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1. INTRODUCTION 

In order to be able to discuss the question of Euclidean-space null control- 
lability for differential-difference equations it is necessary to introduce the 
concept of pointwise completeness. In this work we present criteria for 
pointwise completeness of a class of differential-difference equations. The 
notion of pointwise completeness was first introduced by Weiss [lo] for 
differential-difference equations. He was able to show that not all non- 
autonomous differential-difference equations were pointwise complete, but 
was unable to give a definitive answer for such equations with constant 
coefficients. Subsequently Popov [8] discovered an example of a third-order 
linear constant coefficient differential-difference equation which disproved 
a conjecture of Weiss that all such equations were pointwise complete. 

For the equation 

iqt) = Ax(t) + Bx(t - l), 0) 

where x(t) E R”, and A and B are constant n x n matrices, Popov [S] has 
shown that it is pointwise complete if B has rank one. Similarly Brooks and 
Schmitt [3] have shown (1) is pointwise complete if AB = BA. More 
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recently Popov [9] has discovered algebraic necessary and sufficient conditions 
for pointwise completeness of (1). H is results bear some resemblance to some 
of the results to be presented here, but are obtained by entirely different 
methods. 

In the second section we present several definitions as well as stating an 
important result on the representation of solutions of differential-difference 
equations. In the next section we present the main result for the pointwise 
completeness of nonautonomous differential-difference equations. Section 4 
presents two forms of the solution of a linear constant coefficient differential- 
difference equation. The first form is nothing more than the “method of steps’” 
described by Elsgoltz [4], but the second form is believed to be a new form 
for the solution of these equations. Finally in Section 5 we present various 
algebraic criteria for the pointwise completeness of time-invariant differential- 
difference equations. We complete this section with an application of our 
results to Popov’s [8] third-order counterexample. 

2. DEFINITIONS AND PRELIMINARY RESULTS 

In this section we introduce the basic system that will be considered in this 
paper, including appropriate assumptions; and then we present a result on the 
representation of solutions of these equations. 

The system to be considered in this paper is the following nonautonomous 
differential-difference equation 

z?(t) = A(t) x(t) + B(t) x(t - 1) for t E (0, T], (2) 

49 = m for t E [-1, 01. (3) 

In what follows we shall use matrix notation, where AT denotes the transpose 
of A, and Ij A jj denotes the Euclidean norm of A. In (2) and (3) above, 
x(t) is an n vector, and A(t) and B(t) are n x n matrix functions measurable 
in t, satisfying jj A(t)11 < m(t), Ij B(t)]/ < ti(t), where m EL~(O, T). We shall 
assume that the initial function 6(t) is continuous on E-1, 01, that is, 
$5 E C([-1, O]; R”). 

THEOREM 1. With the above assumptions there exi>f\ (I I~~IL :olrtftLt~ i:o 
(2), where the solution is continuous on [-1, 01, and ti t7hdt1f~ 1.1. COI:II~IIIW~ W, 
(0, T]. Further, the solution at time T is 
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X(t, s) is a unique n x R matrix solution, defined on [-1, T] x [0, T] of 

(apt) X(t, s) = R(t) X(t, s) + B(t) X(t - 1, s) 

for (t, s) E [s, T] x [O, T] 

(5) 

and 

I (n x n identity matrix) for t = s 
x(t’ ‘) = 10 fm (t, s) E [-I, s) x [0, T]. (6) 

The proof of the existence of the solution is given in [I]. The above variation- 
of-parameters formula is obtained by an appropriate substitution in the 
results of [2] or [6]. 

We will call X(t, s) the fundamental solution of (2). When (2) is autonomous 
we can write the fundamental solution X(t, s) as X(t - s) without any loss 
of generality. 

3. MAIN RESULT 

In this section we present the main result which is a necessary and sufficient 
condition for pointwise completeness. In addition we present an alternate 
statement of this result in terms of quadratic forms. 1 

DEFINITION 1. The system (2), (3) is said to be pointwise complete at time 
T if for every X, E Ii* there exists a 4 E C([ - 1, 01; Ra) such that x( T, $) = xl . 

