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We analyze the properties of a pionization structure function. Making some general assumptions about the ana- 
lyticity structure of amplitudes describing inclusive processes (which are valid in a large class of models and are ex- 
pected to be valid for the true amplitudes) we derive a general form of this structure function. 

Recently, a large amount  of  interest has been centered on the studies of inclusive reactions, both from the ex- 
perimental  and theoretical point  of  view [ 1]. Mueller's generalized optical theorem [2],  connecting a one particle in- 

clusive cross section with an unphysical limit of  a forward 3-+3 amplitude has proved a very stimulating idea and 
has given a new tool for the theoretical studies of  inclusive cross sections. A one particle inclusive cross section is 
particularly simple to describe in the pionization limit i.e., limit defined as 

t-+_oo, u-+_oo, s/tu ~ M 2 / t u  =77 - 1  fixed, r /=pct  2 +Me2 

where (see fig. 1) 
tt  

~ ~0 

Fig. 1. 

(1) 

t=(Pa--pc)2, u = ( p b - P c ) 2  , s = ( p a + P b )  2, X 2 = M 2 = s + t + u - M 2  __M 2 __M 2. 

In the pionizat ion limit the leading contr ibut ion to the cross section comes from the two Reggeon exchanges 
(Fig. 2) 

tl~>O M~>O 

Fig. 2. 

and so the cross section is given by 

do/dtdM 2 ~ (~/tu) Disc (t  c~(0) u s(0)/3(0) 2 f (~) )  (2) 
M 2 > 0  

where f (~ )  is a 2 particle 2 Reggeon (o f  zero mass) coupling function. As M 2 enters the expression only through 
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C 
F~. 3. 

the dependence on rl the discontinuity with respect to M 2 > 0 is equivalent to the discontinuity with respect to 
r / >  0.* For  the Pomeron a(0)  = 1 (we assume that the Pomeron trajectory can be approximated by a Regge pole) 
and so asymptotical ly 

do/dtdM 2 ~ ~ Disc f07) = g(r/) (3) 

n > o  

and we see that Disc f (7?) completely determines the shape of  the pionization spectrum. 
n,>0 

Experimentally g (r?) = h(Px 2) shows (for small values o f p l 2  ) a very steep decrease (as p±2 increases) which at 
somewhat larger p l  2 takes the form of  

h (px2) ~ A exp( -ap± 2) (4) 

where a ~ 3 - 4  GeV -2 .**  This behavior was obtained in the Veneziano model  in which Pomeron was treated as an 
ordinary trajectory***. The question then arises whether this behavior is specific to the Veneziano model  or whether 
it should be expected in general. A similar question was studied for the 2 Reggeo-particle coupling funct ionfa,  a s (7?) 
in ref. [5] ,  its general form and its properties derived and discussed. 

The pionization structure function g(r/) is very closely related to Disc f l  1 (77) and the general forms of these 
>0 

two functions are essentially ~the same [6] (the difference being hidden in an undetermined function H(z) which 
enters the final expression see formula (18) below). Using this fact we investigate the general form ofg(r / )c lose ly  
following ref. [5].  

To study the inclusive reaction cross section we have to know this part  of  the 3-+ 3 amplitude (fig. 1) which has 
the non zero discontinuity with respect to M 2 >  0. Let us call this part  of  the amplitude A.  As we are interested in 
a strictly forward limit of  the 3 ~ 3 amplitude (see fig. 1) A is a function of  only 3 variables for which we choose 
t, u a n d M  2 (in the pionizat ion limit they behave as in eq. (1)). We shall argue now that, at least in this limit, the 
part  of the amplitude which gives the leading contr ibut ion can be writ ten as 

-f A ( t ,  u, M 2) - e x p ( - i X l t  ) f exp( - iX2u  ) f exp ( - iXM 2) f (X lX l ,  X2) dX l dX 2 dX (5) 
0 0 0 

and A ~ A  in the pionization limit. 
For  the general values of  u, t, M 2 the amplitude is expected to have a very complicated singularity structure 

(including complex singularities) [7] and so this representation would not  be valid. 
If  we consider writing a multiple Mandelstam-like representation (see fig. 3) of A 

* In the pionization limit s ~ M 2 and so we have to calculate only this part of the r~ > 0 discontinuity which comes from the 
discontinuity M 2 > 0 neglecting the contribution from s > 0. As we argue further on (formula (7) below) we expect the 
leading term in the pionization limit not to have any s discontinuity; if we were interested also in the nonleading terms a more 

careful analysis would be necessary. This could be done along the lines indicated by Botke (see his paper in ref. [ 1 ] ). 
** Strictly speaking the pionization region probably has not been reached; it is very likely, however, because of the experimental 

scaling, that this behavior will be true in the pionization region. 
*** Problems with existence of Pomeron poles in the 6-point function are not important in the pionization limit and so this ap- 

proximation might be not too bad in this limit. 
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dUL f~ dUR - dt  L f dtR ( " '  dM'2 
= f u  L -u+ie uR~ieJtL---- f -+ie tR~-t-+ie a M 2 - M 2 + i e  ~(UL'UR'tL'tR'M'2) + 17 other terms* [8]. 

