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Abstract: We study the problem of incorporaling unitarity effects into dual scattering ampli- 
tudes. Possible forms and interpretations tk)r amplitudes which have dual properties con- 
sistent with experimental data (including the fixed-t zero structure, the dominance of 
peripheral resonances, etc.) are discussed. A detailed physical interpretation, in terms of 
absorption effects, is provided at all energies. A specific model is presented which demon 
strates that amplitudes of the desired kind do exist and that one can work with them. 

The model is studied in detail for spinless particles (e.g. rrrr scattering). Apart from a 
few technical difficulties the resulting amplitude can be studied at all energies and angles 
and behaves in all aspects essentially as we expect realistic scattering amplitudes (and 
data) to behave. 

1. I N T R O D U C T I O N  

Since the  i n t r o d u c t i o n  o f  dual models  for the sca t te r ing  ampl i tude ,  the role o f  

un i t a r i t y  in d e t e r m i n i n g  the amp l i t ude  has been  de-emphas ized .  Some qual i ta t ive  

fea tures  o f  un i t a r i ty  are i nco r po r a t ed  in to  dual i ty ,  while o thers  are usually igamred. 

It is the purpose  o f  this  paper  to  s tudy  some of  the consequences  o f  i nco rpo ra t i ng  

more  aspects  of  un i t a r i ty  in to  dual  ampl i tudes .  

One fea ture  o f  un i t a r i ty  is p robab ly  present  in all dual models .  The centra l  con- 

cept  o f  dual i ty  is a c o n n e c t i o n  be tween  the a tnp l i tude  al low energy  and  the ampli-  

tude  at  h igh energy.  It would  be possible,  in the absence  of  un i t a r i ty  cons t ra in t s ,  
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to choose the high-energy and low-energy behavior of tire amplitude essentially in- 
dependently.  Tile only trouble would be terms proportional to l/s,  1/s 2, etc., as s 
goes to infinily, in addition to the dominant (Regge) terms, lfowever, these terms 
represent./qxed poles in the angular momentum plane (at values o f / o t h e r  than non- 
sense wrong signature). Tire Fixed poles are excluded by unitarity (except possibly 
trader highly unusual circumstances), and hence the low- and high-energy behaviors 
of  the amplitude are relaled. 

There are many olher aspecls of  unitarity.  One of  the most obvious, is the width 
of  resonances. Narrow resonance models, by their very nature, badly violate this 
aspect of unitarity. There are different approaches taken to remedy this defect. Tire 
most anrbitious is the unitarization of  the Veneziano model by use of loop diagrams 
of immense conrplication. Pending the outcome of this program, a more modest ap- 
proach is likely to be useful. This approach is to write amplitudes which approxi- 
mately satisfy selecled constraints of  unitari ty,  and may have parameters which are 
t i t led phenomenoh)gically. Such an approach can lead to scattering amplitudes 
which are qualitalively valid in all regions of  all variables simultaneously. These am- 
plitudes may conlain features of the fully unitarized dual models which are not con- 
tained in the original Veneziano model. 

There have been several a t lempts  to include wide resonances in a dual model. We 
proposed one, which we call s-x duality, in an earlier paper 111. The most serious 
defecl ofs-x  duality is that it is difficult to evaluate nunrerically. In the present 
paper we give up some of the nice exact features of  s-x duality and replace them by 
rite same features approximalely holding in an easily c o m p u t a b l e  amplitude. (Suf- 
ficient progress has been made since we began this work in computing the s-x dual 
amplitude so that soon one can do away with this approximation.)  

There is one more important  aspect of  unitarity which must be included in a 
model for any amplitude which has a hope of being phenomenologically successful. 
This feature is the absorption of tire interior partial waves at high energy, and the 
related feature of inelasticity of  high-mass resonances. There is still a great deal of 
controversy on the proper method of applying this correction. It is generally ac- 
cepted, however, that these corrections are needed, and that they are represented 
by cuts in the angular momentum plane. In this paper we will include absorptive 
Regge cuts in our amplitude. We will not use any definite absorption prescription 
to generate these cuts, nor will we insist that their branch points have precisely the 
Amati-Fubini-Stanghellini value as is usual in absorption approaches; rather we will 
at tempt to approximately reproduce those aspects of  the cuts which have been found 
phenomenologically to be important .  

One consequence of approximately unitarizing dual models, both in s-x duality 
and in the model of  this paper, is the high degree of arbitrariness in such models. 
Tiffs fact is m striking opposition to tire Veneziano model, which has little freedom 
of variation*. It now appears that the uniqueness of  the Veneziano model is a conse- 

* Of  course  the V e n e z i a n o  m o d e l  is n o n - u n i q u e  on tile daughter  level  because  o f  the poss ibi l i ty  
o f  add ine  satel l i te  terms.  
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quence of  the unphysical assumption of  narrow resonances. When this assumption is 
replaced by the physical assumption that the total width of a resonance be at least 
as large as its partial width for decay into some channel, we find that duality, crossing 
Regge behavior and analyticity are not sufficient to determine the amplitude. An ex- 
act inclusion of unitarity (which is still beyond our abilities) might fill in the missing 
information. Instead, however, we will restrict our model by phenomenological con- 
siderations; the freedom of the arbitrariness allows the model to qualitatively repro- 
duce many expected features of  data at all energies and angles. 

When the reader sees the method of construction of  the amplitude in this paper, 
he can easily construct very many other similar models. We have examined a hand- 
ful of models slightly different from the one we present, and have found them in- 
ferior phenomenologically,  even though they are equally good theoretically. Thus 
we will present our function without apologizing for several ad hoc assumptions we 
make. Any improvement,  which is certainly possible, m the form chosen would be 
indeed welcomed. 

2. PHYSICS OF THE MODEL 

There are at least two reasons that the Veneziano model, unitarized, cannot be a 
good approximation to the physical scattering amplitude. Everybody is aware that 
the Veneziano resonance poles do not lie on the second sheet where they belong; it 
is not necessary to argue this point. Less well accepted, but equally important,  is that 
the Veneziano model has only Regge-pole asynrptotic behavior, rather than Regge 
pole plus cut  (or cuts). 

Let us briefly review the evidence for the necessity of  Regge cuts, or more pre- 
cisely, Regge cuts of the enhanced absorptive type*.  The enhancement of absorption 
has been theoretically derived front a variety of  viewpoints, and is not purely a phe- 
nomenological construct.  Consistent theoretical pictures presently existing require 
that absorption either be universally absent, or be universally present. The latter 
viewpoint stresses the composite nature of  the scattering particles. The presence of  
absorption (though not its detailed properties) is then independent of  everything 
else, ill particular of  the nature of  the exchange, or of  the particular combination of 
hadrons which are scattering. Thus the existence of absorption in several situations 
provides a strong argument for its existence everywhere. The argument for the en- 
hancement of  absorption is similar. If absorption is enhanced over that given by 
elastic scattering alone in some situations, it is likely to be enhanced elsewhere. 

There are two well-known situations in which enhanced absorption is clearly 

* We introduce here the terminology enhanced absorption to refer to absorption with a strength 
larger than that due to elastic scattering alone, independently of the mechanism chosen by 
Regge poles at nonsense and/or wrong signature integers. Strong absorption has come to mean 
one particular type of enhanced absorption, that of the Michigan model (SCRAM) [2]. 
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suggested very strongly by the experimental data. The first of  these is in reactions 
where 7r-exchange plays an important  role, most notably in charged pion photoprod-  
uction, in these reactions there is a sharp forward peak of  width A t ~ m 2. This can 

7r 

be explained only by conspiring Regge poles (or fixed poles) oi by P, egge cuts. The 
pole conspiracy theory for these reactions has been discredited. With the Regge cuts 
the forward amplitude is directly proportional to the size {/t" the cut. It is thus a 
rather silnple matter to discover that the magnitude of the cut is significantly larger 
than that given by elastic absorption, and by studying the interference of  the cut 
(assumed relatively structureless on a scale At  ~ m 2) with pion exchange to find 
that the cut has the phase (approximately,  at least)given by absorption [3].Enhancec 
absorption thus provides a very natural explanation. 

