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DYNAMICS OF DISSOLUTION OF GAS BUBBLES 
OR POCKETS IN TISSUES* 

WEN-JEI YANG? and C. Y. LIANGS 
Department of Mechanical Engineering, The University of Michigan, Ann Arbor, Michigan 48 104 U.S.A. 

Abstract-A mathematical model is developed which describes the dynamic characteristics of 
gas bubbles in subcutaneous tissues. Consideration is given to both inert and reacting gases. 
The effects of blood perfusion (or oxygen consumption in the tissue in dead animals), diffusion 
of the dissolved gases, a creep process occuring in the tissue, and thermodynamic behavior of 
the gases in the cavity on the dissolution of the gas bubbles are taken into account. The stress- 
strain relation of the tissues in creep is described by the standard linear model of viscoelasticity. 
The theoretical analysis is presented in three categories: (i) tissue creep controlled, (ii) mass 
transfer controlled and (iii) the intermediate case where both mechanisms are of comparable 
importance. A close agreement is obtained between the theoretical predictions and the existing 
experimental data for subcutaneous inert gas pockets in air breathing rats. 

INTRODUCTION 

EVOLUTION of gas bubbles in tissues and other 
parts of the human body may occur on rapid 
decompression. It has been found that forma- 
tion of bubbles normally occurs in great 
abundance in the fatty tissues (Harvey et al., 
1944a, 1944b; Harvey, 1945). The survey of 
the literature pertinent to the evolution of 
bubbles on decompression is available (Chan 
and Yang, 1969). The gas bubbles evolved 
following rapid decompression are mostly 
nitrogen or air (the mixture of nitrogen and 
oxygen) that has been dissolved in the body 
under high pressure. However, the formation 
of carbon dioxide bubbles has been found in 
tissues after muscular activity following de- 
compression. It is reported that breathing 
oxygen helps the removal of nitrogen bubbles 
(to reduce the incidence of ‘bends’ and 
‘chokes’). 

Sometimes, gas bubbles are purposely in- 
jected into subcutaneous tissues, liver and 
perirenal fat. Quantitative data obtained with 
the subcutaneous gas pocket, an in uiuo 
tonometry system, provide basic information 
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concerning tissue-capillary gas exchange: 
specifically for the determinations of - (i) 

permeation of the dissolved gases in the 
tissues and their interaction with hemoglobin 
(Dale and Rahn, 1952; Rahn and Canfield, 
1955; Van Liew, 1955; Piiper, Canfield and 
Rahn, 1962; Piiper, Hamphrey and Rahn, 
1962; Tobin et al., 1962; Van Liew, 1962b; 
Piiper, 1963 ; Tucker and Tenney, 1966; Van 
Liew and Passke, 1967; Van Liew, 1968a, b); 
(ii) tension of the dissolved gases in the 
tissues in the constant composition state 
(Van Liew, 1962a, b, c, 1968b); and (iii) the 
influx and efflux of inert gases across the 
surface of a decomposition bubble (Van 
Liew et al., 1965, 1968/1969; Van Liew and 
Hlastala, 1969). 

The experimental study of tissue-capillary 
gas exchange using a subcutaneous gas pocket 
in rats is generally performed in two stages: 
preparatory and test stages (for example, Van 
Liew, 1955; Piiper et al., 1962; Tucker and 
Tenney, 1966; Van Liew, 1968a). In the 
preparatory stage, air-filled gas pockets (of 
20-30 ml) were maintained for several days 
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(from S-30 days depending on investigators) 
during which time the local tissue reaction 
subsides. By the fifth day, the measured 

PO, and PcoZ of pocket gases had reached 
reasonably constant values, indicating that 
blood perfusion to the pocket had stabilized. 
For the following 3 weeks such pockets are 
in a state of constant composition of 0, and 
CO, and were satisfactory for use to study the 
disappearance of test gases. 

pressure gradient of the other. If the foreign 
inert gas such as SF, is nearly insoluble, the 
pocket volume will increase substantially over 
initial volume before it begins to decrease 
toward zero. On the other hand, a pocket of 
highly soluble inert gas such as N20 will 
decrease rapidly, even before more than a 
small quantity of nitrogen can enter. 

