
COMPUTERS AND BIOMEDICAL RESEARCH 5, 673-683 (1972) 

SNAP: A Computer Language for Control of Psychoacoustic 

Experiments* 

DAVID B. MOODY 

Kresge Hearing Research Institute, Uniwrsity of Michigan Medical School, 
Ann Arbor, Michigan 48104 

Received June 27,1972 

A real-time programming language is described which contains specialized statements 
for the control of auditory experiments including routine audiometric tests. The program 
statements correspond closely to prose descriptions of the experimental contingencies 
making it an easy language to learn and to use. Programs may be prepared and compiled 
using standard small computer software, and the only specialized program required is a 
real-time interpreter. Provisions are made for monitoring the experiment in progress and 
for making any desired changes in the experimental parameters. The language has been 
implemented on a 4K PDP&L. 

One of the stumbling blocks in applying digital computers to the control of 
psychoacoustic experiments or, for that matter, to the control of any real-time 
process has been the lack of a high-level programming language which is relatively 
simple to learn and to use. Languages such as Fortran and Basic have been around 
for many years and are relatively simple, but they are designed to deal with sophis- 
ticated mathematical manipulations (number-crunching, as it is known in the trade). 
What is needed is a Fortran-like language which, instead of adding, subtracting, 
squaring, and the like, is able to count responses, time intervals, record events, and 
turn devices on and off. Such languages do exist (2, 2) and are available as com- 
ponents of computer systems sold by several manufacturers (Grason-Stadler : 
SCAT; Lehigh Valley: INTERACT; Texas Instrument: 960A SYSTEM). The 
language which will be described in the present paper, SNAP (State Notation in 
Auditory Psychophysics), is one we have developed which has some of the features 
of the languages mentioned but which was written for the specific purpose of con- 
trolling psychoacoustic experiments. Although our requirements were to control 
behavioral tests in nonhuman primates (.?), the language itself is entirely suitable 
for use with humans. 

* This research was supported by grants NS-05077 and NS-05785 from the National Institutes 
of Health and a grant from the Upjohn Corporation. 
Copyright 0 1972 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 

673 



674 MOODY 

Any computer language which controls or responds to external devices must, of 
necessity, be written for a particular computer system, and will work only on 
systems identical to the one for which it was written. We believe, however, that the 
basic idea embodied in SNAP can be easily generalized to systems other than our 
own. In developing SNAP, we were guided by two main considerations : First, that 
the language be as simple as possible to learn to use, and that this simplicity should 
arise from the fact that programming statements be reasonable approximations to 
prose descriptions of the events taking place in the experimental situation; second, 
that the programming system should, as much as possible, make use of existing 
programs already available as supporting software from the computer manufacturer. 
The result of our efforts, we believe, has achieved both goals: although the grammar 
is somewhat stilted, it is reasonably prose-like, and the program preparation 
requires only standard paper tape editor and compiler programs. 

In the present system, a paper tape is prepared using the Editor program supplied 
by the computer manufacturer. This tape, the symbolic or source tape, is punched 
with codes which represent symbolic characters (alphabetic, numeric, and punctua- 
tion) which spell out the words defined in the language. This tape, together with a 
tape which provides the definitions for the words in the language (a dictionary tape), 
is fed into one of the compiler programs supplied with the computer. The compiler 
then generates another tape which is punched with binary coding and is the result of 
translating the symbolic code from the source tape according to the definitions 
provided on the dictionary tape. This binary tape is not itself in a form which can be 
understood by the computer hardware (i.e., it is not machine language): rather it is 
a code which requires an interpreter program or operating system to carry out the 
operations specified by the original source program. This operating system program 
is written in machine language and serves the function of reading the binary program 
tape into the computer’s memory, and then translating the bit patterns from that 
tape into the operations which they represent. 

Experimental procedures can be considered as sequential systems. Such systems 
have received extensive mathematical treatment (4, 5), and a theory, called the 
theory of finite automata, has been developed which can be used to describe any 
sequential system. Snapper et al. (I) have provided an excellent example of how 
part of the theory can be applied to the description of experimental procedures 
(reinforcement schedules) which have similarities to procedures often encountered 
in psychoacoustic research. 