(6) 

Here A" describes only that part of  the amplitude which does not have complex singularities. Motivated by the 
success of the Veneziano and others dual models and some perturbation theory calculations we expect that these 
complex singularities will not contribute to the leading term in the pionization region and so can be neglected. 
What is the relative importance of  the 18 terms in eq. (6)? This depends on the corresponding ~ 's which are not 
known. We shall take the clue from the dual models with Mandelstam analyticity [8]. Here, in the pionization 
limit, except for the first term (the one shown in eq. (6)) all other terms vanish exponentially and so their con- 
tribution can be neglected. This vanishing parallels the exponential vanishing of  the "third term" in the Veneziano 
model (i.e., (s, u) term in the [s l ~ 0% t fixed limit). Of course, we do not know whether to expect these terms to 
vanish exponentially in the proper theory - they might be responsible for Regge cuts, etc. and to provide an im- 
portant though a non-leading behavior. Assuming that these terms do not contribute to the leading behavior, we 
see that this part of  A which gives a leading behavior in the pionization limit has the following Mandelstam like 
representation 

f (  duL dUR dtL dtR dM'2 ~ '2 (UL,UR,tL, tR,M ) 
A ~= UL_U+ie) (UR_u+ie) (tL_t+ie) (tR_t+ie) (M,E_M2+ie) • . (7) 

The ie 's  tell us that the singularities in M 2, t,u> 0 should be approached from above. In inclusive reactions t and 
u are negative, we are in the region outside the cuts and so the direction of approach does not matter. 
Next we write 

u L - u + i e  = i  exp{iXL(U L - u + i e ) } d X L ,  - - = i  exp{ i~L( t  g - t + i e ) } d ~ L ,  
R 0 R R R t L - t + i e  0 R R R 

It 

1 = i f exp {ip (M '2 - M  2 +ie)} dp (8) 
M'2--M2+ie 0 

and see that 

fffffdXR axe do exp (- i (XR + ~.L)(u- ie)}  exp {--i(t--ie)(taL +taR)--ip(M2--ie)}f(XR,?tL,taL,taR,P) 

where (9) 

f(?~R,&,taL,taR,P)=fffffexp {i~t L U L +i~RUR+itaLtL+itaRtR+ipM '2 } ~(ULMR,tL, tR,M'2 ) dULdURdt L dtR dM'2. 

Changing the variables ~'R + ~'L = ~',/-ZL + taR =/2, ~R -- ~'L = K, #L - / ' tR = X 

we obtain 

X =fdXfduydpexp{-iX(u-ie)-ita(t_ie)_ip(MZ_ie)}~(X,U,O). 
0 0 0 

(lO) 

* We have already performed the integrations over (Pa - Pa )2, (Pb - Pb )2, (Pa - Pa - Pc )2 and (Pa - Pa + Pa )2 channels in the most 
general 9 fold represensation. 
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Using the identity . f  d/l exp{i/a ( b - a ) }  = 6 ( b - a ) ,  ~'(X,/a,p) can be expressed as 

,2 ¢(x,,,p) =fff fdu L d/L d/l// exp i(~,U L +/at L +pM'2)~(UL,UL, tL,tL,M'2 ) (11) 

we see that we have obtained (5) with 

: f f f d u L  dtL dM '2 ~(UL,UL,tL, tL,M'2)exp{iXlu L +iX 2 t L f(kl,~k2,k) + i x m ' 2 } .  

The asympototic behavior as I tl and lul get large of.z~ at fixed r/is controlled by the exponent 
- i x  = i(Xlt+X2u+XM 2) not becoming large. 

We find the conditions on ~I,X2, X by: X = Xlt+XzU+Xtu/11 therefore X 1 = O(1/t),X 2 = O(1/u),X = O(1/ut). 
This leads us to define new variables x 1 = -~klt, X 2 = -~k2u,x = ~k/kl~k 2 and we see that Xl ,X 2 andx  remain 
finite as t,u-+ - ~  thus we must examine the behavior off(~kl,~k2,XklX2) for small ~kl,~, 2 at fixed x. The expected 
Regge behavior (fig. 2) is obtained by choosing 

f()~l,~2, x)xl)~2) ~ g (x) h I - a l  - 2~ 2 - a 2 -  2 for ~1,~2 ~ 0 (1 3) 

then we see that 

f 5 dxdxldx2exp i l +X2 
0 0 0  

XXlX211 )) g(X)Xl -a l - lx2-a2-1  

o o  

= ( - t ) ~ l  ( - u )  a2 f dxg(x) dp (oq,a:2, x/11) 
0 

where 

(14) 

e ~  o o  

• - a 2 -  1 . dp (Otl,O~2,Z) = f exp (iXl)Xl - a l - 1  f e x p ( t x z l x  2 exp (lZXlX2) dXldX 2 
0 0 

and for-the Pomeron a 1 =o~ 2 = ot (0) = 1. To obtain the cross section we have to take the discontinuity 11> 0 of  

o o  

f(11) = f g(x) • (1, 1,x/11)dx. 
0 

However, c} (Otl, a2, z) is undefined for a l , a 2 >  0. The proper analytic continuation is 

