancements 
in the E2 rates. In the extreme weak-coupling limit with similar proton and neutron 
spaces, assuming a ground state of I [Vplp;vnI , ] I )  = I[00;00]0> and a 2~- state of 
(1/,,/2)(] [22;0012> +1100;2212)) the B(E2) value for the transition 2~ ~ 0 t would be 
-~-(0.707Sp+O.707Z,) z. Relative to this value the E2 rate for the transition 21 ~ 01 
of fig. 3 is enhanced by a factor of ~ 1.4-1.6 depending somewhat on the effective 
charges assigned to the proton and neutron parts of the E2 operators. In the extreme 
quadrupole-phonon vibrational limit the B(E2) values for the transitions 4~ ~ 2~ and 
22 ---r 2 x would be enhanced by a factor of  2 relative to the transition 21 ~ 01. Al- 
though the B(E2) value for the transition 41 ~ 21 of fig. 3 is larger than that for the 
transition 2~ ~ 01, the 2z ~ 2~ transition is considerably too weak. It should be 
noted, however, that this particular B(E2) value is a fairly sensitive fnnction of the 
n-p interaction strength. For interaction strength ratios G,.p/Gp,p = 0 . 5 ,  1.0 and 2.0 
(with Gp, p = G,,n) the reduced matrix element for the 22 ~ 2x transition varies, 
from (0.82Sp + 0.62S.) to (0.62Sp + 0.46Z.) to (0.3727p + 0.1727,), respectively; whereas 
the corresponding numbers for the 21 ~ 01 transition are relatively more constant, 
viz. (0.87Sp+0.88_r.), (0.8527p+0.96S,) and (0.7927p+0.98Z.); similarly for the 
4t ~ 21 transition for which the corresponding numbers are (1.34Zp+1.46,~,), 
(l.22Zp + 1.49S.) and (I. 1127 v + 1.42Z,). For somewhat weaker n-p interactions there- 
fore the 22 ~ 2, E2 transition rate is at least comparable with that for 21 ~ 01. The 
spectrum of fig. 3 thus shares the essential properties of a vibrational spectrum: 
strong E2 rates for the transitions 21 ~ 01, 41 ~ 2~ and 2z ~ 2~, particularly com- 
pared with the E2 rates for the cross-over transition 22 ~ 01, and a 41 ~ 22 transition 
involving no change in vibrational excitation. However, a 0 + member of a 0 +, 2 +, 4 + 
" two-phonon triplet" is missing. From the weak E2 rate for the transition 0z ~ 2~, 
it can be seen that the second 0 + state is not merely pushed into the wrong energy 
region of  the spectrum. 

To see whether the spectrum becomes more vibrational or collective, it is interesting 
to compare fig. 3 with the spectrum for the somewhat richer configuration, case (ii): 
n,, = 6, n, = 4, shown in fig. 4. The main difference between the two spectra involves 
the appearance of a 0 + state at about twice the excitation energy of  the lowest 2 + 
state, seemingly the missing member of the two-phonon triplet. The v < 4 compo- 
nents of the eigenvectors for the 0a, 21, 22 and 41 states show no qualitative changes 
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over those for the configuration with np -- n n = 4. These eigenvectors also have rela- 
tively small components of  state vectors built from the seniority-6 part  of  the proton 
space, the percentages being 3.8 ~ ,  10.2 ~ ,  15.9 ~o and 14.7 ~ ,  respectively. The 02 
state on the other hand has a fairly large piece built from vp = 6 components ( ~  34 ~ ) ;  
more significantly, it contains large pieces ( ~  50 ~ )  built from vp = 4, vn = 2, 
vp = 2, v, = 4 and lp = I ,  = 2 states; which can lead to large E2 matrix elements to 
the 21 state (through the vp, v. = 2,2 or 2,4; 4,2 components of  the latter). In the 
notation of eq. (37) the eigenvector for the second 0 + state is 