The basic unit of the theory of finite automata, and of the present language, is 
called the state. A given state defines the conditions that are in effect at any given 
moment in the experiment. Usually, one or more of the conditions defined within 
any particular state is an event or events which will cause a transition from the present 
state to some other state. These events can be the occurrence of some response, the 
passage of a specified amount of time, the occurrence of an event elsewhere in the 
program, or a variety of other things. States are grouped into state sets. Only one 



LANGUAGETOCONTROLAUDITORYEXPERIMENTS 675 

state in a given set may be active, but any number of sets may operate simultaneously. 
Transitions may occur to or from any state within a given set, but not from one set 
to another. 

An example of a possible state description is as follows: 

STATE 5 (Names the state) 
TONE 1 ON (Turn on a stimulus) 
RECORD ON COUNTER 7 (Record the occurrence of this trial) 
TIME 3 SEC THEN GO TO STATE 1 
COUNT 1 R2 THEN GO TO STATE 10 
END (Close this state) 

In the preceding example, when State 5 is entered as a result of a transition from some 
other state, several events occur nearly simultaneously. First, a device called Tone 1 
(a tone switch) is turned on. Second, counter 7 is incremented by one count to indicate 
that Tone 1 was presented. Third, the program sets up internal registers which will 
note the passage of 3 set and the occurrence of one of the subject’s responses (R2). 
If 3 set occurs before the subject makes 1 R2, the program will transfer to State 1; 
if R2 occurs first, transfer will be to State 10. These states will define another set of 
conditions which will be in effect until a transition occurs to yet another state. 

This example of a particular state illustrates the power of the present system for 
programming experimental contingencies. Unfortunately, it is somewhat idealized 
for purposes of clarity. In actual practice, the statement TIME 3 SEC, THEN GO 
TO STATE 1 is written TIME SEC; 3; STATE 1. Similarly, the “Count” statement 
is written COUNT R2; 1; STATE 10 and the “Record” statement is RECORD 7. 
The reasons behind this stilted grammar arise from the use of standard compilers 
and will become obvious as the internal structure of the language is discussed. 

Our version of this language was written for a 12-bit word length computer 
(PDP8-L). A 12-bit binary word may be represented as a 4-digit octal number between 
0000 and 7777, in which each octal digit represents three binary bits. Figure 1 may 
help to clarify the correspondence between 12-bit binary and 4-digit octal numbers. 
It is important to understand this correspondence since the presence or absence of 
given bits is the basis on which the operating program determines which operations 
it must carry out for each state. 

MAJOR INSTRUCTION GROUPS 

Program instructions are divided into eight major classes determined by the most 
significant octal digit. Examples of six of these classes have already been presented : 
count, time, record, state, on-off, and specials such as END. The remaining two are 
a stimulus control class including oscillator and attenuator commands and a SYNC 
class which is used to transmit information between state sets. These are summarized 
in Table 1. Related to each of these instruction groups is a subgroup of arguments 



676 MOODY 

Most 
Significant 

12-Bitibinary 
/ i i- 

i : Lmp 
Octal 
digit 1 ’ digit2 

Least 
Significant 

u ’ ? ..1 : 
Octal Octal 
digit 3 digit 3 

3-Bit patterns Octal equivalent 

000 0 
001 1 
010 2 
011 3 
100 4 
101 5 
110 6 
111 I 

Example: 

101 011 100 010 Binary 
5 3 4 2 Octal 

FIG. 1. Bit pattern equivalents of the octal digits and the positions of the digits in a 12-bit word. 

which serve to:modify and limit the effects of a given instruction. Each of the major 
i?%ruction groups will be discussed below. 

TABLE 1 

MAJOR INSTRUCTION GROUPS 

Octal Equiv. Instruction class 

0000 SPECIALS-see text 
1000 STATE 
2000 SYNC 
3000 COUNT 
4000 TIME 
5000 ON-OFF 
6000 RECORD 
7000 OSCILLATOR-ATTENUATOR 

The STATE (1000) group serves both to identify and to specify where control is 
transferred when a given state is terminated. As a state identifier, a IOOO-group 
instruction must be the first instruction in a given state. The form of such an instruc- 
tion is STATE N, which is translated by the compiler program as loo0 + N, where 