The other phenomenon in which enhanced cuts are easily seen to be essential at 
high energy is thai of  the crossovers. The difference of  the rr p and rr+p elastic cross 

+ 
sections, that o f K  p a n d K  p, etc., vanish at l ~ 0 .15 GeV 2.These crossovers 
are due to an interference between the dominant Pomeranchuk amplitude,  and an 
odd signature amplitude. This crossover must come from the wmishing of  that part 
of  the odd signature amplitude in phase with the Pomeranchon. Conventional pure 
Regge-pole models for the odd signature amplitude (such as the Veneziano model)  
put this crossover at t ~ 0.6 GeV 2. Weak absorption places it at - t ~ 0.3 GeV 2, and 
only enhanced absorption can place it at sufficienlly small t-values. A pure Regge 
pole m,~del with a vanishing residue at the cr{}ssover point is well known to have 
difficulties with factorization [4], s a y  in a dual framework the situation is even 
worse since the whole structure of  the amplitude is likely to be spoiled by the intro- 
duction of  a zero independent of the sigo~ature ones. 

Other evidence for enhanced absorption at high energy depends on more involved 
arguments (in particular the failure of  factorization);  or on detailed models of  en- 
hanced absorption such as the strong cut model: {)1- is also consistent with other 
kinds of  models. Universal enhanced absorption thus depends on considerations of  
theoretical consistency, as well as on phenomenological grounds. 

It is perhaps worth pointing out that even though there is no compelling deriva- 
tion of  an absorption model, there is no theoretical or phenomenological evidence 
against the absorption effect; for example the frequent claim that the nN polariza- 
tion data (elastic or charge exchange)cannot  be described correctly in this approach, 
can easily be ~hown to be incorrect if proper attention is paid to phases [5], or to 
secondary cut contributions [6]. 

Absorption is the suppression of  low partial waves. At low energies tire same 
phenomenon occurs. In this case, the cause is somewhat different, although related. 
At high energies absorption is due, via unitari ty,  to competi t ion with many other 
channels. At very low energies as we shall see, the suppression is due to unitarity 
bounds. At all energies, this phenomenon is related to the removal of  flux from the 
incident beam by scattering. The difference is only in the relative amount of  that 
scattering into the channel being studied. 

At low energies the contributions from the lowest partial waves must be smaller 
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that those for higher partial waves simply because the 2l+ 1 factor in the partial 
wave amplitude multiplies something bounded independently of I. Thus, for example 
when the l = 1 partial wave in rrrr scattering is resonating at s = m 2, the l = 0 partial 
wave is at least a factor of three smaller. 

It is a simple calculation to see that the P-wave contribution has a zero at 
t = ½(m 2 - 4rn])  = - 0.26 GeV 2. In the process ;r+~r - ,  ~r+rr - , even with a 00 ° 
S-wave phase shift the zero is at t = 0.34 GeV 2, ref. [7] These positions are to be 
compared to the zero (in the residue of the pole at s = m~) at t ~ - 0 . 6  GeV 2 in the 
Veneziano model. Another example m rrrr scattering of a suppression of low partial 
waves is the absence of a clearly observable P' meson. In a model such as the Vene- 
ziano model, without suppression effects, the p'  should be clearly visible in the iso- 
spin one rrTr channel. Experimentally this is not the case, indicating a suppression. 

The same effect occurs in 7rN scattering. The helicity non-tlip amplitude at low 
energies has a zero at small t-values. One can easily fred that at s = m~ the zero of 
the non-flip amplitude is near t = 0.07 GeV 2. All of the other prominant 7rN res- 
onances, i.e. those used by Dolen, Horn and Schmid [81 in their successful analysis 
of finite energy sum rules, also have their zeros at small t-values, t ~ 0.2 GeV 2. 

We have seen that both at high energy and at low energy, there is a suppression 
of low partial waves. In both cases the zero in t of tire amplitude is at roughly the 
same place. The connection of the t-dependence of an amplitude at high and low 
energies is the principle feature of duality. Thus the two aspects of suppression are 
related, not only by both being consequences of unitarity, but also by the duality 
relationship. 

These considerations about hte role of absorption at low energies indicate that 
we can give a simple physical interpretation at all energies to a model with poles 
plus absorption. As we will see in more detail when we discuss our results, the ab- 
sorption interpretation at low energies is very attractive. 

For example, at low and intermediate energies the absorption can be thought of 
as arising from tire opening of inelastic channels. Thinking of these as two-body 
channels for simplicity, we expect that they first contribute in the lowest partial 
waves, from centrifugal barrier arguments. Thus they lead to a suppression of the 
central resonances (low spin and higher mass) relative to the peripheral ones in agree- 
ment with observation. It is this reduction of the central resonances by absorption, 
at all energies, which leads to the observed duality of experimental data, with simi- 
lar structure in t at all energies. 

To see this from another point of view, consider tire position of the zeros [9] in 
momentum transfer of the imaginary parts of the s-channel helicity amplitudes M++ 
and M+_(non-flip and flip respectively) for rr-p -+ rr°n. At high energies the cross- 
over of rr -+ p indicates that hn M++ ~ 0 at t = 0.2, while the dip in do/d t indicates 
the dominant amplitude M+_ vanishes near t = 0.6. Both amplitudes are dominated 
by p-exchange. Thus, experinrentally, amplitudes have a structure depending in an 
important way on both t-channel (the/)-exchange) and s-channel (the helicity flip) 
quantum numbers. 



1 14 G. Cohcn-Tannoud/i et al., UnitariO,, duality and absorption 

Each of these amplitudes has a similar structure at high and low energies [8], i.e. 
a dual structure. Thus any dual model that is consistent with the data nmst have 
amplitudes which depend on both s- and t-channel quantum nunlbers. 

The absorption model can give tile desired effect in a natural way at both high 
and low energies. At high energies the non-flip amplitude is absorbed more that tile 
flip because tile R~rmer allows a head-on collision while tile latter does not (M+_ 
vanishes in the forward direction from angular monlentum conservation), so one 
finds [2] a ze roa t  t ~ 0 . 2 i l l M + + a n d a t  t ~ 0.6 ill M+._ . At low energies ttle 
central resonances are absorbed relative to the peripheral ones by the opening of 
inelastic chamlels in the low partial waves, so the peripheral resonances can donlinate 
and give the same structure in t as at high energies. 

At this point we call discuss tile most important feature of our work. Ill tile above 
analysis we have considered the entire amplitude at high energies Regge pole plus ab- 
sorptive cut. At low energies we considered mainly resonances. We find that the res- 

onances  are dual  to the  po le  p lus  cut ,  no t  to tile poll,  alone. The Regge pole alone, 
if it has any zero, has it at a much larger t-value than either the resonances or tile 
entire high-energy amplitude. It is untenable that the resonances and Regge poles 
are dual, while the Regge cut is a correction only, dual to something else, for example 
background of some sort. 

One Call see tile difference between tile actual role of cuts ill duality as described 
above, and that envisioned by the model of one-loop duality diagrams. For these dia- 
grams, in meson-meson scattering, the Regge cut is dual to tile pomeron (or some- 
thing with vactmm quantum numbers) in the crossed channel, not to part of the res- 
onances. Ill the entire dual loop model this problem may be overcome. Individual 
two-loop diagrams contain Regge poles as well as Regge cuts [1 0]. 

Moreover, tile sinlplesl duality diagram with an absorptive cut (rather than a 
Regge-Regge cut), contains two loops (if tile pomeron is dual to the one-loop Regge 
cut). 

Now we shall make a simplifying assumption which allows us to perfi/rm the nu- 
merical calculation. This assumption is that the amplitude may be decomposed into 
a sum of dual terms [1 I]. Each terms has one behavior (either pole or cut) in one 
channel, and one behavior in another channel. It may be exotic ill the third channel. 
Examples of such terms, with our notation for them, are: 

poles in both tile s- and t-channels, 
cuts ill both tile s- and t-channels, 
pole in the s-channel and cut in the t-channel. 

If the Veneziano expression I'(O~s) r( c~t)/l'( o~ s o~t) had finite width resonances, 
it might be an acceptable (PsPt)  terln. 