10~) = 0.228]00;00) - 0.097]00;40) + 0.106[22;22) + 0.170124;24) 
+ 0.612142 ;22) + 0.331] 22;42(1 ))  + 0.131144;24) + 0.127124;44(1 ))  
+ 0.139144;44(2)) - 0.5 l 1160;00) - 0.103160;40) + 0.108]64;24) 
+0.197[64;44) + . . . .  (38) 

The B(E2) values for the transitions among the lower-energy levels are shown in 
fig. 4 (with the notation used in fig. 3). The enhancements of  the 21 ~ 01 and 41 ~ 21 
transitions are similar to those for the case np = nn = 4. The 22 ~ 21 transition is 
again much weaker than might be expected for a vibrational spectrum but is again, 
the one E2 rate which is a sensitive function of the ratio Gin,/Gyp and again approaches 
the strength of the 21 ~ 01 transition for a somewhat smaller value of this ratio 
( ~  0.4). The E2 rates for transitions involving the 0 + state also are far off the extreme 
quadrupole-phonon limit. Although the 02 --* 2l transition (corresponding to a change 
of one unit of  vibrational excitation) has gained some strength compared with the 
configuration with np = n. = 4, it is still weak and in fact weaker than the 22 ~ 02 
transition (corresponding to no change in vibrational excitation) which should be 
very weak according to the predictions of  the quadrupole-phonon model. 

In summary,  however, the spectra of  figs. 3 and 4 do contain many of the essential 
features of  a vibrational spectrum and are perhaps more reminiscent of  the spectra 
of  real doubly even "vibrat ional" nuclei which are frequently not in good quantitative 
agreement with the extreme harmonic quadrupole-phonon model. 

In conclusion, it seems clear that still richer configurations are required to approach 
the extreme vibrational limit and, even more so, to gain the further collective enhance- 
ment needed to make the transition from vibrational to rotational character. How- 
ever, the technique used in this investigation to effect the severe truncation of the shell- 
model space needed for shell-model studies of  configurations with active proton and 
neutron numbers, n < 6, can be generalized to even richer configurations. It should 
therefore be feasible to carry out more realistic shell-model studies for real doubly 
even nuclei in the transition region, around A = 110 or A = 146, for example. On 
the other hand it is perhaps somewhat disappointing that the state vectors in the 
l[vplp; v.I,]IM~) basis, such as those of  eqs. (37) and (38), show fragmentation into 
such a large number of  pieces. A description of the low-energy states of the spectrum 
in terms of  such a basis may therefore not lead to a simple understanding of the tran- 
sition from shell structure to collective behavior. 
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Appendix A 

CALCU LATIONAL TECHNIQUE 

Since all of the state vectors used in this investigation are built from two-particle 
operators coupled to S = O, the fractional parentage techniques to be used will be 
based on the direct uncoupling of a full ~ = 0 pair (rather than the uncoupling of 
two single particles in succession). For the four-particle states the basic numbers fol- 
low from the scalar products 

(0l[ A(03) +(J3) x A ("") +(J4)] +IMII [A <"') +(J1) x A<:2)(Jz)+JlM, IO), (A. 1) 

where A <~)+ ( J M )  are the pair creation operators defined in eqs. (1) and (20). (Note 
that the superscript (0) denotes the favored pair combination A(° )+(JM)  .~ d ~ 
( J M ) . )  The overlaps (A. 1) are also related to reduced matrix elements of the opera- 
tors A(~)(JM). Straightforward recoupling techniques give 

(0] [A("3)(J3) + × A<"4)(34) + ] + IM,[ [A<"')(J l)+ x A ("2> +(J2)]IM,10) 

= (A("4)(J,)IIA("3)(J3)I][A("I)(J1) + x A("'-)(Jz)+]I)[2I + 1]- + 

= 4{ Z [q(°)(ll'Jl)]2}{ Z [q(°)(ll'J2)]2}{c~slJ3 •a,a., 6S2S, 6azaj 
1l" ll" 

+ ( _  1)~-s~-s26s~j" 6 .. . .  6j2j3 6~:~3} -- 8 E (-- 1)' +J' +J~-J3- J4q<~l)(l ° l J l )  
1101112 

x q(a2)(l t 12 J2)q("3)(lo l 1 Jz)q(a")(ll2 J,,) 