LANGUAGE TO CONTROL AUDITORY EXPERIMENTS 677 

N is a state number. To specify where control will be transferred, a State instruction 
follows the number word in a COUNT or TIME instruction sequence (see below), 
or it may immediately precede an END statement to specify an unconditional transfer 
to a new state. A PROB(ability) instruction, which is one of the special instruction 
class words (g.v.), also requires a state word as the next program statement. The 
STATE instruction group contains two arguments: SET (= 400) and CLOSE (= 200). 
These are used to specify the beginning and end of a state set. For example, the 
statement STATE SET 1 (1000 + 400 + 1 = 1401) must precede any states in 
that set, and the instruction CLOSE STATE SET 1 = 1601 must follow the states 
in set 1. 

The COUNT (3000) instruction group is used to specify transitions which occur 
after a specified number of events. These events are specified as arguments in the 
COUNT word and can be one of three possible responses (Rl = 200, R2 = 100, 
R3 = 40), or one of 12 SYNC’s which originated in some other state set. When a 
COUNT word occurs in a program, the operating program automatically considers 
not only the COUNT word, but also the words in the next two sequential memory 
locations following the COUNT word. The location immediately following the 
COUNT contains a number which specifies how many times the specified event 
must occur in order for a transition to take place, and the second location following 
the COUNT word specifies to which state the transition will transfer control. For 
example, the statement COUNT R2; 1; STATE 10 would be assembled into three 
successive locations as 

3100 (3000 = COUNT + 100 = R2) 
0001 (Number of COUNTS) 
1012 (1000 = STATE + 12 = octal equivalent of 10 decimal). 

Note that numbers specified in the program are interpreted as being decimal and are 
automatically converted to their octal equivalents. If SYNC’s are used as the argu- 
ments, the SYNC definition (2000 + N, where N is the SYNC +) is OR’ed withthe 
COUNT definition (3000), the result of which is 3000 + N. The difference between 
a COUNT SYNC N and a COUNT Rl (or R2 or R3) is that the COUNT SYNC 
word does not have any bits set in the 200, 100, or 40 positions. One additional 
argument is possible with the count words: VAR(iable) = 400. This specifies that 
the count contained in the second word of the sequence is to be taken as the mean 
value of a uniform random distribution of count values. Each time the statement 
containing a COUNT VAR instruction is entered, a new random count value is 
determined. If the count value is N, this random count will be somewhere between 
1 and 2N. The VAR argument is especially useful in increasing the degree of uncer- 
tainty in a given procedure. 

The TIME (4000) instruction group is very similar to the COUNT group except 
that it is used to specify transitions which occur with the passage of time. Three time 



678 MOODY 

units may be specified as arguments: MSEC’ = 200, SEC = 100, and MIN -= 40. 
In addition, the VAR (400) argument also applies to the TIME instruction. TIME, 
like COUNT, is a three-word sequence with the first being TIME + arguments, 
the second the number of the specified time units, and the third the state to which the 
transition will be made. An example of a TIME instruction sequence is 

TIME VAR SEC; 5; STATE 3 

which is compiled as 

4500 (4000 = TIME + 400 = VAR + 100 = SEC) 
0005 (# of SEC) 
1003 (STATE 3). 

Note that the semicolon is used to indicate to the compiler program to terminate 
the current octal word and begin a new one. 

The RECORD (6000) instruction group can use the arguments Ri, R2, and R3 
used by the COUNT group, or may use no arguments. A RECORD instruction is 
always followed by a number (O-15) which specifies the counter (actually a location 
in memory) on which the event will be recorded. If no argument is specified, the 
operating program will increment the appropriate counter once when the state 
containing the RECORD word is entered. If an R 1, R2, or R3 argument is specified, 
each occurrence of the specified response will cause the counter to increment. 
RECORD instructions are in effect only while the state containing the instruction is 
active. 