It is clear that (4) can be rewritten as 

where 

To simplify the notation let us define 

U(T, s) = I;+-1 X(T, a) B(a) dol + X(T, 0) H(s), 

(7) 

(8) 

where we note U(T, -1) = 0, and U(T, ) s is a function of bounded variation 
in s. Hence (7) becomes 

x(T> 4) = ,y, kUV> 414(s). (9) 
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We note (9) is a linear operator mapping the space of continuous functions 
C([-- 1, O]; R”) into the Euclidean space R”. 

DEFINITION 2. The range of the operator (9), which will be termed the 
pointwise reachable set g(T), is defined by 

P(T) = (xER” j x = x(T, $1, d E CR-1, 01; W). 

It can easiIy be seen that P(T) is a linear subspace of Rn. 

THEOREM 2. A necessary and s@icient condition for (2) to be pointwise 
complete for t = T, is that for every nonxero q E Rn, 

(i) there exists a set S C [0, 11, of nonzero measure, such that 

$X(T, a> B(a) # 0 for olE S, 

OY 

(ii) yTX(T, 0) # 0. 

Further if (2) is autonomous, where A(t) = A and B(t) = 3 for all t E: [0, KI), 
then a necessary amd su#,cient condition for it to be pointwise complete for t = T 
is that for every nonzero q E R” there exists a t 3 T such that yTX(t) # 0, 

Proof. Let us suppose (2) is not pointwise complete for t = T, then since 
the range of (9) is a linear subspace of Rn there exists a nonzero 7 E R” such 
that qTx = 0 for every x E: B(T). Hence 

r” EdaT WY 4146(s) = 0 

for every 4 E C([- 1, 01; RR”). We note that (10) is a bounded linear functional 
mapping C([- 1, 01; P) into R. By the Riesz representation theorem [7] 
such bounded linear functionals are uniquely represented by Lebesque- 
Stieltjes integrals of the form of (10). S ince the functional (10) equals zero 
for every continuous function 4, we cxiclude from the uniqueness of repre- 
sentation and the fact that U( T, - 1) = 0 that 

?*U(T, s) = 0 01) 

for s E [- 1, O]. Substituting (8) into (11) we obtain 

s 
s+1 

rlT X(T, c+ B(ol) dol + ?TX(T, 0) H(s) = 0 
0 
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for s E [-1, 01. Hence we find qrX(T, a) B(ol) = 0 for a.e. 01 E [0, I] and 
qTX( T, 0) = 0, which contradicts the theorem. 

The necessity of this result can be shown by assuming there exists a 
nonzero 7 E R* such that $“X(T, a) B(ol) = 0 for a.e. QI E E-1, 0] and 
qTX(T, 0) = 0, and simply reversing the arguments given above. It is clear 
that 

$-U(T, s) = 0 (12) 

for s E [0, 11. From (12) we see that (10) is true for every 4 E C([-1, 01; R”) 
which implies P(T) # R* and so (2) is not pointwise complete. 

To prove the second part of the theorem, let us suppose (2) is not pointwise 
complete for t = T. Then because (2) is autonomous 

for every r > 0; where 

From (i) and (ii) proved above, and (13), we see 

for all 4 E C([- 1, 01; R”), and all 7 > 0. That is, (2) is not pointwise complete 
for all t > T. Hence from (ii) above there exists a nonzero 7 E R” such that 

qTX(t) = 0 

for all t 3 T. 
Let us now suppose there exists a nonzero 7 E R” such that 7=X(t) = 0 

for all t 3 T, then 

+X(T + T) = TAX X(T) + /:-, $X(T + 7 - a - 1) BX(ol) da 

for 7 > 0. Hence 

s k(T + a-l)BX(7-ct)dci=O 
0 

(14) 

for all 7 > 0. For 7 E [0, l] it can easily be seen from (5) and (6) that X(T) = 
eAT, and consequently from (14) we have 

rlTX(T - a)B = 0 

for a E [0, 11. Hence, from (i) and ( ii a ) b ove, (2) is not pointwise complete. 
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An equivalent statement for pointwise completeness to that given above is 
presented in the following corollary. 