This assumption may appear to be a minor technicality. However, the immediate 
consequences are not minor~ and may turn out to be incorrect. We have shown above 
that the s-channel resonances are dual to the sum of t-channel poles plus t-channel 
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cuts. Therefore, the amplitude must contain the terms(PsPt)and (PsCt). The term 
(PsPt) has either no zero, or the zero at too large a - t value: (Ps(,_)) interferes de- 
structively with (PsPt) producing a zero in non-flip amplitudes at t ~ 0.2 GeV 2, 
at both high and low energies, tlowever, (PsPt) - (PsCt) does not have correct 
crossing properties. (Ps, Pr) crosses into the same type term under s ~ t but, (PsCt) 
crosses into a term of the term (Cs, P t). Thus the amplitude must also contain ((k.Pr) 
also interfering destructively with (PsPt). Now, however, the expression (Pst':) 
.... (PsCt) - (CsPt)no longer has a zero at t ~ 0.2 GeV 2. This can be remedied 
only by including a term + (Cs, Cr), interfering destructively with (Cs.Pt). This last 
term crosses properly. Thus the entire non pomeron amplitude can be written as: 

F is, t t = ( P P , ) - ( P c , )  (c~?:l+ (Cc, )  (1) 

Tlris may be wr i t ten as ((P- C) s (P C)t). This form is very suggestive. It implies 
that the best calculation would be to start from an acceptable (PsPt) term, and si- 
multaneously calculate absorption corrections m both channels. Such a program is, 
however, considerably more ambitious than the calculations described in this paper. 

Our assunrption has led to an amplitude which does not appear to be resonance 
dominated at low energies. The Ps terms contain the resonances while the C s lerms 
contain background. At high energies both (PsPt) -- (PsCr)and (CsP t) (Cs.Ct), 
have roughly the same t-dependence, which m turn is roughly the t-dependence of 
the amplitude. Thus the resonances are dual in shape to the high-eplergv amplitude, 
but not hi size. In a comparison, for example using finite energy sum rules, the size 
is much more sensitive to the details of the calculation than is the shape. The as- 
sumption of resonance dominance at low energies is popular, and has a moderate 
amount of experimental support. Only a careful phenomenological analysis can dis- 
tinguish it from the decomposability assumption which we make here. 

The most satisfactory (PsPt) terms are of the s-x dual type l1 2], and are difficult 
to compute. Theretore we must approximate this term by something less satisfactory. 
We could, R)r example, use a Veneziano formula with ancestors, but such an approxi- 
mation is contrary to the usual spirit of duality. We have therefore used a completely 
different sort of approximation which we now describe. We have a great deal of free- 

dora in choosing our terms, so we can write (PsPt) - (C~Pt)' -~ 0 for large s' where 
(CsPt)' is a term of the (CsPr) type, but chosen in ti)rnr and size to have roughly the 
same t-channel Regge pole as (PsPt). Similarly (PsCt}' (Cs, C t ) ' ~  0 for large s, The 
combination (PsPt)--  (CsPt)' (PsCt)'+ ( G C t ) '  crosses properly, and is therefore 
small for large t as well as large s. It is reasonable to assmae that this expression can 
be made very small everywhere by the proper choice of tire primed terms. Thus by 
subtracting this very small expression from the amplitude we arrive at an approximate 
amplitude without any term of (PsPt) type. 

It is in thisfi)rm that we will calculate the amplitude: 

X(~, t )= (P~C,)+ ( c e  t) (c c , ) ,  (2) 
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where the various components have the same behavior as in eq. (1), but can be dif- 
ferent in size and can be obtained by redefining the pole residues and the cut dis- 
continuities. 

This form can be interpreted in terms of duality concepts, although not in as com- 
pelling a way as the tour term expression from which it was derived. The first term 
has resonances at low s, while the second has the t-channel Regge pole. According 
to the ideas of duality, the sum of the first two terms involves double counting [8]. 

As we show in the next section, on a definite model, the third term is present in 
order 

(i) to remove this double counting objection at lower energies, 
(it) to provide cut corrections with the correct absorptive sign. 
In the following sections we will propose formulas |k)r the PC, CP, and CC terms 

which phenomenologically contain the ligatures we have described, examine the 
successes and shortcomings of this calculation, and suggest an improvement in the 
form of our expressions. 

3. CONSTRUCTION OF A DEF1NITE MODEL 

As discussed above, because of tire computational difficulty in obtaining a good 
polb-pole dual amplitude we have constructed a simplified version of what we expect 
to be the best model. For this reason we do not expect, when applying our model, 
to reproduce a best fit to experimental data. Our intention is to produce an explicit 
model amplitude which can be in qualitative agreement with possible data at all ener- 
gies and angles. We have chosen to apply our model to rrn scattering for several rea- 
sons [1 3]: 

this reaction does not involve any spin complications; 
some pieces of low-energy experimental information exist ; 
from factorization arguments, the high-energy Regge phenomenology is rather 

well constrained: 
the reactions which are actually observed show very general features which we 

expect also to occur in rrn scattering. It is then interesting to study the rrn amplitudes 
as a laboratory before extension to processes with spin; 

this reaction has been extensively studied on theoretical grounds, and many use- 
ful constraints have been derived from first principles; 

various dual models have already been proposed with which we can compare our 
own model. 

In addition we have not restricted our investigation to nn scattering, but following 
lxwelace's [141 suggestion, we have extended them by pure analytic continuation to 
the study of pn annihilation at rest into three pions. 

In this section we shall first exhibit explicit fl)rms for the various components of 
the amplitude and briefly discuss their mathernratical properties; then we shall ex- 
plain how the parameters can be determined, and finally we shall display and discuss 
the results obtained. 
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3.1. Construction and mathematical properties o f  the components o f  the amplitude 
The various pion-pion scattering amplitudes can be written in terms of  the n+n - 

elastic scattering amplitude, A(s, t). All the crossing symmetry and isospin invariance 
conditions are given in the following equations: 

3 [A (s, t) +A(s, u ) -~A (t, u)l A(s, t) =A(t, s) ,  Als=O(s, t) = ~ , 

(3) 
AIs=l(s,t)=A(s,t)  A(s ,u ) ,  A&=2(s, t )=A(t ,u) ,  

with s + t +u  = 4m 2 . 
Following the Freuud-Harari conjecture [1 5] and tire general duality framework 

we separate in A(s, t) the pomeron and non-pomeron contribution 

A(s, t)= P(s, t) + F(s, t) . (3') 

(i) The non-pomeron contribution F{s, t). In the preceeding section we have pro- 
posed a structure for this non-pomeron contribution (eq. (2)) which we rewrite ex- 
plicitly exhibiting a scale parameter in front of  the (CsCt) term 

F(s, t) = (PCt) + (Pt C )  + A ( C C t )  . (4) 

It is a rather easy matter to build the above mentioned contributions:  the Vene- 
ziano formula provides us with a kernel from which we can generate classes of  such 
functions. The smoothing procedure of  Martin [16] consists in taking the convolu- 
tion of  the Veneziano function with a given distribution. Applying this technique 
on one or both trajectories allows us to get (PC) or (CC) terms. To be more explicit 
we have chosen to use the following forms 

b ['(1 u ( s ) ) P ( - ( a  o - 1 ) ( l + x / q )  I~t) 
( P C t ) =  dX f d /Je-X\ / (b-u)( l~-a)  [ ' ( u ( s )  ( % - l ) ( l + X / q ) - / J t ) '  

o a 

(s) 
b F(-(u-I) ( I+X/q ' ) - I Is)F(  (Uo-1)(l+X/q')-Iat) 

(CsG)  =f dXf d # e - X x / ( - b - - ~ )  u F(-2(ao-l)(l+X/q')-IaS-I~t 1) 
O a 

(6) 
where a(s) is a complex P - P '  exchange degenerate Regge trajectory,  a o = a(0) ,  
and a, b, q and q '  are real parameters characterizing the model. The X integrations 
converge at infinity since the integrands for large positive X are bounded by XNe - x .  
With s o ~< 1, and q, q', a, b > 0 all the integrals converge at least for s and t ~< 0, 
in which region eqs. (5 and 6) define real analytic functions. 
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In (PsCt) the analyticity properties in s are controlled by those of a(s): one has 
a cut starting from the elastic threshold as in the trajectory function, and one has 
poles whenever oe(s) equals an integer n. Since the residues of these poles in the in- 
tegrand are polynomials in t of degree n, and since the X- and it-integrals converge, 
the residue of the pole a(s) = n in (PsCt) is also a polynomial in t of degree n, which 
insures that at a finite mass one has a finite number of resonances. With hn oe(s) > 0 
one insures that the resonance poles are actually second sheet poles*. 