The device control instruction group (5000) consists of two basic instructions: 
ON (5000) and OFF (5400). As arguments, it has a total of eight different devices 
which can be controlled: 3 tone switches, 3 lights, an automatic feeder, and an 
electrical stimulator. The last two of these are required for our work with primates, 
and would not be needed for human research. These arguments can be used singly 
or in any combination in a single ON or OFF instruction. For example, LIGHT1 
TONE1 ON is a legal instruction as is LIGHT1 LIGHT2 LIGHT3 TONE1 OFF. 
Issuing an ON or OFF instruction for a device that is already on or off has no effect 
on the device. Once a light or tone is turned on, it will remain on until it is specifically 
turned off, The feeder, however, has a fixed cycle and control cannot be transferred 
out of a state containing a FEEDER ON instruction until the feeder cycle is termin- 
ated. FEEDER OFF is a meaningless instruction. The electrical stimulator remains 
on only during the time the state containing the SHOCK ON instruction is active, 

The 7000 instruction group is also used to control external devices; namely, those 
concerned with the generation of auditory stimuli (OSC -= 7200) and with the control 
ofthe intensity ofthese stimuli (ATTEN = 7400). In our system, stimuli are generated 
by a battery of nine different pure tone oscillators, one of which can be selected by 

1 It has been proven more useful and efficient to use lo-msec units rather than I-msec units. 



LANGUAGE TO CONTROL AUDITORY EXPERIMENTS 679 

an OSC N instruction, where N is a number 1-9. The OSC instruction can also have 
as arguments the words UP (= 100) or DOWN (= 40). These arguments cause the 
operating program to switch to the next higher or lower numbered oscillator. The 
ATTEN instruction also uses the UP and DOWN arguments, but these are further 
modified by the arguments FIVE (= 0) and TEN (= 20) which indicate the size in 
dB of the attenuation step. In our system, 5 dB is the smallest attenuation step, but 
smaller steps could easily be programmed. The instruction ATTEN UP TEN would 
be translated by the compiler to 7520 (7400 = ATTEN + 100 = UP + 20 = TEN) 
and would cause the operating program to increase the attenuation in the system by 
10 dB. One of the shortcomings of the present system is that there is no provision 
for setting the attenuator to a specific value, nor can the state program sense what 
the current attenuator setting is. Since the details of the psychophysical procedure 
are not controlled directly by the state program (see below), these two shortcomings 
have not presented major problems. 

The SYNC instruction group (2000) serves the specialized function of enabling 
one state set to communicate with another state set. Without the possibility of 
SYNC’s, each state set would operate autonomously from every other state set. The 
SYNC instruction is always followed by a number O-l 1. The instruction SYNC 1 in 
any state of any state set causes the operating program to signal the occurrence of 
the event SYNC 1 to any COUNT SYNC 1 instruction which might be in effect at the 
time the instruction is issued. The operating program further records the fact that 
SYNC 1 is currently in effect. Should a COUNT SYNC 1 instruction be issued by any 
state set when SYNC 1 is in effect, the operating program will automatically incre- 
ment the register concerned with the number of counts in the count instruction, If 
this incrementing causes a transition, control will immediately be transferred to the 
state specified in the COUNT instruction. The argument CANCEL (400) is used to 
terminate a given SYNC. Thus, in the above example, the instruction CANCEL 
SYNC 1 would be required to terminate SYNC 1. 

The final instruction group (0000) we have given the general name of specials. 
These are instructions which carry out functions not readily subsumed under any 
of the other headings. One example of this instruction class was presented earlier: 
the state terminator instruction END (0001). The END instruction must be the last 
instruction in each state. Another instruction in the special class is STOP (0000). 
This instruction causes the operating system to carry out the operations necessary 
to terminate the experimental session, including printing out the internal counters 
controlled by RECORD instructions. A third group of special instructions, HIT 
(0002), MISS (0003), XHIT (0004), and XMISS (OOOS), are used by the state program 
to report the results of a given test trial to the operating program. The operating 
program uses this information to print and punch the data. HIT and MISS signify 
that the trial was a true test trial in which the subject did or did not respond. XHIT 
and XMISS signify the same things except for blank (catch) trials. The operating 
program also contains machine language subroutines for controlling various 

24 



680 MOODY 

psychophysical procedures, and uses the information transmitted by these instruc- 
tions to determine which stimulus will be presented on the next trial. Another member 
of the special instruction group is the PROB (= 200) instruction. This instruction is 
always followed by a number O-100 which specifies a probabihty value. The next 
sequential instruction following a PROB instruction is always a STATE N instruc- 
tion. The effect of the PROB instruction is to cause controI to be transferred to the 
specified state with the specified probability. If control is not transferred, the state 
containing the PROB instruction will remain active. For example, the sequence 
PROB 33; STATE 7 will be compiled into two successive locations as 

0241 (200 = PROB + 41 = 33 in octal) 
1007 (State 7) 

and will cause control to be transferred 33 % of the time to state 7. This is an extremely 
useful instruction for psychophysical experiments, and overcomes the fact that 
computers generally have difficulty introducing randomness into processes they 
control. 