In the test stage, 20 ml of test gas were in- 
jected into the pocket after evacuation of the 
preparatory air. In about 2 hr after the intro- 
duction of the foreign gas, the O2 and COZ 
composition of the pocket will be constant 
and remain so until all the gas has been ab- 
sorbed (Van Liew, 1955). The subsequent 
time course of the volume of this pocket was 
then determined by extracting the gas from 
the pocket into a calibrated syringe, noting the 
volume and time, and then re-injecting the 
gas from the syringe back into the pocket. 
The subcutaneous gas pockets containing the 
foreign gas- air, inert gases such as argon, 
helium, nitrogen, hydrogen, cyclopropane 
(C,H,), nitrous oxide (N,O) and sulfur hexa- 
fluoride (SF,), or reacting gases such as 
oxygen, carbon monoxide and carbon dioxide 
-were tested in air-breathing, oxygen- 
breathing or dead rats. 

The dynamics of a gas cavity in a tissue- 
capillary system may be considered as a 
problem of determining the distribution of 
the dissolved-gas tension under the action 
of the difference in pressure in the tissue at the 
interface and at a point a large distance from; 
the gas cavity. The gas tension in the. tissue 
at the interface depends on the pressure 
exerted by the gas in the cavity. Any external 
force variation may be imposed on the tissue 
through muscular activity. However, it will 
induce a creep process in the system which, in 
turn, affects the gas pressure of the cavity and 
consequently its difference with the gas ten- 
sion in the tissue at a large distance from the 
cavity. It is the pressure difference which will 
induce the migration of the dissolved gas to 
or from the cavity. Hence, there is a coupling 
between the equation of motion (or stress 
equilibrium equation) and the equation for 
the pressure (or concentration) field in the 
tissue-capillary system. 

Depending on the physical characteristics Piiper et al. (1962) have analyzed the gas 
of the foreign gas and the breathing environ- exchange between a subcutaneous gas pocket 
ment, the migration of a single gas or two and the tissue-capillary system for the single- 
gases may occur across the packet-tissue gas diffusion case by treating the tissue- 
interface. The single-gas case is characterized capillary system as a lumped-parameter unit. 
by the flux of any gas in an oxygen-breathing The work was extended to the two-gas diffu- 
animal, or of nitrogen in an air-breathing sion case by Tucker and Tenney (1966). 
animal. If instead of nitrogen, some other Van Liew (1968a) has given a theoretical 
gas (inert or reacting gas including air) is analysis for both the single- and two-gas 
injected into the pocket, and if the animal diffusion cases by treating the tissue-capillary 
breathes atmospheric air, the pocket will system as a distributed-parameter unit. The 
soon contain two gases, nitrogen from the expression predicting the volume history of 
blood and the foreign gas injected. This the gas pocket is obtained by solving the 
corresponds to the two-gas case in which the steady one-dimensional pressure distribution 
fluxes of both gases must be reckoned with. in the tissue-capillary system (which is 
These two fluxes are interdependent, that is, treated as an infinite slab) followed by 
the efllux of either one alters the driving equating the rate of gas exit from the packet 
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to the rate of gas uptake in the tissue- 
capillary system. Both the rate of blood per- 
fusion in the tissue in living animals and that 
of metabolism or oxygen consumption in the 
tissue in dead animals are considered constant. 

As shown by Piiper er al. (1962), Tucker 
and Tenney (1966) and Van Liew (1968), 
total gas pressure in subcutaneous gas pockets 
is essentially atmospheric and 2 hr after the 
introduction, the gas composition of the 
pocket will be constant and remain so until 
all the gas has been absorbed. Thus, a con- 
stant total pressure difference for any par- 
ticular foreign gas is established throughout 
the course of the gas absorption. The creep 
effect of the tissue-capillary environment 
may thus be neglected and the volume history 
of the gas pocket is controlled by the rate of 
mass transfer between the tissue-capillary 
system and the pocket wall. 