In (PsCt) (and the same applies to (CsCt)) the singularities in t come from the 
poles of the I '-function depending on t in the numerator of the integrand.Through 
tile integrations these poles are smeared into cuts. Applying end point singularity 
reasoning one finds the positions of the t-branch points: 

t,,=[n (% 1)]/b [n (% 1)]/a tl=O,l " (7) 

Making a = 0 sends half of these branch points to infinity; the branch points 
[n (% 1)]/b can then be interpreted as equally spaced inelastic thresholds in tire 
t-channel. The/~-integration transforms the poles in the F-function into square root 

3 

branch points and tile X-integration provides a behaviour near tp~ of the type (t tnfi  
In order to compute tile functions on the cuts in t one can use dispersion relation 

teclmiques (with principal part integrations to get the real part); it is easier to use a 
complex contour it-integration (for instance a semi-circle running from a to b in the 
complex/~-plane). This technique allows one to define the functions in terms of in- 
tegrals which do converge for all values ors  and t except at the thresholds where the 
behaviour is known anyway. 

The asymptotic behavior of (PsCt) and (CsCt) where s or t go to infinity can be 
studied rather easily; we give here qualitative arguments which are justified a poste- 
riori by explicit study in the appendix and by actual numerical conrputations. When 
s goes to infinity the integrand in (PsCt) is Regge behaved since it is a Veneziano 
amplitude**; since one integrates over tile intercepts and tile slope of the Regge-pole 
trajectory one gets a behavior typical of a logarithmic Regge-cut contribution : 

( s )  %(t) 
(P'Ct)  ~ A + B l o g ( - s ) "  (8) 

with c%(0) = C~o(the X-integration starts from 0) and c%(0) -~ ½(b +a) (½(b +a) is the 
value of/a for which the weight function of tile ~-integration takes its maximum 
value). The same type of asymptotic behaviour in s occurs for (CsCt). 

When t goes to infinity it can be shown that (Ps(.)) is Regge behaved, 

* With the parameters which we have chosen we have numerically checked that the residues of 
the resonance poles on the parent and the first nine daughter trajectories are positive. 

** Provided that a(s) is asymptotically linear with an imaginary part going to infinity slower 
than the real part. 
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(pcr)  ~ ( -¢)~ ' ) r ( l  ~(s))~(s), (o) 

where/3(s) is defined as a convergent integral over X and/2. 
Finally, we note that the usual procedure for writing Veneziano terms is to be 

followed here: whenever an amplitude would contain a standard Veneziano term we 
simply replace it by (PC} + (CP) + A(CC). Tiros our amplitude satisfies exact ex- 
change degeneracy, in particular any amplitude which would be purely real in a 
Veneziano model will be real here. We will also have tile usual linear sigmature zero 
in the Regge pole at the point where ap = 0. But because of the absorption effects 
this zero (near -z ~ 0.5) will not have any detectable effects on the final amplitudes, 
as will always be tile case for helicity non-flip amplitudes. 

A property of our functions is related to the tixed angle behavior at high energy. 
One knows that tile Veneziano amplitude does not explode when s and t go simul- 
taneously to infinity t/s ~< 1. Since in (PsCt) we integrate over arguments of the 
F-function depending on t which go to infinity the resulting function, even in the 
physical region (Itl  ~. s ), is spoiled by the spurious exploding contributions of the 
Veneziano integrand. This difficulty is a direct consequence of  the bad features of  
our kernel. We postpone to the next section file discussion of" possible improvements 
of  our model to get rid of  this difficulty; in view of all the other desirable properties 
satisfied by our model amplitude, we have not tried to technically solve this problem 
fl)r ttle present calculations. As a consequence we have mainly considered R)rward 
amplitudes at high energies. This trouble also gives rise to bad behavior of  the low 
partial waves as the energy increases. 

(ii) Tire pomeron contribution. We have not tried at all to construct a dynamical 
model for the pomeron contribution,  but we have introduced this contribution in 
order to enlarge our domain of  investigations to elastic scattering. The physical re- 
quirements which have guided us when building this contribution are mainly crossing 
and duality. From the Freund-ttarari [1 51 point of view, the pomeron is completely 
decoupled from the resonance-Regge duality. Such a pomeron in a s-t crossing sym- 
metric reaction carl then be written as 

P(s, t) = H(s, t) + H(t, s ) ,  (lo) 

that is that the contribution of the pomeron in 7z+rr elastic scattering call be split 
into the exchanged pomeron His, t) and the direct channel pomeron H(t, s): 
H(s, t) = H(u, t) in order that tile pomeron has a positive sig~lature. We then propose 
a Rmn for the exchanged pomeron corresponding to a Regge-pole high-energy behavio 

2 ! +A)2c~p(t) _2 o [((4nlw-s)2 ((4nl~ r u) $ +A))2~p(t) 2] 
H(s, t) = ~ ( s - u ) f ( t )  7r 2(~q~(t) 1 ) , (1 l )  
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where C~p(t) is a Pomeranchuk trajectory,  O'p(O) = 1, A a positive parameter which 
controls tile way in which the pomeron contribution reaches its asymptot ic  regime, 
and f ( t )  a residue function. Giving to O~p(t) and f ( t )  the standard analytici ty prop- 
erties of trajectory and residue functions guarantees that the pomeron contributions 
have the required analyticity properties. It is again the duality requirement which 
provides us with a hint for the parametrizations o fO~p( t )andf ( t )  for positive t. 
Since we want the pomeron to be decoupled from duality we want the direct channe 
pomeron to contribute a non-resonating background falling very fast at high energy 
in order for it not to Contribute in finite energy sum rules. Actually,  hy choosing a 
bounded trajectory for OLp(t), for instance 

I 1 

c~p(t)= 1 ((4m2 t} g 2m )/((4m2 t) g + B ) ,  (123 

and for f ( t )  a function falling to zero faster than any inverse power of t, such as 

I L 

f ( t )  = exp ( ((z 1 t) /z2)a (Zl/Z2)4) , (131 

we make sure that the direct channel pomeron contribution is not only supercon- 
vergent but in fact decreases faster than any inverse power of  s(we call it a hyper- 
convergent pomeron ). 

3.2. Determination o f  the parameters 
In the appendix we have summarized all the mathematical properties of our 

model amplitude and listed all the parameters on which it depends. We explain here 
the physical arguments which allow us to qualitatively determine all these param- 
eters. 

The overall normalization parameter is easily determined by imposing that the 
P-wave is on top of  the unitarity circle at the p-mass. We have fixed o at 20 mb 
which seems to be a reasonable value for the asymptot ic  value of  rrr~ total cross 
section. 

Tile pomeron parameters have been fixed rather arbitrarily since the physics of 
tile model is essentially conlained in the non-pomeron part of  the amplitude,  and 
since this pomeron amplitude has been added essentially for tile sake of  complete- 
ness. The parameter B has been chosen in such a way that the slope of the Pomer- 
anchuk trajectory equals 0.5. With the values chosen for A, z 1 and z 2 the pomeron 
contribution is reasonable at high energy: the rr+rr + elastic differential cross section 
(which is supposed to be dominated by the pomeron contr ibut ion)  turns out to 
have a behavior very similar to the K+p analogue. 

Tile parameters of the meson trajectory function are easily determined by the 
p- and f-masses and widths. The value of  o% seems lower that the one which is cur- 
rently used, but it is imposed by the parametrization. Oil the other hand the g- 
meson appears at a mass rather close to the experimental one. 

