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Proof of A Conjecture by A.W. Burks and H.Wang: 
Some Relations between Net Cycles and States Cycles* 
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In  a foundat ional  paper  on the  theory  of au toma ta  A. W.  Burks  and  H. W a n g  
(1957) conjec tured  tha t  a certain complexi ty  measu re  involving the  size of  
the  s t rong  c o m p o n e n t s  of  a logical ne t  f o rmed  a h ierarchy for ne t  behavior .  
T h i s  conjecture  was es tabl ished by Rhodes  and  Krohn .  I n  this  paper  a 
s t r eng thened  vers ion of  the  conjecture  is p roved  by  es tabl ishing tha t  any  logical 
ne t  can be in te rpre ted  as a series-parallel  compos i t ion  of ne ts  associated wi th  
its s t rong  componen t s .  Some  proper t ies  of  the  periodic behavior  of  machines ,  
shown  to be preserved  u n d e r  s imula t ion  and  composi t ion  operat ions,  are used  
to comple te  the  proof.  T h e  relat ionship of this  approach  to algebraic proofs  of  
series-parallel  i r reducibi l i ty is discussed.  

I. INTRODUCTION 

In their 1957 paper, Burks and Wang advanced a conjecture concerning 
the strong components of digraphs representing logical nets. These strong 
components were called cycles and the degree of a cycle was defined as the 
number of points (hence delays) contained in it. A net was said to be of degree 
d if it had at least one cycle of degree d and no cycles of higher degree. 

Burks and Wang made the conjecture: For any degree d, there is some 
transformation not realized by any net of degree d. 

In our current terminology "transformation" means transition function 
and the realization in question is isomorphic state-behavior realization 
(e.g., Hartmanis and Stearns, 1966). 

The conjecture was established in essence by Rhodes and Krohn (1965). 
This paper will present a detailed proof of a generalization of that conjecture: 
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Office of  Naval  Research ,  Cont rac t  No. N00014-67-A-0181-0011;  U . S .  A r m y  
Research  Office ( D u r h a m ) ,  Gran t  No. D A - 3 1 - 1 2 4 - A R O - D - 4 8 3 ;  and  Nat ional  Science 
Founda t ion ,  Gran t  No.  GJ-519.  
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namely, the word "realized" is replaced by "simulated" in its statement. 
In other words, I shall show that there is no upper bound on the highest 
degree needed so that all nets of this or lower degree can simulate any finite 
transition function. That this is the case is indeed surprising since arbitrary 
memory expansion and slowing of computation rate is allowed by the 
simulation concept. It is also notable that this "invariance" under memory 
and time-scale expansion is not characteristic of other interesting measures 
of feedback complexity (Zeigler, 1969). 

The proof consists, in the first place, of establishing a correspondence 
between the strong components of a net and the component machines of a 
series-parallel (cascade) composition. Once this is done, one alternative is 
to invoke certain little-stressed results of the decomposition theorems of 
Krohn and Rhodes (1965) to complete the proof. In this alternative, one 
relies essentially on the irreducibility of simple groups. Instead, I shall 
present a direct proof of the main result which uses entirely machine (rather 
than semigroup) concepts. In this respect, there is a similarity with the proof 
of irreducibility given by Ginzburg (1968). However, even though his proof 
is machine oriented, it still makes heavy use of basic group-theory ideas. The 
present proof is of additional interest because of the attention given to the 
properties of state cycles in the transition diagram and their behavior under 
simulation and composition operations. Studies of the relation between net 
structure and the cyclic properties of net behavior have been initiated in 
connection with neural and genetic network models (e.g., Kaufman, 1969; 
Walker and Ashby, 1966). From the semigroup point of view, I shall be 
concerned in effect with the cyclic (singly generated) subgroups of the machine 
semigroup and the irreducibility of the cyclic groups of prime order. The 
restriction to this subclass may explain the ability to carry through fully 
machine-oriented proofs. 

II. BAsic CONCEPTS 

A machine (automaton, transducer) is a quintuple A = (S, Q, O, M, N )  
where S (input symbols), Q (states), O (output symbols) are finite sets, 
M : ~  × S - +  ~ is the transition function and N : Q - - ~  O is the output 
function. Given a transition function M we are interested in machines which 
can simulate M via their input-output relations. To do this we need only 
consider the semiautomaton A = (SA, QA, MA). 