I Jl J2 I } 
×[(2J  1+1)(2J z+ l ) ( z J  3+1)(2J 4+1)] + I l z J ,  , (A.2) 

~,lo II J3 

with J3a3 = Jlax;  J4a4 = Jza2, this also gives the normalization factor N ( J t  (~t) 
J2<~)l) for the four-particle states 

I[-J]~'>x J~2"z)]IM.) = N(J]~)J(2"'-)I)[A(a')(J1)+ x A("2)(J2)+]IMI[O ) 

and gives the reduced matrix element of the normalized two-particle annihilation 
operator N j A ( J M  ) between normalized four- and two-particle states 

( j(a4)H N j3 A("3)(J 3)II[ J] ~') × Jt2~)]l)[2I + 1]- ~ 

__ N j3 Nj,(OI[A("'~)(J3)+ x A(a4)(J4)+ ] +IM, I[A<:t)(J,) + x A(:2)(J2)+ ]I,~d, lO) . (A.3) 

[<01EA<=')(J1) + × A(a2) ( Jz )+]  +IM, I I-A (a')(J~)+ x A(=2)(J2)+JlM , 10>-1 + 
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Except for an n-dependent factor, these are 4 ~ 2 × 2 particle fractional parentage 

coefficients. To save writing it will be convenient  to rename these Z-coefficients: 

Z(J, a , ,  J2 a2 ; J3 a3,  J4 a4; I) =-- (d(4a4)llNs3 A(a3)(J3)N[J(I~*)× J(2~2)]I)[2I + 1] -~ 

= [½n(n- l )]~([S~ "*) x s(2a2)]I{IS3(a3); S4(a4)). (A.4) 

These Z-coefficients satisfy the sum rule 

E [Z(dlal ,S2a2;J3a3,J*a4;l)]  2 = ~ n ( n - 1 ) x ½  = 3. (A.5) 
J3a3d4a4 

The additional factor  o f  ½ (the dimension ratio o f  the irreducible representations [2] 

relative to [22] for the permutat ion groups o f  2 and 4 particles) comes f rom the fact 
that  the c.f.p, sum is not over all two-particle states - the sum in eq. (A. 5) is over 

= 0 two-particle states only. With these Z-coefficients, matrix elements o f  H are 
calculated by conventional  c.f.p, techniques. 

In terms of  these Z-coefficients, we also have 

~[(j(al)j~,2)j[) = ~[j, m d 2 [ Z ( j l a l , J 2 a 2 ; , J l a l , J 2 ~ 2 ,  i ) ] - I  (A.6) 

and the overlap between two normalized four-particle states is: 

([J(3 a3) × J(4a4)]I M ,[[ J~ a') × J(2~2)] I M r) 

= Z(d l a , ,  Jz  aE;d3 a3 ,_d4_a,,; 1) _- Z(J3 a~, J4a,; J, at, SEa2; I) (A.7) 

Z(S3a3,S, ag;J3a3,S4a4;l)  Z(S la l ,Sxa2;S~al ,Sxa2; l )"  

For  the special case when one o f  the four-particle states is a normalized state with 
v = 2 or v = 0, these overlaps reduce to 

(n  = 4 v = _9, o1(~),~Atr/(~*)'~ 1 ( ~ 2 ) q l M \ ~ , . i U O t  ~o2  a-~,, /  = Z(J1 al , J 2 a 2 ;  da, 00; I = J),  

(A.8) 

(n  = 4 v  = 0, I = 01[J?~) x J(2"~)]00 ) = ( Z(Jta~,J2a2;O0, O0;O ). (A.9) 

Knowing  these overlaps it is then straightforward to project the v -- 4 components  
out o f  the four-particle states [[J1 × JE]IMI), built f rom a superposit ion of  two fa- 
vored pair operators.  For  I ~ 0, the normalized v = 4 state vector is 

[v=4proj.  f rom[St×S2]IM,)= 1 -  t2 zz(slO, d,O;la,, ,O0;l ) 
- , 

x I[J~×J2]IMx)- , ~ Z(JlO, J20;la',OO;l)ln = 4 v  = 2 I ( " ' )Mr)  . 