On the other hand, conditions may be such 
that mass transfer effects on the volume 
change of a gas cavity are minor compared 
with the creep process of the tissue when an 
external force variation is impressed on the 
system. Muscular activity is an example. 
Since mass transfer across the pocket wall due 
to the total pressure difference is insignificant, 
the gas or gas mixture confined in the pocket 
may be viewed to undergo a reversible poly- 
tropic process. However, no study on the 
creep controlling case has been reported as 
far as the authors are aware. 

In the present paper, a mathematical model 
is developed which describes the dynamic 
behavior of a gas bubble or pocket situated in 
homogeneous and isotropic tissues. The 
dynamic equation of a gas cavity in the tissue 
under a creep process is derived using the 
standard linear model of viscoelasticity to 
describe the stress-strain relation. For the 
case where mass transfer from the pocket to 
the tissue-capillary system is the controlling 
mechanism, the bubble dynamic equations 
are derived for both the inert and reacting 
gases including the effects of diffusion, per- 
fusion and thermodynamic behavior of the 

cavity gases. The analysis is then extended to 
the general case in which the contributions 
of both mass transfer and creep are of com- 
parable importance. Theoretical results are 
compared with the experimental data for 
subcutaneous inert gas pockets in air-breathing 
animals (Tucker and Tenney, 1966). 

ANALYSIS 

Consider a spherical gas cavity of radius R, 
(mean radius if non-spherical) situated in a 
homogeneous and isotropic tissue-capillary 
system with the dissolved gas of uniform 
tension P,. Initially, the total gas pressure in 
the cavity is P,,, which is in equilibrium with 
the surface tension 20-/R, and the uniform 
shear stress in the system T,(O). An external 
load T,(r) is then impressed on the system at 
a large distance from the cavity. At any time 
r > 0, the gas pressure in the cavity is 9, and 
the dissolved-gas tension and the shear strain 
in the tissue-capillary system are P and err, 
respectively. Due to the variations in the 
pressure difference (P,- P,) and strain rate 
&., the cavity may grow or shrink depending 
on the nature of the gas, of the tissue-capillary 
system, and of the stress applied on the cavity 
wall. The growth or collapse of the gas cavity 
is accompanied by the migration of the gas 
across the cavity wall. It is postulated that 
both the air cavity and the tissue-capillary 
system remain at the same temperature T until 
all the gas has been absorbed. 

1. Bubble Dynamics caused by the Creep 
of the Tissue only 

For analytical convenience, a spherical 
polar coordinate system (r, 8,+) is used. Its 
origin is fixed at the center of the gas bubble 
whose radius is R at any time r > 0. If the 
tissue is homogeneous and isotropic, the 
distribution of the stresses around the bubble 
will be spherically symmetrical. Then, the 
non-diagonal components of the stress tensor 
are equal to zero, r,., = - 2ree = - 27*+ and the 
effective stress is ~~~-7~~. The stress-strain 
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relation for standard linear model reads 

(l+m)(T?T- %9) = ~(l+pD>%-, (1) 

where h, I.) and p are constants determined by 
the properties of the tissue, the temperature 
etc. This model is used in reference to Frankel 
and Burstein (1970). However, the generalized 
Maxwell or Kelvin model can also be used 
without much complexity in the subsequent 
analysis, see Yang and Liang (1971). The 
creep rate is defined as 

Err . = av,.lar, (2) 
where v, is the radial component of the de- 
formation rate tensor $;. The continuity 
equation is 

div~=?!k_/_&L=O 
ar r ’ (3) 

The stresses TV,. and 700 must satisfy the 
equilibrium equation 

with boundary conditions 

(4) 

7T1. (R, t) = -P,+ 2uIR, 

T,, (? t) = Trn (t), 
(5) 

where PSI is the gas pressure inside the bubble 
and u is the coefficient of surface tension. 