A ~ ( S A ,  QA, ]VIA) simulates M : ~ × S - +  ~ if there exists ~ '  COn 
and maps g : S ~ SA* (the free semigroup generated by Sa), h : ~ '  --~ 
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(onto) such that Q'  is closed under g(S) and for all qcQ', s e S ,  
h(Jff/IA(q,g(s)) = M(h(q),s); (3~ra : QA × S ~ - * Q ,  is the usual extension 
to SA* of MA). 

Here  g represents the input encoding and h the output map of the 
simulation. When g : S ~ SA we say that d homomorphically realizes M, 
and further when h is one-one A isomorphically realizes/14. 

DEFINITION 1. A composition over a finite set of machines 

{ G  = ( &  , G ,  M~> J ~ D }  

is specified by a set S, a family of subsets {I~ C D I c¢ e D} and a family of 
maps {Z~I ~ D } ,  where Z~ : x~ex~Q~ × S - +  S~. 

This  structural description uniquely defines a machine A = (S,  Q, M )  
where Q = X~D Q~, and for all q ~ Q, s ~ S, ~ ~ D, 

proj~(M(q, s)) = M~(proj~(q), Z~(projz~(q), s)). 

Here  projD.(q) is the projection of q on the coordinate subset D ' C  D. 
Interpretively, In is the set of machines directly influencing As and Z~ is the 
connecting map specifying the next input to z/~ in terms of the next external 
input S and the present states of the machines indexed by I s . In particular, 
a logical net (digital network, sequential machine realization) is a composition 
over a set of 2-state delay elements (cf. Hartmanis  and Stearns, 1966). 

T h e  digraph (directed graph) D(A) representing a composition A has as 
points the set D, and there is a line from point c~ to point/3 just in case/3 ~ I~ .  
[The graph-theory terminology and concepts used here are taken f rom 
Harary, Norman,  and Cartwright (1965).] 

A composition over {Ms J a a D} is said to be series parallel if there exists 
a linear order on D % ,  % ,  c~ 3 .... such that I~i = ¢ and for each integer n, 
I ~  c {~1, ~2 .... , ~n-1}. 

The  digraph of a series-parallel composition then, assumes a simple 
one-dimensional form in which any line directed to % must come from some 
point ~m, m < n, for n ~> 1 and cq has no incident lines. 

For any point e~ e D(A), let Ca denote the strong component containing a 
i.e., C= - -  {/31 there is a path (of possibly 0 length) from c~ to/3 and back 
in D(A)}. I t  is well know that the set of strong components {Ca I ~ E D} is a 
partition of the points of  D(A). T h e  condensation of D(N) is the digraph 
D*(A) with points {C a t ~ e D} and there is a line from Ca to C o iff (if and 
only if) this is the case for some points a '  E U=,/3' e Cs (and Ca ~ C~). 
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A digraph D has an (ascending) level assignment if to each ~ ~ D there is an 
integer n~ (called its level) such that for each line (~, fi) in D n~ < n~. 

Theorem 10.2 of Harary et al. (1965) states, in effect, that the following is 
a level assignment for an acyclic graph D: Let U be the set of transmitters 
of D and assign the integer 0 to each point in U. To every point ~ not in U 
assign n o , where n~ is the length of the longest path to ~ from any point in U. 
We call this the longest path length assignment. 

III .  LOGICAL NETS AND SERIES-PARALLEL COMPOSITIONS 

The proof of the Burks-Wang conjecture begins by showing how a logical 
net A can be considered to be a series-parallel composition of component 
nets associated with the strong components of D(A). 

Let A be any logical net and D(A) its representing digraph. It  is well 
known that the condensation of D(A) is acyclic and therefore has an ascending 
level assignment, which we take to be the longest path-length level assignment. 

For any digraph D with level assignment let L~ be the subset of points 
of D having level m. Clearly, {L~ I O <~ m ~< ~} (where ~ is the highest 
level) is a partition of D. 

We shall employ the following: 

LEMMA 1. Let D be an acyclic digraph with levels assigned according to 
the longest path-length assignment. For any level m >/O, 

(a) there are no lines joining any two points in Lm , 

(b) no point in Lm has any incoming lines from points in L~, , m' >/m @ 1, 
and 

(c) every point in L~+ I has at least one incoming line from some point 
in L~ . 

Proof. (a) and (b) follow directly from the definition of level assignment. 
To prove (c) let L be the longest path from the transmitters to a point P 

in L~+ 1 . We show that point Q immediately preceding P in L has level m. 
Since Q is in L there is a path of length at least m from the transmitters to Q. 
The level of Q is then at least m. Suppose it exceeds m. Then there is a path 
from the transmitters to P (running through Q) with length exceeding 
m -}- 1. This contradicts the fact that the level of P is m + 1 and thus Q has 
exactly level m. Q.E.D. 
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COROLLARY 1. Every finite acyclic digraph can be put in the form of a 
digraph of a series-parallel composition. 