COROLLARY 1. A necessary and suficient condition for (2) to be pointwise 
complete for t = T is that the matrix 

N(T, 0) = /’ X(T, a) B(a) F(m) XT(T, cx) dol + X(T, 0) ;yT(T, 0) 
0 

be positive definite. 

Proof. Since /j B(ol)ll < m(t), m EL~(O, T), we see that N( T, 0) is well. 
defined. The rest of the proof follows immediately from Theorem 1, and the 
fact that N(T, 0) is positive semidefinite. 

It will be noted that this condition for pointwise completeness bears a 
strong resemblance to the Kalman [S] condition for controllability. Of course 
this resemblance is seen to be more than coincidence when one examines the 
form of (4). 

4. THE REPRESENTATION OF THE FUNDAMENTAL SOLUTION OF A 
DIFFERENTIAL-DIFFERENCE EQUATION 

In this section we present two explicit forms for the fundamental solution 
of (1). Since (1) is autonomous, instead of denoting its fundamental solution 
by X(t, s) we can simply write it as X(t). 

The first approach we will consider is what Elsgoltz [4] termed the 
“method of steps.” Let us now consider how this method is applied. On the 
interval t E (0, I] the term X(t - 1) in (5) is defined by (6) and hence we may 
solve (5) as an ordinary differential equation on this interval. The solution is 

X(t) = &” for t E (0, l]. (15) 

On the interval t E (1,2] we again have an ordinary differential equation, 
as X(t - 1) is simply the solution of (5) over the interval t E (0, 1] and the 
initial condition is X(1) = eA. By induction, on the interval t E (A, R f 1], 
k = 0, I,..., we find 

X(t) = eAt + s: eA(t--s~)~eA(sl-l) ‘77, + . . . 
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The form of the fundamental solution given by (15) and (16) will prove 
useful in a few special cases in our later discussion. However, it gives very 
little insight into what properties the fundamental solution X(t) may have. 
We now present a new form for the fundamental solution X(t) which will 
prove of greater utility in our future discussion. 

Let us now consider the matrix differential equation (5) and (6), where we 
assume the coefficient matrices A(t) and B(t) are constant and equal to A 
and B of (l), respectively. We introduce the following notation, by defining 
X,(T) = X(T + K) for T E [0, l] and K = 0, l,... . By direct substitution in (5) 
we obtain 

(44 X&T) = A&,(T) X,(O) = I 

(WT) X,(T) = B&(T) + A&(T) Xl(O) = -G(1) 
(17) 

(d/W -G(T) = =L(T) + A&(T) -G(O) = -&-~U)~ 

so that the solution of (5) and (6) over the interval t E [A, R f l] is given by 
X(t) = xk(t - A). 

Letting&(-r) = [XoT(7),..., X,*(T)]“, (17) can be written more concisely as 

(44 -G(T) = -42%) for 7 E [o, 11, (18) 

x,(T) = E&-dT)~ 

where &(T) is an n(R j- 1) X n matrix, and 

(19) 

A, and E, are n(K + 1) x n(k + 1) and n x n(R + 1) matrices, respectively. 
As is well known, the unique solution of (18) is given by 

&(T) = eAkT.Zk(0), 

and hence 

X%(T) = EkeAk’Zk(0). 

It is clear from (17) and the definition of &(T) that 

Z,(O) = I. 

(20) 

(21) 

W) 
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It is easily shown by induction that 
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From the statement following (17) we can write an explicit relation for 
X(t), t E [K, K + 11, namely, 

X(t) = x,(t - h) = EkeA”(%z&l). (24) 

It should be observed that the fundamental matrix solution X(t) may be 
singular for some t, in contradistinction to the case for ordinary differential 
equations. The following example exhibits this property quite clearly. 