The determination of  the smoothing paraineters is more difficult. Remarkably 
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(see appendix) the parameter b controls the position of the inelastic thresholds, the 
slope of the Regge cut, and the scale parameter in the Regge behavior suggesting a 

new interpretation of the scale factor So, in terms of the average spacing of inelastic 
thresholds. We have taken b = 0.9 GeV- 2. With this value the first branch point in 

(PtCs) and (CtCs)is at s = (1 C~o)/b ~ 0.69 GeV 2 which does not correspond to 
any actual two body threshold but is approximately where scattering into four pions 
begins to become significant. The slope of the effective Regge cut trajectory at t = 0 
is {-b = 0.45 as expected from usual absorption models. The scale parameter in the 

Regge behavior of (PtCs) is 1/b ~ 1.1, which is very close to the canonical value. 
All the arguments presented here are qualitative, and in fact it is possible to 

change the value of b in order to reproduce (for instance) the four-pion threshold. 
Their one needs to modify the weight function in the/1 integral in such a way that 
the effects at high energy remain similar (slope of the cut trajectory, scale parameter) 

We determine q and q' by the following arguments. The t-dependence for large 
fixed s of (PsCt) is controlled by q and q'  respectively. They both represent Regge 
cut contributions to the amplitude. We want lhe Regge cut contributions to resemble 
Regge cuts obtained in absorption calculation. As such cuts show very little t-struc- 
ture, we tried to find values o fq  and q' which would give us approximately the same 

t-dependence of (PsCt) and (CsCt) and so guarantee no structure in the effective cut 
contribution*. This constraint has essentially determined for us the value ofq/q', the 
quantity which is the most sensitive to q turned out to be 7r+Tr total cross section at 
threshold. We have chosen a value o fq  = 5 which corresponds to Oth = 29 rob. 

We discuss now the determination of the important parameter A. The very nature 
of the model depends crucially on the value of A. Let A o be the value of A for which 
the contribution of (PsCt) and A(CsCt) cancel approximately at high energy. When 
A = A o one has a model which is approximately a dual crossing symmetric pole-pole 
model; it is somehow a dualized interference model, essentially the Dolen-Horn- 
Schmid interference model [8] where the resonances are described by (PsCt), the 
Regge contribution by (PtCs) and the average of resonances by Ao(CsCt). With the 
form we have chosen A o is approximately - 1 .  Now if A is more negative than Ao, 

then A(CsCt) not only cancels at high energy the contribution of (PsCt) but also re- 
duces the Regge-pole contribution of (ptCs) and this provides an absorptive correc- 
tion. One sees then that varying the value of A allows us to reproduce a very large 
class of models. One can go from a model which is resonances + background at low 
energy and Regge pole + Regge cut (cut with the wrong sign) at high energy to a 

model which is resonance-background at low energy and Regge-pole-Regge-cut at 
high energy (absorption mode l -weak  or strong absorption according to the strength 
of A), through an ordinary dual model: resonance at low-energy Regge pole at high 
energy (A = Ao). (See table 1.) 

* Of course we cannot have exactly the same t dependence as Im (CsCt) shows a zero near t - 1, 
but with the values of q and q' which we have chosen the real parts and at least the slopes of 
the imaginary parts at t = 0 of (PsCt) and (CsC t) fit remarkably well to one another at high 
energy (see fig. 2). 
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Table I 

Size of (CsC t) [ow and intermediate Iligh energies 
((PsQt) + Ao(CsCt}> = 0 energies 

Resonances + background 
(double counting) 

A < A n 

A = A o l)olen-Ilorn-Schmid 
interference model: 
resonances + tegge 
( r e s o n a n c e s  3 

A > A o R e s o n a n c e s  - inelasticity 
(absorption of interior 
resonances) 

Regge poles + Regge cuts 
(wrong sign of the cut 
correction) 

]'ure P, egge-pole model 

Regge poles • Regge cuts 
(absorption model) 

Thus we see that the proper to deal with the probleul  o f  double count ing  is to 

subtract  a cont r ibut ion  larger than the average o f  tile resonances so that one has an 

absorptive correct ion at all energies. 

Thus the determinat ion  o f  A is an essential point in tile physics o f  the model .  

Since the ampl i tude  is l ineal in A, it is clear that we can fix it by imposing one zero 

on the mnpl i tude ,  at a single value o r s  and a single value o f t .  The two most dra- 

matic zeros in convent ional  ampl i tudes  are the Adler zero, with the ampli tude van- 

ishiilg at s = t = u = m2r (where it is real); and tile crossover zero which arises from 

the imaginary part o f  the p-exchange ampli tude vanishing near - t = 0.2 at large s. 

The ponreron cont r ibut ion  we use vanishes automat ica l ly  at lhe Adler point ;  tile 

non pomeron  part must also vanish there if  tile antpli tude is to satisfy the Adler con- 

sistency condi t ion.  This is the condi t ion we have used to determine  A. 

To summarize,  we have now writ ten an explici t  resonance - Regge ampli tude which 

has resonances at low energies dual to absorbed Regge poles (i.e. Regge p o l e s - c u t s )  

at h i~ l  energies, and satisfying our initial requirements .  It depends on the input  tra- 
q P, 

j ec tory  plus six parameters  (a, b, q, A and overall scale). Three o f  these parameters  

are deter lnined from general arguments  (a = 0 to have the threshold cuts ex tend  to 

infini ty,  q'/q t o  have various terms with the same t -dependence,  and A from the 

Adler condi t ion)  and the rest fl-om low-energy condi t ions  (the value o f  o T at thres- 

hold  and at tire p, and the locat ion o f  tile first inelastic threshold).  

We can now examine  the ampl i tude  at all energies and angles (apart from the 

high-energy large-angle region where there is an asympto t ic  b lowup because we have 

used a smoo thed  Veneziano kernel).  In particular,  the entire high-energy behavior o f  

the ampl i tude  is de te rmmed ,  and its remarkable agreement  with our expec ta t ions  is 

very satisfying. 

3.3. Discuss&n o f  the results 
Figs. 1 to 1 7 show the results obta ined  fl)r rrrr scattering with the values o f  the 

parameters  shown in table A I. 
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100 

2. _ t ( Gev/c 12 

Fig. 1. The (PtCs) term at s = 50 GeV 2. The full line is logl imaginary part l and the dashed line 
is logf real part I. This  shows the Regge phase of  (PtCs,). 

~ ~  ~ ReaL parts 

\ \  
\/Xx~ ~ - C~ag'nary pa~tS 

I t l  1 

2. -t(GeV/c) 2P 

Fig. 2. Compar i son  of  (PsCt) (full lines) and (CsC t) (dashed lines), normal ized to have the same 
imaginary parts  at t = 0 (A = - A o ) ,  and s = 50 GeV 2, to illustrate the similarity o f  their t-de- 

pendence.  
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F ( S , t )  _+ F (u , t  ) 

125 

~ ..-.~ 

/ "~..~. I / - - -  - - _ _  

/ 
/ 

I 

_t~GeV/c) 2 

Fig. 5. The signatured amplitudes versus t at s = 50 GeV 2. The full line is the imaginary parl, 
common to both signatures (strong exchange degeneracy). The dashed line is the positive signa- 
ture real part (P'+P'*P cut) ,and dotted-dashed line the negative signature real part (p+p*P cut) 
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do- ( ~ ÷ ~ - - ~ + ~ t - }  ( m b / G e V / c  2 ) 
d t  
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Fix. 6. rr+rt - elastic differential cross section near the forward direction at a t'ew energies. 
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[rn F (S,o) 

I '/,. 

2 4 6 8 S OeV 2 - ~  

,~ im F(S,o) 

I00 

1 " ' "  

...... 

i I I I I _  
v 

2 4 6 8 S GeV 2 

Fig. 1 1. Analysis of  the non-pomeron,  forward direction imaginary part. The full line is the 
resonance contribution from (PsCt), the dashed line, the Regge-pole contribution from (PtQT) 
The dotted-dashed line represents the quantity one has to subtract from the resonance con- 
tribution in order to get the final answer. We call this term the absorption o f  the resonances: 
it is equal to - (PtCs) - A(CsCt). Fig. 1 la is obtained with the parametrization o f  eqs. (5) and 

(6) wlleroas fig. 1 lb correspond to the modif ication suggested in appendix. 



G. Cohen-Tannoud/i et al., Unitarity, duality and absorption 129 

100 

O'Tot(Tt+ ~-} (rob} 

I I I 1 = 
2 4 6 8 S OeV 2 

Fig. 12. rr+zr - total cross section from threshold to 10 GeV 2. 