(A.10) 
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For  I = 0 the normal ized v = 4 state vector  is: 

Iv = 4 proj.  f rom [ J ×  J ] l  = O) 

[ 1 Z2(JO, JO; 00; 00; O) = 1 0 - 2 . " ~ o O  Z Z ' ( JO,  JO;OO, Oa" ;O)  2 ( 0 - 1 )  

x J x  J ] l  = 0 ) -  (J0, J0 ;  00, 0a ' ;  0)In = 4 v = 2 1 = 0 ( a ' ) )  
a 

- J 0 ;  00 ,  0 0 ; 0 ) I n  = 4 v  = 0 I  = 0 )  ( a . l l )  

Finally, reduced matr ix  elements of  Q(k)  connect ing v = 4 to v = 2 states can also 
be related to the Z-coefficients, since such matrix elements can be related to scalar 
products  o f  the type (A. 1) by means  of  eqs. (5) and (6). For  a v = 4 state o f  the type 
o f  eq. (25) 

Z C(b)(Jl J 2 I ) (  n = 4 v = 2 l ' (a')l lQ(k)ll[J 1 x J2 ] I )  
JIJ2 

= F~ ~"~(J1 & 02z(J~ o, J~o; ko, r~ ' ;  i) (g.12) ,,,~ ~ • 

The matr ix  elements between two v = 4 states on the other  hand can, by c o m m u t a t o r  
techniques, be reduced to matr ix  elements of  Q(k)  between two-part icle states and 
scalar products  o f  the type (A.I) .  Thus 

(n  v = 4 I'b'lIQ(k)[In v = 4 l b )  

Q - n  
= ~ c(b)( J ,  Jz l)c(b')(J; J'z I ' ) a ( k ;  J'l J'2 I ';  J., J2 I), 

~ - 4  JIJ2JtlJ'2 

where 

Q(k;J ' l  J'z I'; J1 d z I)  = ( - 1 )  t+ r +k[(2I + 1 ) ( 2 I ' +  1)] ~ [Z(J1 O, J2 0 ; J 1  0, J z 0; I ) ] - 1  

tz ' 9} × Z ( J l O ' J 2 0 ; J 2 0 ' J 3 a 3 ; I ' ) { J  3 k 
~J3a3 

× ( n  = v = 2Jaaal lQ(k) l ln  = v = 2 J l a  I = O) 

' {' " 9,1 + ( - - l ) & + s z + ' Z Z ( d ; O ' J z O ; J l O ' J 3 a 3 ; I ' )  J3 k 
J3a3 

× < n  = v = 2J3a3l lQ(k) l ln  = v = 2 J 2 a z  = 0 )  t ,  (A. laD) 
! 

(A.13a) 

and where (n  = v = 2 J'a ' l[Q(k)l]n=v = 2Ja)  is given by eq. (23). 
For  the six-particle states o f  the type introduced in eq. (36), the uncoupl ing of  one 

,~ = 0 pair  is accomplished by the relation (illustrated for the most  impor tan t  case 
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Jx = d2 = J 3  =2 ) :  

~¢(JM)[~¢+(2) x [ d +  (2) x d + (2)]l~z]IM110) 

= E (-- 1) s-M( IM, J -  MII'M}) F 2I + 1 7 ~ Ns, [ag+(2) x A(o')(J')+]I'M}IO) 
,.o.,. L277+ ia 

x F([2x [2x21I, z]I; J0[20x J'a']l'), (g.14) 
with 

F([2 x [2 x 211,2]I; J0120 x J'a']I') 

=6s26s,z6,,o@h2+ ~,(_l)V[(2i,+l)(2112+l)]~{l 2 i} 
i ' J I '  

x Z(20, 20; JO, J'a'; i)Z(20, 20; 20, 20; i) 

x {6h2,+2(2i+1){22 2 1~2111-[1-F(--1)i]{~J2(~'/'2(~a'2 l! (A.15) 