The integration of equation (3) from r = R 
to r = r yields 

v, = (Rlr)21?, (6) 

where the superscript - denotes the time 
derivative. Following the substitution of 
equation (6), equation (2) is integrated with 
respect to time from t = 0 to t = t. It gives 

E,, = $ (Ro3 - R3) + ~rro, (7) 

where l rr0 is the initial local strain. Taking 

equations (1) and (7) into account, equation 
(4) is solved subject to the boundary condi- 
tions (5). One then gets the dynamic equation 
of a gas bubble in tissues 

=s (R3-Ro3-t-3pR2k) 

subject to the initial conditions 

(W 

R(O) =R,,k(O) =o,Tm(o) =-P,.+g 
0 

i,(O) = 0, Pg(0) = P,,, P,(O) = 0, (9) 

where AT,-~~ =-T~,(R~,O)+T~(~,O) and 
7m is identical with Trr (m, t). If the gas in the 
cavity undergoes a reversible polytropic pro- 
cess the variations of its pressure and volume 
can be related as 

PO(t) = P,o (RIR,)3Y. (10) 

Here y is the polytropic exponent and takes 
the value of unity for isothermal process. The 
combination of equations @a) and ( 10) yields 

=$$ (R3-Ro3+3pR21i). @b) 

2. Bubble Dynamics caused by Mass 
Transfer only 

In the diffusion of a gas out of decompres- 
sion bubbles or artificially injected gas 
pockets, the gas diffusing through living 
tissues meets blood capillaries at various 
depths. Either the solution of the gas in blood 
or its chemical reaction with blood elements 
has created multiple small sinks for the gas 
within the diffusion barrier. Thus, the dis- 
solved gas concentration decreases with 
distance from the gas-tissue interface because 
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of two factors: (i) blood leaving capillaries 
removes the gas from the system-mass 
consumption and (ii) divergence of radii of 
the sphere of tissue around the bubble or 
pocket - mass diffusion. The difference 
between the rates of mass diffusion and 
mass consumption should be equal to the 
time-rate change in the amount of locally 
dissolved gas according to the principle of 
mass conservation. 

a. Inert gases 

For inert gases 
helium, hydrogen, 

such as nitrogen, argon, 
nitrous oxide and sulfur 

hexafluoride which are not metabolized and 
which do not enter into chemical reaction 
with blood elements, disappearance of gas 
from the diffusion system will be by solution 
in blood. The rate of disappearance is directly 
proportional to the difference between the 
dissolved gas pressure P and that in the 
arterial blood P, (Van Liew, 1968). Thus, 
the diffusion equation reads 

aP 9a 
at=-- r2 dr ( > zap -A(P-P,), (11) r ar 

where 3 is the mass diffusion coefficient of 
the dissolved gas in the tissue, A = a&Q/at, 
ffb is the gas solubility in blood, (Y~ the gas 
solubility in tissue, k the coefficient of end 
capillary saturation, and Q is the rate of actual 
blood perfusion. kQ is the effective blood per- 
fusion. The appropriate initial and boundary 
conditions are 

P(r,O) = P, 

P(R, t) = P,, P(m, t) = Pm. (12) 

Now, a solution of the diffusion problem 
which is valid only for a stationary bubble 
boundary is to be obtained as a reasonable 
physical approximation for a slowly moving 
interface between a gas phase and a solid 
mass of living tissue. The accuracy of the 
approximation has been found to be quite 
good for the diffusion of a gas bubble in 
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liquid-gas solutions (Epstein and Plesset, 
1950; Yang, 1971). 

Through the transformation of 

u=r(P-P,) and[=r-R (13) 

equation (11) becomes 

(14) 

with the initial and boundary conditions 

u(&O) = 0 

u(O,t) = R(PB-Pm). (15) 

The problem now is reduced to a familiar one 
in heat conduction, the solution of which is 
available in Carslaw and Jaeger (1959). 

u(t, t) = R(f’,-PP,) exp (--At) 

X erfc*+ 1 -exp (--At) 

- 
I 

‘Aexp (-At') 

0 

X I 5ex (- ‘2/47d) 
o p(T95~)1,2 Wdt' . (16) 1 

The quantity of interest is the pressure gradient 
at r = R, which is found to be 

WJlarL= (90-PdIl(t), (17a) 

where 

z 
1 

(t) = !_+ew (---At) 
R (dSt)“* 

+ (A/9)1’2erf(At)‘/2. 