100 

Im F(S,o) 

8 S GeV 2 

Fig. 13. Global duality test: comparison of  the forward imaginary part of  the non-pomeron  
ampli tude (full line) with the extrapolat ion at low energy of  the high-energy approximat ion 

(dashed line). 
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Fig. 14. Numerical test of finite energy sume rules• 

N OeV 2 

N 

f sP[lm F(s, O) Im Fasympt. 

Sp(N) = N 

(s, 0)] ds 

4J~m2 .sP[lm F(s, O) +lm Fsympt .  (s, 0)] ds 

Plot of Sp(N) versus N for p = 0, 1, 2, 3. 

Figs. 1 to 10 show the high energy results; as a typical high-energy value we have 
taken s = 50 GeV 2. Actually,  the asymptot ic  regime is reached at a much lower 
energy of  the order of  20 GeV 2. The plot of  ee(PtCs) and I m ( P t G )  versus t in fig. l 
clearly shows the expected Regge phase corresponding to two exchange degenerate 
trajectories (e i s ( t ) ) .  Fig. 2 shows a comparison of  the t-dependences of the two 
terms (PsCt) and (CsCt) which exhibit  the Regge cut behavior. When the imaginary 
parts are normalized at t = 0 (A = - A o )  the real parts match fairly well whereas the 
imaginary parts desagree at large t but  have essentially the same slope at t = 0. 

Figs. 3 - 5  show that with the value of  A determined by the Adler self consistency 
condit ion our model is an enhanced absorption model. The pole-cut destructive in- 
terference which produces the diffractive zeros is shown in fig. 3. The peripheral 
nature of  the imaginary part is exhibited by the Hankel transform, fig. 4, which 
shows a bump near b ~ 1 fin. Finally the resulting amplitudes of  both signatures 
are shown in fig. 5. 
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Number of events 

l 2 M 2 (GeV 2) 

Fig. 17.1nlegratedrr+rr (full line) and Tr rr (dashed line) spectra in ~n ~ rr+z rr 

We want to emphasize the fact that the absorpt ion effects  which are easy to ob- 

tain in a standard model  where cut correct ions are somehow derived f rom uni tar i ty ,  

are reproduced  here via a comple te ly  different  approach based on duality and 

crossing synmretry.  Since, in our knowledge there did not  exist up to now any 

crossing symmetr ic  absorpt ion model  we think that our results show at least that 

enhanced  absorpt ion (people familiar with absorpt ion t e d m i q u e s  will recognize 

how close to enhanced absorpt ion [31 our ampl i tude  is) is not  incompat ible  with 

rigorou.s crossing symmet ry  at all energies. 

We have not  been able to fol low the Adler  zero as a funct ion o f s  (in part icular  
in the resonance region) but  we conjecture  that  it becoures at in termedia te  energy 

the dual zero in tire t -dependence  at the resonances,  and at high energies the cross- 

over zero. This conjecture  is based on tire remark that all these zeros do have,  in 

our model ,  the same origin, that is cancellat ions be tween different  componen t s  o f  

the ampl i tude.  In this respect our model  differs drastically f rom the Veneziano - 

Lovelace model  in which the Adler zero moves along a straight line s + t = constant  

and each zero in the residue o f  a resonance comes f rom a different  line s + t = con- 
stant,  even though they appear at the same t-values [1 7, 18]. The ampl i tude  o f  our 

model ,  on the o ther  hand,  has one zero which is the Adler zero,  the zero in all res- 

onance residues at t ~ 0.2, and the high-energy absorptive zero. 

Some typical in termediate  and high-energy differential  cross sections are shown 

in figs. 6 to 10. The most spectacular effect  is the comparison of  the exot ic  cross 

section (~+z +) and the non exot ic  one (z+Tr-) (figs. 8 and 9) showing the two cross- 
overs, the structure in the non exot ic  cross section and the lack o f  structure in the 

exot ic  one. Figs. 8 and 9 should be compared  with the data o f  K+p and K - p  elastic 

scattering. 

Low-energy results are shown in figs. 1 la, 1 lb  and 12. Figs. 1 la  and 1 lb  show 

(for two choices of  parameters)  the decompos i t ion  of  the imaginary part o f  the non 

pomeron  ampl i tde  at t = 0. The full line curve is the cont r ibu t ion  of  the (PsCt) 
term (resonances).  The dashed curve represents  the cont r ibut ion  o f  (PtCs) (Regge 
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pole). It is clear in this figure that the model with A = 0 would be a bad interference 
model; the resonance signals would hardly emerge on the Regge background. On the 
contrary, with the actual value of A, one has to subtract the dotted-dashed curve 
( - C s P  r ACsCt)  from the resonance contribution in order to get the final answer. 
It is of the form resonance minus absorption. Notice that the dotted-dashed curve whict 
can be interpreted as an inelasticity does vary very rapidly in the resonance region. 

It is interesting to study the partial wave content of the total absorption of the 
resonance: between the first two thresholds only the S- and P-waves are absorbed, 
so in the second resonance peak the fo(D-wave) is not affected by absorption where- 
as the p'  (P-wave) is. When all these corrections are applied, one might think that the 
shape of the resonances would be distorted. This is not the case as can be seen in 
fig. 12 which shows the total 7r+rr cross section up to s = 10 GeV 2 and in fig. 13 
which shows the imaginary part at t = 0 of the total non pomeron amplitude com- 
pared to the extrapolation to low energy of the high energy approximation (Regge- 

pole-Regge-cut obtained through at fit at s = 50 GeV 2 and s = 100 GeV 2 to the am- 
plitude of the model). Finite energy sum rules are tested on fig. 14. 

At the p-mass, the S-wave is also resonating (the o-meson). We find at this point 
that the S-wave badly violates unitarity, being too large approximately by a factor 
of three. A change in the parameters caused almost no change in this unitarity vio- 
lation. It appears that the existence of the Adler zero is inconsistent with unitarity 
if the mass and width of the o are the same as those of the p, as must occur if the 
Veneziano kernel is used. 

Our last result concerns the three pion decay of the ~n system at rest. Since the 
pn system at rest has the quantum numbers of a 7:-, we can assume, as proposed 
by l_x)velace [14], that the decay amplitude can be obtained (up to an unknown 
overall normalization) by analytic continuation in s, t, u of the 7r+Tr - elastic ampli- 
tude from the scattering region to the decay one. Since our numerical integration 
technique also works when both s and t are positive we have been able to perform 
this analytic continuation explicitly. The results are shown in figs. 15 to 17. We 
want to stress that we have not changed anything in the model while going from the 
scattering to the decay region. In some sense our result about the ~n decay has to 
be considered as a "prediction" since the amplitude was "fit ted" from the rr+Tr--+rr+~r 
data. Qualitatively the results are fairly good, and actually comparable with any of 
the several previous models which were constructed to apply only to the annihilation 
data [19]. Although the peaks are too narrow, the dip-bump structure is well repro- 
duced. Angular distributions show that the o dominates the p, but no interesting 
conclusion can be drawn from this fact since it occurs also in the scattering region, 
where it has to be considered as a defect. We insist on the fact that our model is not 
intended to reproduce the ~n annihilation data. Applying our model to this process 
is just a way toexplore the properties of our 7r~r scattering amplitude in the unphys- 
ical region where both s and t are positive. 
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4. DISCUSSION AND REMARKS 

In our view, we have constructed a model for a hadron scattering amplitude which 
gives a good description of  experimental data, at a level which is almost quantitative, 
at all energies and angles. We are encouraged to believe that the ideas we have incor- 
porated (analytici ty,  crossing, Regge behavior, duality, and partial unitarity via re- 
quiring second sheet resonance poles at low energies and absorption effects at high 
energies) are important  ingredients in full description of experimental data. 

In view of  the fact that our amplitude is slightly more complicated than a simple 
Veneziano one it may be useful to make a few remarks about the significance of the 
complexity.  On the one hand, the Veneziano model is simple, but it does not look 
like experimental  data. On the other hand, we have introduced various complications 
related to unitarity effects, but our amplitude might be very much like the experi- 
mental data. In addition, we have good qualitative agreement with data in all regions 
(including pn -+ 37r) simultaneously,  without arbitrary modifications such as unitariza- 
tion in one energy range, absorption in another,  etc., and we never give up nice prop- 
erties such as crossing, Regge behavior, proper spin content,  etc. Thus we feel that 
the kind of  complications we have are more or less the minimal amount necessary to 
get good agreement with data. As we gain experience with such models it seems 
likely that they will grow simpler and easier to understand. 