In terms of these F-coe~cients the normalization factor for the state ][2 × [2 x 2]I~2]I) 
(see eq. (36))is: 

N([2 x [2 x 21I, 211) 

= U3[ Z F([2 x [2 x 2]I, z]l; 20[20 x d'a']I' = I, 2)Z(20, 20; 20, J'a'; I a 2) 
,I "a '  

x Z(20, 20;20,20; I~2)] -½. (A.16) 

Other quantities needed for the calculation are the scalar products of the states 
][2x [2x 2]I12]I ) and (normalized) six-particle states with v < 6. With I-¢ 0, for 
example, using eq. (A.10), 

( n = 6  P(v= 4)[2x d(a)]ll[2x[2x2]I, 211) = ,'¢([2 x [2 x 2111211)_ [~__413 
N2 

x [1 f2 ;00, /a" ;  l ) l  -~ ~ 2 ~  Z2(20, 3a 

I 'o,'> x ,F([2x[2x2]Ilz]1;OO[20xa'a']l ) Z(20,.la;20, ' '" 

a-2fa ~Z(20, Ja;OO, Ia";I)Z(20, J'a';OO, Ia";l)Z(20,,I'a';20, J'a';l)]} 

while 

(n = 6v = 2I(a)l[Z×[Zx2]l~2]I ) = f2N([Zx[Z×211'211)- 
N312(f2-- 2)(I2- 3)36 

x ~ F([2 x [2 x 2]It2]I; 00[20 x J'a']l)Z(20, ,la' ' ; 00, la ; I)  
J'a" 

x Z(20, J'a'; 20, .I'a'; I). 

(A.17) 

(A.18) 
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The states [P(v = 6)[2 x [2 × 211, 2]•) can be constructed, using such scalar products, 
or with the aid of the seniority projection operator (35). Finally, the expectation value 
of  H for a state 112 x [2 x 2111211) can be written in terms of F- and Z-coefficients 

( [2  x [2 x 2]I,  21I[ H 112 x [2 x 21It 2]I ) = --½ Z -N 2([2 × [2 x 211,21I) 
6 2 

G s N 2 N s 

× ~] F(I-2 × [2 × 211 ' 2]•; J0120 × J'a']I')F([2 × [-2 × 21112]I; J0120 x J"a"]t ')  
l ' J 'a ' J"a"  

×Z(20, J'a';ZO, J'a';I')Z(ZO, d'a';20, J"a";I ' ) .  (A.19) 

Matrix elements of Q(k) connecting v = 4 states to states of the type [P(o = 6)) can 
be reduced to combinations ofeqs.  (A.14), (A.13) and (A.12) by means ofeqs.  (5) 
and (6) of the text. 

Appendix B 
M U L T I P O L E  S U M  R U L E S  

The multipole sum rules of  sect. 6 follow from eq. (28) and the calculation of the 
matrix element 

(n v fav. JIQ(k)" Q(k)ln v fay. J ) .  

For n = v = 2, this matrix element can be calculated by double application of  the 
commutator, eq. (10a). By using well-known properties of the 6-j symbols, the sums 
over the J '  introduced by eq. (10a) can be carried out. The matrix element the,a be- 
CO r u e s  

(n = v = 2 fay. JlQ(k).  Q(k)ln = v = 2 fav. J )  

= 4:\'s2(21c + 1) I,~2 1 2i-+ i [q~°'(ll' k)]Z[q(°)(l12 J)lz 

{, + Z q~°)(ll~ k)q(°)(lo 12 k)q~°)(llzd)q~°)(Io l, J) lo 
1101112 It 

The simplest sum rules are those involving sums over all possible k-values, since sums 
over k of  the products of Wigner and Racah coefficients implicit in eq. (A.20) can be 
performed to give 

(n  = v = 2 fav. J[ Z Q(k). Q(k)ln = v = 2 fav. S)  = 2{g2+ Z [q(°)(ll'J)12} - (A.21) 
k 11" 