(18a) 
At large times, I, (t) approaches the value 

I,(t) = f+ ($) 
l/2 

. 

b. Reacting gases 

The reacting gases include oxygen, carbon 
monoxide and carbon dioxide. The di!Ii.rsion 
and perfusion of carbon dioxide will not be 
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considered here due to complexity resulting 
from chemical combination with blood 
elements, blood perfusion or metabolism. 
Consideration is given only to the follow- 
ing three cases: (i) oxygen in dead animal- 
the gas ditfuses out and disappears due to 
utilization by the tissue; (ii) carbon monoxide 
-the gas diffises out and disappears by com- 
bining with hemoglobin in the blood perfusing 
in the tissue; and (iii) oxygen in living animal - 
the gas disappears both by metabolism and by 
carriage in blood. The diffusion equation 
applicable to all these three cases may be 
expressed as 

(19) 

where B = q/at for case (i) and B = QAClc+, 
for cases (ii) and (iii). In equation (19), q is 
the rate of oxygen consumption in the tissue 
and AC is the change of the dissolved gas 
content in blood. The appropriate initial 
and boundary conditions are identical with 
equation (12), in which P, = 0 in cases (i) 
and (ii) and P, = 40 mm Hg in case (iii). 

Equation (19) is solved in a manner exactly 
analogous to the previous section. One finds 

u(&t) =R(P,--PP,) 

x 
K 

1 +B*r+s) e&h 

-B*[(--&)“‘exp(--&)-B*t] 

(20) 

in which 

B* = B/(P,--P,). (21) 

Hence the pressure gradient at r = R is 

aP ( > ar F=R = (Pm--PB)z2(f), (17b) 

where 

1 1 
/z(t) = E+ (Tc3t)‘/2 

+B*t 
[ 

1 2 
E+ (~oJt)l/2 * 1 

At large times Zz approaches 
(18b) 

Z*(t) = (1 -I- B*t)IR. 

If there is no externally applied force on the 
tissue and if the total pressure inside the gas 
bubble does not vary appreciably over a period 
of time, mass transfer is the mechanism con- 
trolling the dynamic behavior of the bubble. 
Problems of this kind can be further classified 
into two categories, i.e. (i) single-gas diffusion, 
and (ii) multi-gas diffusion. 

(i) Single-gas diffusion case. For a pocket of 
nitrogen, in an air-breathing animal or for 
any inert gas in an animal breathing oxygen, 
the volume change of the pocket is deter- 
mined by single gas diffusion. If the gas inside 
the pocket behaves like an ideal gas, its 
equation of state is 

4?rR3P,/3 = i&T, (22) 

where R is the gas constant. For small varia- 
tion in P,, differentiation of the above equation 
with respect to time yields 

lilZ2.T 
R = 47rR2P,’ (23) 

The rate of mass diffusion m can be related 
to the pressure gradient in tissue at the bubble 
surface by Fick’s Law by the expression 

riz = 4mR29H (aP/ar) ,+ (24) 

where H = at/p and p is the gas density in the 
pocket. By substituting equation (24) into 
equation (23), one gets the bubble dynamic 
equation for the single-gas diffusion case. 

P,k = LSHI?T (aP/ar),=R (254 

or 

P$i=SHRT(P,-Pg)Zi (i= 1,2) 

(25b) 
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subject to the initial condition R (0) = R,. 
The volume history of the pocket may be 
obtained by the numerical integration of 
equations (18) and (25b). 

(ii) Multi-gas diffusion case. If instead of 
nitrogen, some inert gas such as argon, 
hydrogen, helium, sulfur hexalloride, cyclo- 
propane or nitrous oxide is initially injected 
into the pocket, and if the animal breathes 
normal atmospheric air, two gases will cross 
the pocket wall, nitrogen from the blood and 
the foreign inert gas injected. In that case, 
the relative rate of movement of the two gases 
determines the volume history of the gas 
pocket. If each gas behaves ideally in the 
pocket, then each gas component satisfies 
the equation of state 

(26) 

where the subscript j denotes the j-th gas 
component. Since Dalton’s Law requires that 