(15) 

Discf ( r / )  lim fg (x )  Disc q~ ~ > 0  al-~l ~ n>O (°tl'Ot2'x/11)dx" 
a2-.1 
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; /(+ )} - XlX 2 Disc q~ = dx 1 dX2Xl -cq- lx2 c '2-  l e x p  i lX2 - x .  = 
n > o  0 0 r/ 

=F(_ot2)(_i)a2DiscidxlXX_,,,l_lexp(ixl)(l_X~.l)a2o ~ 1 /f~ _al_ lexp (ixl)[ ~ ]#2 
r~>0 P(1 +t~2----- ) n dXlXl - 1  .- 

= 1 -c~ 1 ? ua2 exp (irTu)( = P(1 +a2)  07/x) exp(ir//x) du 1 +u) - a l -  1 
0 

= ff (a 2 + 1, l + a  2 - a l ,  - irT/x) (r~/x) -'~1 exp (irUx) (16) 

where ~ .is the confluent hypergeometrical function [ 10]. 

So 

f(~) cc ; g(x) (q/X) -al exp (ir//x) ff (2, 1,-i~7/x)dx Disc 
n>0 0 

-i~,, 
= h(z)(rlz)-lexp (irTz) ~ (2 ,  1 , - i r / z ) d z  ,x f h,(z)OTz) -1 e x p ( - ~ z ) ~ ( 2 ,  1,r/z)dz 

0 0 

We rotate the integration contour bringing it to the final form 

(17) 

Disc f ( r  0 = J H ( z )  (r/)- 1 exp (-~TZ) g~ (2, 1, rTz)dz (18) 
n > 0  0 

where H (z) is an unknown function. To justify rotation of  the contour we have to know ~ (UL,UL,tL,tL,M'2) in 
(1 1). However, motivated by the experience with the dual and perturbation theory models and arguments based 
on polynominal boundness of  the amplitude we expect this rotation to be allowed and no singularities encounter- 
ed (we known that disc f07) is real). Our result (expression (18)) is a convenient representation of the most general 

n>0  
form of the pionization structure function. This generality is contained in the unknown function H(z). Pioniza- 
tion structure function has been obtained in the Veneziano model [ 1 ] and in a field theory model [ 1 1]. The results 
of  these calculations are consistent with our expression (18) except that these models predict particular forms of  
H(z). Our result can be looked at as a fairly model independent generalization of these results and so provides a 
general form of  this structure function. 

To study the properties o f g  (7/) = 77 disc f (r~) (3) we look at the properties of  exp ( - r / z )  g~ (2, 1, ~Tz). 
n>0 

For rT--> 0 (small q2) we find exp 07z) ~ (2, 1, ~z )~  lr/(rTz) 

while for r/~oo exp ~-r /z)  ¢ (2, 1, r /z)+ exp (-r lz) / (r lz)  2. (19) 

Of  course, depending on the form of  H(z)  the z integration in general can modify this behavior. I f  however, for 
some dynamical reasons, H(z) is strongly peaked around some value o fz  = z 0 (or as in the Veneziano model 
H(z) ~ 0 ( z -  4) f(z) where f(z) ~ 0), then 

g.--~ oo  

g(r/) ~ exp ( - • z 0 )  qJ (2, 1,r/z0). (20) 

The explanation why experimentally z 0 ~ 3.5 clearly lies byond the scope of this work - and comes from more 
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• ' 2  dynamics than we have put  in. Experiment,  then, clearly tells us something about the physical ~ (UL,UL,tL,tL,M) 
-- but this information is difficult to analyze. 

We have analyzed the pionization structure function making several assumptions which we expect  to be valid 
for the true amplitudes and derived a general form of this function. This form contains the integration with an 

unknowm function H(z) and we observed that the experimental  data suggest that this function H(z) is strongly 
peaked at some value z ~ z  0 -- 3.5. It would be very interesting to understand why H(z) has this proper ty  and 

what this proper ty  means in terms of  the spectral functions, ~. 
Perhaps a clue should be taken from the Veneziano model. In this model  H(z) ~ 0 (z- 4)g(z) .  This form arises 

from the full duality restrictions which are imposed on the original 6 point  function and the equal slope require- 
ment  (which guarantees Regge behavior in all limits). This problem is currently under investigation. 

We would like to thank Dr. F. Henyey for discussions and a critical reading of the manuscript. 
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