Now, using 

(2 s  + 1) (n  = ~ = 2 fay. s l  Z Q ( k ) -  Q(k)ln = v = 2 fav. s )  
k 

= ~ ~ ( n  =2v'cdJ'lla(k)Nn = v = 2 f a v .  j )2 ,  (A.22) 
V'=0,  2 k a'J" 

(n = 2v '=OJ'=OllQ(S)JIn = v = 2 f a v .  J )  = 2 _  1) Z[q t° ) ( l l ' J ) ]  2 ,(A.23) 
ll" -1 
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and the fact that  Q(00) = Nop, with eigenvalue n, these equations lead to the sum rule 
(29) of  the text. To obtain the sum rule for  v' = 4, the matrix element (A.20) must  be 
evaluated for n = 4. For  this purpose  it is useful to note that  the Hamil tonian (8) 
can be put in the form 

H 
- -  = -½  Z M+(JM),;d(JM) = -¼Qn- .3  Z Q(k)" Q(k) 
G J M  k 

+ ¼ ~ , Q ( k , k ~ =  l ) : Q ( k ,  ks = l), (A.24) 
k 

where Q(kq, ksG ) is a one-body operator  with the same orbital factors as Q(k) but  
coupled to rank l in spin space: 

Q(kq, k, = 1 q~) = Z ( -  lyqt°)(ll'k)[a~ - x a t ]  kq'k-~=' q,, (A.25) 
ll" 

where again, k = even only. (Note  a difference o f , j 2  in the definitions o f  eqs. (A.25) 
and (3a)). The double dot  in (A.24) denotes scalar products  in bo th  orbital and spin 
space. The operators  Q(kq, k~q.O with k + k ,  = odd are scalars in quasi-spin space 
so that  matrix elements o f  the last term in eq. (A.24) are independent o f  n and can 
therefore be evaluated for n = v. For  v = 2, the eigenvalues o f  H are given by (see 
eq. (15)): 

(1/G)E(n v = 2 fav. J)  = - {  Z [q(°)(ll'J)] 2 +-~(n-2)Q}. (A.26) 
ll" 

Together  with eqs. (A.21) and (A.24) this gives 

(n  = v = 2fav. J l¼~,Q(k ,k ,  = 1 ) : Q ( k , k ~  = 1)In = v = 2 fav. d )  
k 

= ¼{t2-  Z [q(°)(ll'J)]2} • (A.27) 
11, 

Since this result is independent o f  n, eq. (A.24) can be used once more  to evaluate 
the matrix element o f  £Q(k) .  Q(k) for n = 4: 

( n  = 4 v = 2 fav. J[ Z Q(k).  Q(k)ln = 4 v = 2 fav. d )  = 6 f2+2  ~ [q(°)(ll'j)]2. 
k l l '  

(A.28) 
Finally, for arbitrary n, eq. (28) o f  the text leads to 

( 2 J + l ) ( n  v = 2  fay. J[ Z Q(k) .Q(k)[ ,  v -- 2 fav. J )  
• k :~O 

_ n(2f2-  n) v' 
2(2Q--2)  (n  = 2 = 0 d '  ----- O[IQ(J)lln = v = 2 fav. j)2 

f 2 - n  
2~, ° y' (n  = v' = 2~'J'llQ(k)lln = v = 2 fav .  J )  2 + 

+ (n -- 2)(2f2-- n - 2) Z 

2 ( 2 0 - - 6 )  
Z (n = v' = 4 ~'J'llQ(k)lln = 4 v = 2 fay. j ) a .  

k ¢ O  ~ ' J "  

(A.29) 



4 0 8  K . T .  H E C H T  e t  a l .  

To obtain the n-dependent  factors,  we have used the fact that  opera tors  Q(k) with 
k -¢: 0 (even) are tensors of  rank 1 in quasi-spin space. Matr ix  elements connecting 
states n, v to n, v' are thus propor t iona l  to Wigner  coefficients 

( ,CfM~ 101 ,ga'M ¢ )  = ( ½ ( O -  v)~(n - 12)10[½(f2- v')½(n - f2)). 

For  n = 4 all but  the last term of  eq. (A.29) are now known ( through eqs. (A.28), 
(A.23) and (29), combined  with Q(00) = Nov, with eigenvalue n). Hence  the last 
term can be evaluated leading to the sum rule of  eq. (30) of  the text. 