EXAMPLE 1. Consider the following differential-difference equation 
studied by Popov [S] : 

I%] + 1: i ~~~~~~~~~~ (25) 

From (24) and some simple calculations we see 

2 4 -4 
X(2) = E‘&(O) = I 1 1 -2 I ) 

02 0 

which is a singular matrix. 

5. ALGEBRAIC CRITERIA FOR POINTWISE COMPLETENESS OF 
AUTONOMOUS DIFFERENTIAL-DIFFERENCE EQUATIONS 

In this section we apply the results of Sections 3 and 4 to obtain algebraic 
criteria for (1) to be pointwise complete. 

COROLLARY 2. Every system (2), (3) with the coeficients A(t) and B(t) 
equal to constant matrices A and B, respectively, is pointwise complete for all 
T E [O, 2). 

Proof. For T E [0, l] we have from (15) that X(T) = eAT. IIence X(T) 
has rank n, so for every nonzero q E Rn we have qTX(T) # 0, and thus 
Theorem 2 implies (2), (3) is pointwise complete. 
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Let us now consider the case T E [l, 2). Suppose (2), (3) is not pointwise 
complete, then there exists a nonzero 7 E R” such that qTX( T - ol)B = 0 
for 01 E [0, l] and 7=X(T) = 0. Therefore 

q=X(T--)B =0 (26) 

for T - 1 < 01 < 1, and substituting for X(T - CX) from (16) we have 

TT@--“)B = 0 (27) 

for T - 1 < 01 < 1. Since eAt is an analytic function of t we see qTeAtB = 0 
for every t. We now examine condition (ii) of Theorem 2. Substituting (16) 
for X(T), 1 < T < 2 we obtain 

?= [,A= + jr e-S~)~e&-l) rds,] = 0. (28) 

Since vTed(T-sl)B = 0 for all s, , (28) implies yTeaT = 0, and so we conclude 
17 = 0, which contradicts our assumption. 

In the proof of Corollary 2 we have used the form of the fundamental 
solution X(t) given by (16). It could equally well have been proved by using 
(21), but it is slightly more convenient to use (17). 

The recent result of Brooks and Schmitt [3], that if (2) is autonomous and 
AB = BA, where A(t) = A and B(t) = B for t E [0, co), then it is pointwise 
complete for all T E [0, co), also follows easily from Theorem 2. 

We will now obtain an algebraic necessary and sufficient condition for 
output pointwise completeness of the system (2), (3). 

THEOREM 3. Suppose the system (2) is azltonomous with A(t) and B(t) 
identically equal to A and B, respectively. Then it is pointwise complete for 
T E [k, k + l), k = 0, 1, 2 ,... if and only iffor every nonzero v B Rn 

0) rl TE-lF,-l ,..., E,-,A;?;‘F~,] # 0 

Or 

(ii) qTG&(0) # 0, 

where Fk = Z,(O)& 

Proof. Suppose (2), (3) is not pointwise complete at time T E [k, k + l), 
k = 0, l,..., then from Theorem 2 there exists a nonzero 7 E R” such that 

$X(t) = 0 (2% 
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for all t >/ T. For t E [k, k + 1) the fundamental solution X(t) is given by (24) 
and so (29) becomes 

T)TE#A”‘t-kk~(o) = 0 (30) 

for t E (T, k + 1). Since the term on the left of (30) is an analytic function 
we see that 

7)=x(k) = 0. 

In addition since (2), (3) is not pointwise complete we have, from Theorem 2, 

qTX(t)B = 0 (31) 

for t E (T - 1, k). Again since X(t) is analytic on the interval t E (K - 1, k) 
we conclude that 

‘t’X(k - cl!)B = 0 (321 

for (Y E [O, 11. From Theorem 2 we see that (2), (3) is not pointwise complete 
for T = R. Again from Theorem 2 we see that if (2), (3) is not pointwise 
complete for T = k then it is not pointwise complete for T E [k, k + 1). 
Hence we have shown that (2), (3) is pointwise complete for T E [k, k + 1) 
if and only if it is pointwise complete for T = k. Consequently we need 
only examine whether (2), (3) is pointwise complete for T = k. 