The final instruction currently in the special instruction group is the OPTION 
instruction. This instruction is always followed by a number 1-7, and always appears 
as the first instruction in any program. The OPTION instruction serves to name a 
given program. Our system contains a set of seven push buttons which are sensed by 
the operating program. When one of these buttons is pressed, the operating system 
automatically selects the state program having the OPTION number corresponding 
to the number of the button. Thus, seven completely different procedures are stored 
in memory and are easily selected with the push of a button. When any option is 
selected, the first state in each of the state sets is automatically activated. 

The operating program is designed so that the special instruction group can be 
easily supplemented with new instructions to perform tasks which may be required 
for particular purposes. It is only necessary to write a machine language subroutine 
which performs the desired task, and then change one location in the operating 
program which will transfer control to the new subroutine whenever the new special 
instruction is encountered in the state program. 

SAMPLEPROGRAM 

The integration of these various instructions into a program which will control a 
very simple testing procedure is shown in Fig. 2. In this procedure, the subject has 
two responses: RI, an observing response; and R2, a reporting response. In the 
program, state set 1 sets up conditions which will be in effect for the whole session. 
These include recording every occurrence of RI and R2 on counters 1 and 2, 
respectively, and timing the 60-min session length. At the end of 60min, control goes 
to state 2, which stops the session. 



LANGUAGE TO CONTROL AUDITORY EXPERIMENTS 

/ 
/S4MPLE STATE PROGRAM 
/ 

0800 0401 OPTION I 

0001 1401 /STATE SET I 
/ 

0002 1001 STATE 1 
0003 6201 RECORD RI 1 
0004 6102 RECORD RZ 2 
0085 4043 TIME mIN; 
J006 0074 60; 
0007 la02 STATE 2 

0010 0001 END 
/ 

0011 1002 STATE 2 
0012 0000 STOP 
001.3 0001 END 

/ 
0014 1601 CLOSE STATE SET I 

I 
/ 

0015 1402 STATE SET 2 
/ 

0016 1001 STATE 1 
0017 4510 TIME VPR SEC: 
0020 a005 5; 
0021 1002 STATE 2 

0022 0001 EID 
/ 

0023 1002 STATE 2 
0024 3200 COUNT RI: 
0025 0001 I: 
0026 100.3 SiATE 3 

0027 3100 COUlIT Pi?; 
0030 0001 I: 
0031 1001 ST4TE I 

0032 0001 END 
/ 

0033 1003 STATE 3 
0034 6803 RECORD 3 
0035 5004 TONEI ON 
0036 4100 TI%E SEC; 
0037 0003 3; 

9040 1005 STATE 5 
0041 3100 COUNT Fe; 
0042 0001 I: 
8043 1804 SiATE 4 
0044 0001 END 

/ 
0045 1004 STATE 4 
0046 6004 RECORD 4 
0047 5404 TONE1 OFF 
0050 5200 FEEDER ON 
0051 0802 HIT 
0052 I001 STATE I 
0053 000l END 

/ 
0054 1005 STATE 5 
0055 6805 RECORD 5 
0056 5404 TONEI OFF 
0857 0003 MISS 
0060 1001 ST4TE I 
0061 0001 END 

/ 
0062 1602 CLOSE ST4TE SET 2 

/ 

/IDENTIFIES THE PROGR4M 

/OPEN THE FIRST STATE SET 

/ALL RI’S JILL BE RECORDED ON COUNTER I 
/ 4ND 4LL R2’S ON COUNTER 2 

/4FTER 68 MIN GO TO STATE 2 
/(SESSION TIMER) 
/CLOSE THIS STATE 

/STOP THE SESSION 

/OPEN THE SECOND STATE SET 

/TIME 4 RANDOM INTERVAL BETUEEN 1 AND 
/la SECONDS. THEN GO TO STATE 2 

/I OCCURRENCE OF RI YILL TRANSFER 
/CONTROL TO STATE 3 

/IF I R2 OCCURS FIRST, CONTROL 
/GOES 84CK TO STATE I 

NCREMENT COUNTER 3 (I OF TRIALS) 
URN ON THE TONE 

RIAL DURATION IS 3 SECONDS 

F R2 OCCURS, GO TO ST4TE 4 

/INCRE?lENT COUNTER 4 (C OF HITS) 