To test these ideas and models such as ours further, we need to nrake progress in 
two directions. First, we want to remove the problems associated with the Veneziano 
kernel, such as the fixed angle divergence, and the too large S-wave beneath the P. It 
appears to us that using a Virasoro kernel [201 would be suitable for this purpose: 
the Virasoro ansatz puts the three crossed channels on the same footing, since, with ou 
smoothing procedure we know how to transform poles into cuts, we can build terms 
with, for instance poles in one channel and cuts in the two other (in particular cuts 
similar to the Regge-Regge cuts in the exotic channel). Since, now the behavior in 
all directions is governed by Regge singularities, we are sure that no blow up occurs 
in the full angular distribution, from forward to backward directions. On the other 
hand, since exchange degeneracy is not rigidly imposed, much more tlexibili ty is 
available to adjust the o to p ratio. One of us (R.L.) is pushing investigations in this 
direction. Secondly, recent progresses made in dealing with s-x dual amplitudes [121 
put within our possibilities the performing of what we consider to be the best ab- 
sorption dual model (see eq, (1)). 

In order to further test our ideas, it is necessary to write similar amplitudes for 
general reactions, including those with spin. It is not entirely clear how to proceed, 
because one wants to write expressions such as the one we have used for amplitudes 
with simple crossing properties. But to compare with the absorption ideas at high 
energies one wants amplitude with definite net helicity flip in the appropriate chan- 
nels. It does not appear that any basic difficulties arise in going to a process such as 
7r-p -+ rr°n, and we are beginning to carry this out. 
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It should be noted that we can more easily check one aspect of the spin depen- 
dence by considering zr~r -+ 7rco. This process still has only one amplitude, but it has 
net helicity flip one. Thus we expect Im M ~ 0 at t = 0.6 at all energies, rather 
than 0.2 for n = 0 amplitudes as in ~rTr. This effect should arise naturally; it does at 
high energies in a real absorptive cut model because the cut discontinuity has an 
extra power of  x / - t  and the cut is correspondingly smaller. Here the integrand 
weight functions will reflect this, with perhaps a factor X ~ in the integrand being 
suggested for amplitudes of different net helicity flip n. At low energies it will be 
automatic if the peripheral resonances dominate,  since the appropriate partial wave 

1~0( 1 expansion is in terms of d 0), which has a forward zero and then one at cos 0 = ~. 
Using the peripheral relation between J and s gives a zero at t ~ 0.6. 

Another aspect of interpretation which needs more detailed study is the precise 
connection to the absorption model. Several directions could be pursued. One could 
study the J-plane structure of  a typical absorption model and of our amplitude and 
make them as alike as possible. O1, one could try to use duality and low-energy con- 
straints to get at the absorption model. One can also see how duality and crossing 
effects modify asymptotic absorption model predictions at a finite energy. The rel- 
ative success of  our model, which is an investigation in a new field of research, shows 
that the key of  all these opened questions lies, may be, in a systematic study at all 
energies, of the implications of crossing, unitarity,  duality and absorption. 

APPENDIX. PARAMETRIZATION AND MATHEMATICAL PROPERTIES OF 
THE AMPLITUDES 

A(s, t), the 7r+cr - -+ 7r+Tr elastic scattering amplitude is written as 

A(s, t) = oooP(s, t) + 7 F(s, t ) ,  (A. I )  

where P(s, t) is the pomeron amplitude and F(s, t) the non pomeron amplitude. 

1. The pomeron amplitude P(s, t) 
Crossing symmetry 

P(s, t) = H(s, t) + H(t, s) , 

H(s, t) = H(u, t) . ( a .2 )  

Parametrization (see table A.I for the values of  parameters) 

2 2(ap(t)-l) 2 2(C~p(t)-I ) 
H(s , t )=  l ( s _ u ) f ( t )  ([x/4mrr s+A] - [ ~ + A ]  

(A.3) 
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Oep(t) = 1 - ( 4x~m2 t 2 m T r ) / ( X / 4 m 2  " - t + B ) ,  

1 1 

f ( t )  = e x p  \ - \ - ~ - 2  / \ z 2 ]  ] "  

Table  A. 1 
l ' a r ame te r s  o f  the mode l  

( A . 4 )  

(a.5) 

t r a j ec to ry  f u n c t i o n  a o = 0 .375 e~' = 0 .985 GeV - 2  g = 0 .137  GeV -1  
s m o o t h i n g  p a r a m e t e r s  b = 0.9 GeV - 2  q = 5.0 q '  = 7.0 

a b s o r p t i o n  p a r a m e t e r  A = - 1 . 8 9  
p o m e r o n  t r a j ec to ry  B = 3.5 GeV 
p o m e r o n  res idue  A = 0.2 GeV z I = 4 m  2 z 2 = 2m 2 

n o r m a l i z a t i o n s  7 = - 195 GeV 4 a ~  = 20 m b  

Table  A.2 

(PsCt)(s, t) (PtCs)(S, t) ( CsCt)(s, t) 

Real ana ly t i c  wi tb  Real  a n a l y t i c  Real  a n a l y t i c  

a cut  f rom 
= 4 m  2 to in f in i ty  S 

Second  sheet  poles Branch cuts  f rom Branch cuts  f rom 

at s : s  n such tha t  - (Ceo--1)+n (a  ° 1)+1l 
6'  C _ S c~(s n) = n = 1,2, 3 . . . .  s n b n b 

to in f in i ty ;  to in f in i ty ;  

n = 0 , 1 , 2  . . . .  n = 0 , 1 , 2  . . . .  

D i s c o n t i n u i t y  D i s c o n t i n u i t y  
c 

c and  b e t w e e n  s n and be tween  s n 
C . 

~e?/+1 : Sn+ | • 
p o l y n o m i a l  in p o l y n o m i a l  in 
a(t) of  degree tt t of  degree  n 

Behavior  near  Behavior  near  
c c 2 c c _3 

s n : (st~ s)= sn:  (s n s)= 

H o l o m g f p h i c  for t l o t o m o r p h i c  for 
t < 4m~r t < s c 

Regge pole Regge cut  
behav io r  behav ior  

( s ) %  (t) 

A n a l y t i c i t y  in s 

for f ixed  t 

A n a l y t i c i t y  in t 
for f ixed  s > 4m~r 

High-s behav ior  

Res idue  of  pole 

Sn: p o l y n o m i a l  in 
t of  degree  n 

H o l o m o r p h i c  for 
t <  s c 

Regge cut  
behav ior  

( - s )  % ( t )  (_s)C,(t) 
l + c t  (Log ( - s ) )  l + c t  (Log ( s ) )  
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2. The non-pomeron amplitude F(s, t) 

F(s, t) = (PCt)(s, t) + (PtCs)(s, t) + A(Cs Ct)(s, t) (A.6) 

Crossing symmetry 

(P,C#~, t) = (PCt)(t,  s),  (csc t ) ( s ,  t)  = ( c ,  c t ) ( t ,  s) . (A.7) 

Parametrization (see table A.1 for the values of the parameters) 

b V(l-a(s)) r ( - ( % - l ) ( l  + X/q) - / a t )  
( P s C t ) : f  d X f  dpe xX/' ~ p ) ~ : ( ~ o _ l ) ~ + x ~ q ~ = ~ t  ~ 

O O 

(A.8) 

f b F(- (a  o -  1 )( 1 +X/q' )-U s)F(-(a o-1X l+Xlq' ) -u  t) 
(CsC t) = OX f d/a e -x 

o o r ( - 2 ( % - l ) ( l + X / q ' ) - U s - u t  1) 

(A.9) 

a(s) = o~ ° + a's - g[ 4x//~-m2r - s - 2m] . (A.10) 

The mathematical properties are summarized in table A.2. 

3. Derivation of  the mathematical properties 

We have studied extensively the analyticity properties (residues of poles and dis- 
continuities of cuts) and the asymptotic behaviours. 