Proof. For each of the sets L~ of Lemma  1, let 

P(m,1), P(~n,2) , P(m,a) , ' " ,  P(m,n# 

be an enumeration of its points (where nm is the cardinality of L~). The  
digraph represents a series-parallel composition for, according to the lemma, 
the ordering of the points 

P(1,1), P(1.2) , . . . ,  P(~.n~) , P(2.1) , P(2.~) , " ' ,  P(,~,~,~) 

is such that if there is a line from (i, j )  to (h, l) and h /> 1, then i < h, in fact 
i = h - -  l, and by definition o f L  0 no lines are incident on any point with 
h----1.  

We need to show that a logical net can be interpreted as a composition 
over logical nets associated with its strong components. This  demonstration, 
while conceptually straightforward, involves a degree of notational difficulty. 
I t  consists of (1) defining the logical net A(C~) associated with a 
strong component  C a of D(A), (2) defining a composition A* over the 
{A(C~) I ~ ~ D(A)} whose digraph is D*(A), and (3) verifying that d and A* 
are isomorphic. 

(1) A(C~) will be a composition over the 2-state delay elements in C a . 
T h e  external input to an element ~ in C a will consist of the external input 
to A together with all delay wires incident on C a not originating within it. 
In  other words, let Ig~ ~ {C B I there is a line from C B to Ca in D*(A)} and 

I *  let ( % )  denote the union of the sets C B in I'ca • Then  the external input, 

S % =  X f2~ x s. 
fle(l~a) 

The  set of elements within C a directly influencing c~ is /~' = I s (3 C=. 
The  new connecting map Z~' is the old connecting map Z~ reinterpreted 
accordingly, i.e., 

Z'(projG(q), (proj(zb)(q), s)) = Z~(projz~(q), s). 

This defines a machine A(C~) ~- (S%, Q%, Mc~), w h e r e Q c  ~ × ~ c  Q~ 
and Mc, are determined according to Definition 1. 

(2) The  composition A* over {A(C~)} will have external input S. The  
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set component  machines influencing A(C~) is given by I * .  T h e  connecting 
map Z~, : Xc~2~ Qc~ × S -+ Sc~ is just the identity mapping. 

Note that the digraph D(A*) is isomorphic with the condensation D*(A) 
since it is generated by the sets Ic* ~ . 

(3) I t  is now routine to verify that the transition function defined by 
the composition A* is isomorphic with that of A. 

In  sum, we have shown that a logical net A can be interpreted as a com- 
position over the nets associated with the strong components.  T h e  digraph 
of this composition of D(A) is just the condensation of the original digraph 
and so is acyclic. Corollary 1 then allows us to conclude that this composition 
is a series-parallel composition. Thus,  we have proved 

THEOREM 1. A logical net A is (isomorphic to) a series-parallel composition 
over the set of logical nets associated with the strong components of D(A). 

IV. STATE CYCLES AND SERIES-PARALLEL COMPOSITIONS 

Let  M : Q  × S - +  Q be any transition function and 11~:~ x S * - ~  
its extension to S*. M contains a cycle if there is a q ~ (2 such that 

q = qxk(=~I(q, x~)) (1) 

for some x ~ S* and positive integer k. For any fixed q and x, let k be  the 
least positive integer for which (1) is true. Le t  the sequence 

Z i  , Z2 , Z 3 ,. . . ,  Zk~(x) 

be the sequence of initial substrings of x ~, where Z 1 is the first symbol 
of x 7~ and Z~(x) ~ x ~. [Here l(x) denotes the length of x.] 

T h e  sequence of states 

qZ1, qZ2 , qZa ,..., qZ~z(~) 

is called the cycle of x or x cycle and consists of the states encountered in 
journey from q back to q in the order of encounter. The  number  kl(x) is its 
period T. The  x period Tx is the number  of states in the subsequence 

qx 1, qx ~, qxa,..., qx ~. 
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We note that each of these states must be distinct [since k was the least 
integer for which (1) held], so that 

T~ = h (2) 

and hence 

r = TJ(x)  (3) 

[l(x) may be referred to as the input period]. 
We remark that the cycle of x need not form a cycle in the state diagram 

of M in the graph theoretic sense, i.e., not all qZ i need be distinct (although 
all qx i are distinct). 

We say that M contains a string cycle of string periodp if it contains a cycle 
of x for some x ~ S* which has x period, T x ~ p. 