/OPERI\TE THE FEEDER 
/REPORT 4 CORRECT RESPONSE TO THE TONE 
/?LWAYS GO BACK TO STATE I 

/INCREMENT COUNTER 5 (4 OF AISSES) 

/tiEPORT 4 MISSED TONE 
/GO BACK TO ST4TE I 

681 

FIG. 2. Sample program written in the SNAP language. 



682 MOODY 

The various stages of the experiment are controlled by state set 2. The subject 
responds most of the time with Rl . At the end of an interval which averages 5 set 
and is timed by state 1, control is transferred to state 2. If one RI occurs before any 
R2 occurs, control will transfer to state 3. If R2 occurs first, control goes back to 
state 1, and a new interval is set up. State 3 turns on the tone for 3 set and records the 
occurrence of a trial on counter 3. If R2 occurs before the 3 set has elapsed, control 
is transferred to state 4, and if no R2 occurs, control goes to state 5. State 4 turns the 
tone off, the feeder on, records a hit on counter 4, and reports that the subject has 
responded correctly (HIT). At the conclusion of the feeder operation, control returns 
to state 1 to begin another trial. State 5 turns the tone off, records a MISS on counter 
5, and reports to the operating program that the subject has failed to report a tone 
(MISS). Control is then transferred back to state 1. 

The above example is probably too simple a procedure for actual use but it serves 
to illustrate how the instructions in the language can be combined to describe an 
experimental procedure. Note that the description of the procedure in the paragraphs 
above closely resembles the programming statements which are required for the 
computer to run the experiment. 

In Fig. 2, there are two columns of numbers at the left margin. The left-hand 
column contains, in octal, the step number in the program, and the right-hand 
column contains the instruction codes The operating program contains an editing 
feature, with which the operator can type in a step number, and then examine and 
change any step in the program. Thus, it is possible to change any of the parameters of 
the experiment while it is running. To change the trial duration, for example, the 
operator enters the edit mode, and types 37 and a space. The program responds by 
typing t&J@3 followed by a space. If the operator types 5 and a space, the next trial 
will be 5 set in duration instead of 3. 

CONCLUSION 

The preceding description has purposely omitted the details of both the operating 
program and the electronics required to connect the various devices to the computer. 
Our desire is not to keep these details to ourselves, but rather to introduce SNAP in 
a general way which makes it applicable to any type of computer. The power of the 
computer as an experimental control device has been amply demonstrated in many 
laboratories. The speed and accuracy with which these machines can control 
complex procedures has made them invaluable to us, and hopefully, the ease with 
which SNAP can be used to program these procedures will make them attractive 
to other laboratories engaged in psychoacoustic reasearch. 

REFERENCES 

1. SNAPPER, A. G., KNAPP, J. Z., AND KUSHNER, H. K. Mathematical descriptions of schedules of 
reinforcement. In “The Theory of Reinforcement Schedules” (W. N. Schoenfeld, Ed.), pp. 
247-275. Appleton-Century-Crofts, New York, 1971. 



LANGUAGE TO CONTROL AUDITORY EXPERIMENTS 683 

2. MILLENSON, J. R. A programming language for on-line control of psychological experiments. 
Behar. Sci. 16,248-256 (1971). 

3. STEBBINS, W. C. Studies of hearing and hearing loss in the monkey. In “Animal Psychophysics” 
(W. C. Stebbins, Ed.), pp. 41-66. Appleton-Century-Crofts, New York, 1970. 

4. MEALY, G. H. A method for synthesizing sequential circuits. Bell Systems Tech. J. 34,1045-1079 
(1955). 

5. MOORE, E. F. Gedanken-experiments on sequential machines. In “Automata Studies.” 
Princeton Univ. Press, Princeton, N.J., 1956. 