We use the following notations and properties: 

C~ n the binomial coefficients 

D m the coefficients of the Pochhammer polynomial expansion k 

r ( x  ) _ ,n 
(x m ) m = ( X -  l ) . . . ( x - m ) - r ( x _ m )  ~ Dr~x k ,  (A.11) 

k=0 

q~(a, c, x) the degenerate hypergeometric series [21] 

(a). x" 
~(a ,e ,x ) :  ~ (e). n!'  

n = 0  

(A.12) 

~1 X .2, 
q ~ ( ~ , 3 , x )  = e 2 Z_~ 

n=0 n!(n + 1)! 
(A.13) 
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qO(a, c ,x )  ~ F(e~)-eX xa-C(l +O(l /Ixl))  
R e  x - ~  + = l ' ( a )  

(A.14) 

¢~(a,c,x) - - - - - ,  - F(c)-(-x)-a(l+0(1/lxl)) 
Rex ~ - ~  ]('(C a) 

(A.I 5) 

4) 1 (a, b, c, x, y )  a degenerate hypergeometric series of two variables 

@l(a ,  b, e,y) = 5 (a)m+n (b)n xmY n 
m, n =o (e)m+n 

(A. 16) 

B(X, y)  the Euler function. 
We make use of some definite integrals, namely [22] 

1 
f x v-I (1 - x )  u 1 dx = B(u,/a), 
o 

f e -v  v x - '  dv = V(x) ,  
0 

(A.I 7) 

1 
f x u 1 ( l / - x ) "  1 e~X dx =B(v,u)O(v, II+v;~), 
0 

(A. 18) 

I 
f xU-I (1 x)U-1 (l -Tx) -OegXdx=B(v ,  iJ)Ol(v,p,u+v;%~). 
o 

(A.19) 

(a)Residues of  the poles of(PsCt). The (PsCt) term has poles for s such that 
a(s) = n, n = 1,2 . . . .  with residues 

_ (_)n-I  ? b F(-- (ao--l )( l +Vq)-tat)  

R (h~-~)!o e-~dXf  duv~g P) r ( - ( a o - l ) ( l + X / q  ) p t - n )  
0 

- ( _ ) n - 1  

(.--I)! 

1 n 
e -x  d)tb 2 f d / l ~  ~ Dn(-(ao-l)(l+?t/q)-12bt)m 

o m = 0  
o 

S m 
_(_)n-1  b 2 n e -XdXJ ~ d / . t ~ ~  C~(1 ao)m-k(l+~t/q)m-k(--bIJt)k 
- ( n -  1 ) - - ~  Dm 

m =0 o o k =0 

= (_)n-_ l b 2 ~ D~ C~(_bt)m-k(l_ao)kB(~+m_k,~) ~ c.kJ~ " . (A.20) 
(n- l ) !  m-0 k=0 /=0 I qj 
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On the leading trajectory, the residues may be obtained from the Veneziano ones 
a) (where b would be the slope) by multiplying by a factor b2B( 3 +n, 2 • 

(b) Cut discontinuities. In order to study the cut discontinuities, one can make 
an expansion of  the Euler function 

(a(o). 7 

r / = l  0 0 
(a ° l ) ( l+X/q) -us+n-1  

q_ [ ds' ;' 
1-~o n:l (n-l)[ d s'---~- f d/Jx/#(b U) e 

?l--O~ o n - o ~  o 

b s '  

3 1 

q ~ (Ot(t))n f ds' 2 ( s 'b -n+ao)2(n-ao)2  

l-°eo E (n- l ) !  s ' - s  3 n-c% s '2 

b 

s'b --n+o~ 
' 1 s o q (s,b_n+ao)) " X ¢l(1 , -~- ,~ , -  n - a  ' 1-o~ 

o O 

(A.21) 

So we obtain for the discontinuity of  (PtC) :  
3 1 

(~(t)) n (s'b n+eeo)2(n ~o )~ 
As (P tCs )=-~n  l q_-~oE (n_l),  s'2 

s'b -n+ce 
Xq~l(l, 2,2,1 s n a o, l-aq (s 'b-n+ao))O(s'b n+ao).  (A.22) 

O O 

3 

This formula shows the behavior (s-Sn)~ at the branch points s n = (n - % ) / b ,  
n = 1,2 . . . . .  Similarly, for the (CsCt) term 

n m _~[s'--t~ m [ ns' ~m-k 
As(CsC t) 77 

• - o  ( n - 1 ) ! m : O  k:O 

3 1 
(s'b n+a )5+k(n a )2 

× o o B(k+ l ,  ~) 
s'2 

bs' n+o~ 
_ _  ' + ' + . X~bl(k+l ' 1 ~+s o q (bs n OLo))O(sb-n Oto) (A.23) - 2 " ~  2' n ol ' l--~ 

O o 
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(c) Asymptotic behaviour s --* +_oo, t fixed. When s --* +0% the complex contour 
v-integration allows us to use the asymptot ic  form of the P-functions in (PtCs) and 
(CsCt), since the integrand vanishes at the end points. With the weight e -;~ we can 
show that it is possible to use this asymptot ic  form for any value of X. In (PsCr), 
the use of  the asymptot ic  form is allowed by the imaginary part of the trajectory 

(i) 
h 

(PtC) ~ P(I-o<(t)) :e XdX : dlJ'v/-~b /I)(IJs) ~(t) 

0 0 

1 t_+ i 
= b 2 p ( l  o<(t))( b s ) ~ ( t ) : d # l l 2  c'(t)(1 ~)T 

o 

= a2c(l  -o<(t)) B(~ + ~(t) ,  ~) ( -bs )  "") . (A.24) 

This form is valid only for c~(t) > 3 For ¢x(t) < 3 - ~. -- T, we have to put the param- 
eter a > 0 (see eq. (5)) and take the suitable limit for a -> 0. But in all cases, the s- 
dependence is given by ( - b s )  c~(t) which shows how the scale parameter is related 
to b, that is the spacing of  subsequent thresholds. 

(ii) 

oo b 

(PC,)~f e XdXfdu U(b~(~(s)) ~+(% I)(l+Jk/q)+'utV( (O< ° I ) ( l+h/q)  Vt) 

O O 

= b 2 : e-XdX : d l a x / ~ l - l a ) :  e ray ~ 
O 0 0 

( (v)) 
= : f e-°dv ~'-~(s): o 1 +Vlog  (G~)  

(A.25) 

For the values of  s of  our interest,/a ,~ ~b gives the most important  contr ibution to 
• c ~  + - b t  . . the integral and so we have t - ( s ) )  o 2 j" (t) behavlour. For asymptot ic  values of  s, 

the most important  contribution comes from the end points of the o-integration. 
Using (A.I 3), (A. 14) or (A. 15) according to the value of  t, we obtain ['or small t, 

to first order in (t log s) 2 

c~ o ½bt 
( p c t ) ~ n b 2  7 e_Vdo{ u ~ 1 , (A.26) 

.d l o~( s ) ] ° ,  
o 1 + o log 

q 
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for fixed t < 0 
3 

(PC t)~x/~b- e Vdu\ ods) l ct ° 1. [ v ~" 
- 'ogt  ) 

(A.27) 

for fixed t > 0 
3 

(PCt)~½v@b2 ; e  V d v t - - ~ )  c~ ° 1. [ u X" 

o 1+ q log t7~{s~  ) 

(A.28) 

One sees on these behaviours that,  as fixed negative t, the fiat cut dominates  whereas 
at fixed positive t it is the one with the slope b which takes over. In the very forward 

~Tb. direction one has a t ransi t ion regime with an effective cut with slope 1 
(iii) Similarly one obtains 

(CsCt)~b 2 ] e Vdu.~ dla ~ ( ~ )  \ ~ ]  
O O 

(A.29) 

4. Possible modification of threshold positkms 

In order to modify  tire branch point position (s H = (n oeo)/b), we can modify tile 
value o r b .  In order to get the same high energy scale parameter and slope of the 
cuts, we have to modify  the ~ weight function in such a way that the effective high- 
energy b-value remains the same. This can be obtained with the weight funct ion 
x/~(b -,u)(1 +c/l) where the parameter c is such that tile derivative of  this new weight 
funct ion is zero at the same place as the previous one. 

5. Numerical calculation 

For practical computa t ions ,  we have used a 8 point Gauss-Laguerre quadrature 
for the X-integration, and a 1 0 point Gauss-Tchebycheff  quadrature for the ,u-inte- 
gration in tile complex ,u-plane. 
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