The  following theorem is proved in Zeigler (1968). 

THEOREM 2. Let M i  : Qi × Si --+ Qi be finite transition functions such that 
M 1 simulates 1]$2, with maps h : Q~ --+ Q2, and g : S~ --+ SI*. I f  for some 
x ~ 32" , 

! ! • ~ q !  
ql ,  q2 ,..., qzn~(g(~)) ~QI '  

is a #(x) cycle of M 1 with ~(x) period m, then 

h(q;), h(q~),..., h(q') 

is an x cycle of  M 2 with x period k dividing m. (Here ~ : S*  2 -+ S [  is the 
unique extension of  g to a homomorphism.) 

Conversely, if 

ql , q2 ,..., %~(~) -~ q 

is an x cycle of 1]//2 with x period k then there exists a~(x) cycle in 

h-l(ql)  u h-l(q~) ... w h-~(q) in M~ 

with ~(x) period m a positive multiple of k. 
Since homomorphism is a special case of simulation we can state 

COROLLARY 2. For finite transition functions 3/11, M2 ,  i f  M 2 is a homo- 
morphic image of M 1 then the string period of any string cycle in M 1 is a nonzero 
multiple of  the string period of its homomorphic image. Every string cycle in M 2 
is the homomorphic image of a string cycle in M 1 . 
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We shall be considering a series-parallel composition A, of arbitrary 
finite machines An, As.  Let M : Q~ × Qs × s --+ Q~ × Q~ be the transition 
function of A and M~:Q~ × S ~ Q ~ ,  M s : Q s  ×(O~ × S)--~QB its 
components. Except for possibly a relabeling of the input alphabet these are 
the transition functions of A~ and A s , respectively, and we need not make any 
distinction between them. 

THEOREM 3. Let  A be a series-parallel composition of  finite machines 
M~ , A~ . Let  M contain a cycle of x ~ S *  with x period m. Let  the homomorphic 
projection of the cycle of x on M~ have x period k. Then there is a string cycle in 
M s with string period m/k. 

Proof. We must first justify the assumptions made in the statement of 
the theorem. 

It  is well known that the projection proj~ : Q --+ Q~ is a homomorphism 
from M to Ms .  Moreover, the corresponding partition Ha on Q 
has SP (substitution property), i.e., for all q, q' E Q, s ~ S, qH~q' implies 
M(q,  s) H~M(q' ,  s). 

Thus there is indeed a homomorphic image of the cycle of x lying in Ms 
which by assumption has x period k. By Corollary 2, there is a positive 
integer n such that m = nk. 

Let the sequence Z 1 , Z 2 ,..., Z,u(x) be the initial substrings of x m, where 
Z1 is the initial symbol of x m and Z,~(x) = x m. 

Let the cycle of x in M be qZ 1 , qZ  2 .... , qZm~(~) = q. 
The homomorphic image in M~ is then 

q'Z~ , q'Z2 ,..., q'Zkz(~) = q', 

where q' is the image of q under the homomorphism and Z~(~) = x ~. 
Every state q ~ Q has the form q = ([q]~, [q]s), where [q]~ is the block of 

H~ containing q. Since H~ has SP and since qxkFl~q we have qZiFl~qZ~kz(x)+i 
for all 0 ~< j < n and 0 ~< i < kl(x). We denote [i]~ = [qZ~]~. Also since 
the Zi  are initial substrings of x k we have 

Zj~(~)+i = xJ1~Zi 

for all 0 ~< j < n, 0 ~< i < kl(x). The sequence 

qZ1, qZ2 .... , qZ~(~)-i , qZk~(x) , qZ~(~)+i .... 

then becomes 

([1L, [qZdA, ([2L, [qZ~]s),..- 

([kl(x) - -  1]~, [qZ~(~)_l]S)([0]~, [qxk]s), ([1]~, qxkZ~),.... 
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(q,8} 
Let  Z i = ala 2 ' ' '  a i ,  O < i ~ kl(x). Using the notation q l - - - + q ~  for 

M~(ql , (q, s ) ) =  q2 we obtain the following transition sequence in ~/~ 
starting at [q]¢ : 

[q]~-([O]c°al) > [qZl]s <~[l]~'a2) > [q/2]S 

[qZ~z(~)_a]s (Ek~(~)-~l~,~(~)) [qx~]s - (E%,~) ~ [qxkZ~]~ . . . .  

This  sequence is a cycle in M s of the s t r ingy  ~(Q 1//~ X S)*, where 

y = ( [ q ~ ,  a l ) ( [ 1 ] ~ ,  a~) ..- ( [hl(~)  - -  ~]~, a,~,(~)). 