Suppose (2), (3) is not pointwise complete for T = k, then from Theorem 2 
there exists a nonzero 7 E Rn such that 

vTX(k - cc)B = 0 (33) 

for 01 E [0, 11, and 

rl=X(k) = 0. P4.l 

Substituting (24) in (33) and (34) we obtain 

q*E,eA~-~(l-tz,(0) 3 = 0, (35) 

for OL E [0, 11, and 

~=E,z,(o) = 0. (36) 

By successive differentiation of (35) and setting 01 = 1, we obtain 

~TErc-lA;-lF~-l = 0 (37) 

for i = 0, l,..., nk - 1. Hence (37) and (36) lead to a contradiction which 
completes the proof of sufficiency. 
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To prove necessity suppose there exists a nonzero 7 E R” such that 

rl TL%-~-%, ,..., Ek--lA;!;lFk] = 0 

and 

TTE,Z,(0) = 0. 

From the Cayley-Hamilton theorem and (38) we obtain 

(38) 

(39) 

~JI TE,C-,A;!lF,-l = 0. (40) 

Then by induction 

~TE,+lA;f;zF~--I = 0 (41) 

for 1 = 0, l,... . Using the power-series expansion of the exponential matrix 
we find 

rl TE rc-leA’c-l(l-“)F,-l = 0 (42) 

for 01 E [0, 11. Hence from (39) and (42) we have 

qTX(k - a)B = 0 

for 01 E [0, l] and 

7fX(k) = 0 2 

which is a contradiction. 

COROLLARY 3. Suppose (2) is autonomous with A(t) and B(t) equal to A 
and B, respectively. Then a necessary and su$%ient condition for (2), (3) to be 
pointwise complete for T E [k, k + 1) is that the matrix 

has rank n. 

Proof. The proof is an immediate consequence of Theorem 3. 
As was mentioned previously it is not at all clear that there exist systems (2), 

(3) which are not pointwise complete. Popov recently gave the following 
example and we will use it to demonstrate in fact that not all systems (2), 
(3) are pointwise complete, as well as demonstrating an application of 
Theorem 3. 

EXAMPLE 2. Let us consider the differential-difference equation given in 
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Example 1. From Corollary 3 and some straightforward calculations we find, 
for T = 2, 

2 
i 1 

-2 0 2 -4 0 0 -4 0 
M(2) = -2 0 0 -2 0 0 0 0 

0 2 0 2 0 0 0 -4 0 

It can easily be seen that this matrix has rank less than three since for + = 
[l -2 -11 

?fM(2) = 0. 

Hence this system is not pointwise complete for T > 2. 
To complete our discussion we present an algebraic characterization of the 

pointwise reachable set 9(T). 

THEOREM 4. The pointwise reachable set B(T) equals the range of the 
matrix M(T) .lln(T)for T E [h, k + l), K = 0, l,... . 

Proof. By examining the proof of Theorem 3 we see that the orthogonal 
complement, P(T), of P( T) is given by 

P(T) = (7 E R” 1 +lI( T) = O} (43) 

for T f [k, k + 1). It is clear that (43) can be rewritten as 

P(T) = (7, E R” / W( T)T = 0} = (7 E Rn j M(T) M=( T)q = O] 

= null(M( T) Mr( T)) = range(M( T) &F(T))“. 

The last two equalities follow from the basic properties of linear transforma- 
tions, where null (M( 7’) Mr( T)) denotes the null space of M(T) MT( 7’) and 
range (M(T) M*(T)) denotes the range of M(T) W”(T). Hence P(T) = 
range (M(T) .NP( T)). 

We have treated the case of pointwise completeness for ditierential- 
difference eqoations with a single delayed term. It seems it would be quite 
easy to extend these results for the case of multiple delay terms. If we make 
appropriate continuity assumptions about the coefficients A(t) and B(t) 
in (2) then we can extend our algebraic results to this case also. 
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