So far  these sum rules are completely  general, valid for  any configuration, that  is 
any combina t ion  o f  l-values (or j -values  if  ~.w[q(°)(ll'J)] 2 is replaced by IE(n = v 
= 2, fay. J)[I/G). The sum rules for  specific mult ipole orders such as k = 2, on the 
other  hand,  have been evaluated only for  major  oscillator (or pseudo-osci l la tor)  shells 
with l = In, 1 , , -2 , . . .  0 (or 1). The technique used involves carrying out  the sums 
over  l in eq. (A.20) after adding and  subtract ing the terms with the miss ing/ -values  
corresponding to 1 > lm. For  example  

h ( 2 / +  1) [q(°)(ll' k)]2 = Zt, (lOkOIll 0)2 = 1 -, ,Z>tm(10k0[ll0)2, (A.30) 

where, with k = 2, the sum over  lj > l m  has non-zero terms only for  l = l,,, and then 
contains but  a single term with l, = I,~+2. Using such techniques 

(n  = v = 2 fav. J IQ(2 )  • Q(2)ln = v = 2 fav. J )  

= 20-20Njz (21 , ,+  1)(lmO2Ollm+20) 2 I 3 - 2  ~ (l,,OJOIl, O) 2 
L.. I2 > Im 

lo+ ll - ~ (l'~+20JOIltO)2-(21"+l)(lmOJOIlm+20)2 Im 2 / , , ,+2LI"  
l I > l m 

(A.31) 

To  obtain the matr ix  element for  Q(2 ) .  Q(2) for  n = 4, we follow ref. s) and  intro- 
duce the opera tors  T 'z = 0 and T "~= 2, tensors of  rank 0 and 2 in quasi-spin space: 

T J~=° = Q(k) 'Q(k)+ ~. ~ ÷ ( k M ) J ( k M ) +  ~,~¢(kM)~C+(kM), (A.32) 
M M 

T ~=2 = 2Q(k) "Q(k)-  ~ d + ( k M ) d ( k M )  - ~ d ( k M ) d + ( k M ) ,  (A.33) 
M M 

so that, using the Wigner-Eckar t  theorem in quasi-spin space 

(n  t, = 2 fav. JIQ(k)" Q(k)ln v = 2 fav. J )  

= ½(n = v = 2 fav. JlTZ=°ln = v = 2 fay. J )  

+½ [ 2 Q a + 2 f 2 ( l - 3 n ) + 3 n 2 " ]  
~ - O - J ~ O - - 3 )  -_J (n  = v = 2 fay. JlT'~=2ln = v = 2 fay. J ) . (A .34)  

Using . ~ ¢ + . ~ ¢ + d d  + = 2 . ~ ¢ + d +  [~¢, d + ], the matr ix  elements on the r ight-hand 
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side of  (A.34) can be evaluated from 

( n  = v = 2 fay. JI2 ~ ~+(kM)d(kM)ln  = v = 2 fav. J )  
M 

= 4~k.i E [q(°)(ll'J)] 2, (A.35) 
l l '  

~[d(kM) 'd+(kM)]n  = 2(2k+l)~[q(°)(lI'k)]2,z" [ 1 -  2l+11 (Nop.)ll ' (A.36) 

+ 
where the expectation value for (Nop)Z --  ~,n,,~al,.,,~atmm~ in a favored pair  state is 

( n  = v = 2 fav. JI (Nop.), In = u = 2fav .  J )  = 4N j  2 E [q(°)(ll"j)]2 
2 / + 1  r" 2 / + 1  

= 4 N f f [ 1 -  • (lOJOll"O)2]. (A.37) 
l"> lra 

By subst i tut ing explicit algebraic expressions for Wigner coefficients such as (/,.0201 
l ira+20),  and by combin ing  eqs. (A.31), (A.34) for n = 4, (A.35)-(A.37) ,  the 

mul t ipole  sum rules of  eqs. (31)-(34) of the text are obtained.  
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