P~=~P~j=&Cm,Rj (27) 

therefore, the rate of mass diffusion mj can 
be expressed as 

riz, = 4nR29jHj (aPj/ar) r=R. (28) 

By differentiating equation (27) with respect 
to time followed by the elimination of & from 
the resulting expression and equation (28), 
one gets the bubble dynamic equation for the 
multi-gas diffusion case. 

or 

POA = T z LSjHjZ?j (aPj/ar) r=R (29a) 

P& = T x 9jHjRj(Pm_Pg)jZi. (29b) 

It should be noted that since dii’htsion of 
nitrogen and the inert gas is taking place 
simultaneously, the partial pressure of each 
gas Pgj in equation (29b) varies with time. 
Pgj can be determined, however, by integrating 
riz in equation (28) with respect to time from 
t = 0 to t = t and by substituting m, thus 
obtained into eauation (28). The exuression is 

founded to be 

where rnoj denotes the initial mass of the j-th 
gas in the bubble. Numerical result can be 
obtained by solving equations (18) and (29) 
and (30) simultaneously with the use of a 
digital computer. 

3. Bubble Dynamics caused by both Creep 
and Mass Transfer 

This is the general case in which both the 
creep and mass transfer processes in the 
tissue-capillary system affect the growth and 
shrinkage of the gas cavity. The volume 
history of the bubble can be obtained by 
simultaneously solving equations (8a), (25b) 
or (29b) subject to the initial conditions (9) 
using a computing machine. 

COMPARISON OF THEORETICAL RESULTS WITH 
EXPERIMENTAL DATA FOR MASS TRANSFER 

CONTROLLING CASE 

Theoretical results were obtained for the 
mass transfer controlling case-the inert gas 
exchange in subcutaneous gas pockets of air- 
breathing animals using the physical and 
physiological data listed in Table 1 (Bartels 
and Opitz, 1958; Van Liew, 1968a). Q is 
0.33 mm of blood/min per cm3 of tissue. The 
value of k, the coefficient of end-capillary 

Table 1. Physical and physiological properties used in 
calculations ((Ye = (Ye = CX) 

Gas 

105, (Y 
(ml. ml-’ . 
mm Hg-‘) 

Diflksivity x Effective 
solubility x 108, perfusion 
a (cm* . mix’ . rate, kQ 

mm Hg-*) (min-‘) 

N2 1.84 1xlO 0.26 
A 4.1 1.87 0.223 
HZ 2.12 1.94 0.33 
He l-25 144 0.33 
SF, O-606 0.145 0.13 
N,O 68.0 29.6 0.214 
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0 2 4 6 8 IO 12 14 16 

DAYS 

Fig. 1. Time course of nitrogen gas in a subcutaneous pocket of an air- 
breathing rat. 

I I I I I I I 
0 2 4 6 8 IO I2 I4 

DAYS 

Fig. 2. Time course of sulfur hexafluoride gas in a subcutaneous 
pocket of an air-breathing rat. 

3 

saturation, is taken from Fig. 12 of Van Liew 
(1968a). The gas solubility in blood CQ is 
equal to that in tissue cyI. These results were 
presented in Figs. l-6 for comparison with 
the experimental data of Tucker and Tenney 
(1966). The ordinate represents the rela- 
tive volume (the ratio of the instantaneous 
volume V to the initial volume V,). The solid 

lines are theoretical curves obtained by plot- 
ting equation (25) in the case of nitrogen gas 
or (29) in the cases of other inert gases. The 
experimental points are indicated as solid 
dots. In the calculations the -total pressure 
inside the gas pocket has been assumed to 
remain at one atmosphere. The contribution 
of fluxes of 02, CO, and H,O has been 
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Fig. 3. Time course of helium gas in a subcutaneous pocket of an 
air-breathing rat. 