Now qx jk, 0 <~ j < n are all distinct states and recalling that 

(i.e., these states all have the same c~ component) it must be that [qxJk]s, 
0 ~ j < n are all distinct. Thus  the existence of the subsequence of the 
y cycle 

having n distinct states proves that there is a y cycle of y period n = m/k 

in M~.  Note that l ( y ) =  kl(x) and T~ = n implies T = n k l ( x ) =  ml(x) 
which agrees with the period of the x cycle in M. 

The  basic theorem enabling us to prove the Burks-Wang extended 
conjecture can be stated: 

THEOREM 4. Let  M ' : Q '  x S'  -+ Q' contain a cycle of  x ~ S*  with 
x period p, a prime number. Assume that M '  can be simulated by a series-parallel 
composition o f  A~ ,  A n . Then at least one of  3/I~, Ma contains a string cycle 

of  string period a nonzero multiple of  p. 

Proof. Let  M be the transition function of the composition. Since M '  can 
be simulated by M and given the x cycle in M' ,  we know by Theorem 2 that 
there is a string cycle in M of string period m a multiple of p, m -~ np, n > O. 
By Theorem 3, Jt/~ has a projection of this cycle with string period k ~> 1 
and M~ has a string cycle with string period m/k. But since p is a pr ime 
either k divides n, in which case Mo has a string cycle of period a nonzero 
multiple of p, or k is a nonzero multiple of p, in which case M~ has a string 
cycle a nonzero multiple of p. 
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COROLLARY 3. Let M'  : Q' × s '  --~ Q' contain a cycle of x ~ S*, x period 
p a prime number. Assume that M'  can be simulated by a series-parallel com- 
position, A of A~I, A~  ..... A% with transition functions 

M~, :Q~, × ~Q~j × S-~Q~,. 
J<i 

Then at least one of M~ has a string cycle with string period a nonzero multiple 
ofp. 

Proof. The proof proceeds by induction. The  series-parallel composition 
A may be regarded as a series-parallel composition of A~I and a series- 
parallel composition of the A ~ ,  i > 1. Applying Theorem 3 to this situation, 
the induction may now proceed. Q.E.D. 

For series-parallel composition A of A ~ ,  A~2 ,..., A~, we define size (A) 
to be the number of states in the largest component machine, i.e., 

size(A) ---- max I Q~, I, 

where Q~, is the state set of An,. 

THEOREM 5. For any integer n, there is a finite transition function which 
cannot be simulated by a series-parallel composition A, with size(A) < n. 

Proof. Consider the set of primes which as is known has no greatest 
member. For any prime p, there is a modp  counter, namely, a machine 
which counts modulo p occurrences of a symbol, e.g., ..a.. in an input string. 
The transition function of this machine has an a cycle of a period p. By 
Corollary 3 any series-parallel composition which can simulate this transition 
function must have at least one component A~ whose transition function 
has a string cycle of string period a nonzero multiple ofp.  But this means that 
]Q~ ] > / p  since there are at least p distinct states in such a cycle. Thus 
size(A) > / p  for any series-parallel composition which can simulate a mod p 
counter. For any integer n, we can choose a prime p /> n and so for each n 
there is a finite transition function which cannot be simulated by a series- 
parallel composition A with size(A) < n. 

We note that in particular, for each integer n, there is a finite transition 
function which cannot be isomorphically realized by any series-parallel 
composition A with s i ze (A)<  s. (Thus true because any isomorphic 
realization is in particular a simulation.) 

We have seen (Theorem 1) that a logical net A is a series-parallel 
composition of the logical nets associated with the strong components of 
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D(A). The  degree of a logical net is the number  of delays in the largest 

component ,  i.e., degree (A) = max~D I C~ I. A net of degree d has at least 
one component  having 2 a states and no strong component  having 2 a+i states 
where i > 0. 

Thus  size(A) ~< 2 aegree cal. The  strengthened version of the Burks-Wang 

conjecture follows: 

THEOREM 6. For every integer d, there is a transition function which cannot 
be simulated by any logical net of degree d. 

CONCLUSION 

A strengthened version of the Burks-Wang conjecture has been shown 
to be true. The  proof  relied heavily on the propert ies of state transition 
cycles exhibi ted in Theorems 2, 3, and 4. 

These  theorems can be readily interpreted as constituting a proof  of the 
irreducibil i ty of pr ime cyclic groups which uses only machine (rather than 
semigroup) ideas. 
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