I I I I 
0 2 4 6 6 IO 12 14 

DAYS 

Fig. 4. Time course of argon gas in a subcutaneous pocket of an 
air-breathing rat. 

neglected these three only 
occupy per cent the total 
(Tucker and 1966). Several 
inert gas are compared the figures: 

nitrogen gas exemplifies the 
gas diffusion SF6 gas nearly insoluble 

represents the 
exchange process. the other N,O 
gas highly soluble represents the 

exchange process. 
exchange process argon, hydrogen 
helium is diision and flow 
determined. 

it 

It is seen in the figures that the agreement 
between theory and experiment is very satis- 
factory for all cases. The validity of the 
mathematical model which describes the 
mechanics of unsteady gas exchange between 
a subcutaneous gas pocket and the tissue- 
capillary system is thus confirmed. 

CONCLUDING REMARKS 

The theoretical analysis presented herein is 
based on a logical classification of dissolution 
of subcutaneous gas pockets or bubbles, 
according to its mechanism, into three 

BM Vol. 5 No. 4-B 
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I I I I I I I 1 
0 2 4 6 6 IO 12 14 16 

DAYS 

Fig. 5. Time course of hydrogen gas in a subcutaneous pocket of 
an air-breathing rat. 

MINUTES 

Fig. 6. Time course of nitrous oxide gas in a subcutaneous pocket of 
an air-breathing rat (from top OL X 1oJ = 68.1, 68.1, 120; (u x 10 = 

4.35,4.35; 4.35; kQ = 0*214,0*50,0.214). 

categories: (i) tissue creep controlled, (ii) 
mass transfer controlled and (iii) the inter- 
mediate case where both effects are of impor- 
tance. The special cases of (ii) with the neglect 
of the unsteady diffusion term and thermo- 
dynamic effects of the pocket gas reduce to 
the work of Van Liew (1968b). 

The good agreement between the theoretical 
results of case (ii) and the experimental data 
of Tucker and Tenney (1966) indicates the 

general validity of the mathematical model 
which accounts reasonably well for both 
physical and physiological factors affecting 
gas exchange between the subcutaneous gas 
pocket and the tissue-capillary system. 

The theory may be applied to determine the 
influx and efflux of gases across the surface 
of a subcutaneous pocket or a decomposition 
bubble, the tension of the dissolved gases in 
the tissues in both the unsteady and constant 
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composition states, and the permeation of the 
dissolved gases in the tissues and their inter- 
action with hemoglobin. 
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AC 
D 
9 
H 
Ii 
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; 
m 

P 

P” 

Q 
4 
r 

NOMENCLATURE 
constant defined as cxbkQ/al 
constant defined as q/at 
change of dissolved gas content in blood 
differential operator d/dr 
diffusion coefficient in tissue-capillary system 
W/P 
function as defined by equation ( 18) 
integer 
integer 
coefficient of end-capillary saturation 
mass of gas inside bubble; m,,, initial value; m,, of 
j-th component gas; moj, initial value of mj 
tension (pressure) of dissolved gas in tissue- 
capillary system; P,, in capillary blood 
gas pressure inside bubble; P,,, initial value; P,, of 
j-th component gas 
rate of actual blood perfusion per unit tissue volume 
rate of oxygen consumption per unit tissue volume 
radial distance in spherical coordinates as measured 
from the center of bubble or pocket 
mean radius ofbubble or pocket; R,, initial value 
gas constant; R,, of&th component gas 
temperature of bubble and tissue-capillary system 
time 
r(P-P,) 
radial component of the deformation rate tensor; 
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Greek letters 
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Superscript 
solubility of gas; t%b, in blood; ot, in tissue 
strain; +, initial value; 8, , creep rate 
rheologtcal constant of tissue-capillary system 
angle in snherical coordinates 

1 timd derivative 

Subscripts 
rheologi&l constant of tissue-capillary system 
rheological constant of tissue-capillary system 
density of gas inside bubble 
coefficient of surface tension 

b 
g 
i 

shear stress; rrrr 700, and T++, normal components in j 
the r, 8, and 4 direction, respectively; T,, = r,,(m, t) 
at a large distance from bubble; rwO, initial value of ; 
75-r m 
angle in spherical coordinates 

in~capillary blood 
gas inside bubble or pocket 
integer; 1, for single-gas diffusion case; 2, for 
multi-gas diffusion case 
.j;ti-t;;u;ponent gas inside bubble or pocket 

at zero time or initial value 
at a large distance !?om bubble 


