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Abstract. The equations of facilitated diffusion were solved numerically for steady state diffusion of
oxygen across membranes of hemoglobin and myoglobin. An interfacial resistance was included in the
boundary conditions and the dependence of the solutions on membrane thickness and interfacial con-
ductance was studied. The data of Wittenberg on millipore membranes was fitted adequately if a tortuosity
factor for the millipore membranes was taken into account. Comparison of the solutions with Wittenberg's
data shows that the interfacial conductances must be large, 16~ % mole/cm?-sec-mm Hg or larger. More
accurate estimates of interfacial conductance could be obtained from data on thin membranes, 1-5 g,
but such data are not available. It was found that the concentration profiles are not independent of thickness
and that the facilitation decreases as the membrane thickness decreases. The latter occurs even for zero
interfacial resistance and hence cannot be attributed to a back pressure effect. The effect is present because
the dissociation reaction at the low P, boundary increasingly becomes the limiting factor in the establish-
ment of the steady state as L decreases.

Facilitated diffusion Myoglobin
Hemoglobin Oxygen
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Much work has been done recently on the solution of the equations for the facilitated
diffusion of oxygen through membranes containing solutions of hemoglobin and
myoglobin. Kreuzer (1970) and Wittenberg (1970) have reviewed this field in detail.
Murray (1971) has obtained solutions using singular perturbation methods (Murray,
1968a,b). However, he retained only the zero’th order solution which implies local
equilibrium throughout the membrane. As a consequence he can satisfy only two
boundary conditions since this solution satisfies only the reduced set of differential
equations. For boundary conditions Murray assumes that the dissolved oxygen at
the high P, (oxygen partial pressure) boundary is in equilibrium with the adjacent
gas phase and then chooses the value of the fraction of oxygenated protein on the low
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P,, boundary so as to yield the measured facilitated oxygen flux. Since measurements
of the facilitated component of the oxygen flux through hemoglobin solutions (Witten-
berg, 1966) show an essentially inverse relationship with membrane thickness, Witten-
berg (1970) with the aid of Murray’s analysis concluded that the profiles of oxygen and
oxyhemoglobin are independent of membrane thickness down to thicknesses of 1 u
when plotted in terms of dimensionless variables. However, since the singular pertur-
bation technique is applicable only to hemoglobin solutions which are thicker than
roughly 10 u (Murray, 1971) and Murray’s boundary conditions depend crucially on
facilitated flux measurements, which are not available for very thin membranes, one
must view Wittenberg’s conclusion as being speculative.

Kreuzer and Hoofd (1970) have also found approximate solutions for the equations
of facilitated diffusion. Although their derivation is not presented in the language of
singular perturbation theory but is based on physical reasoning, their results can be
derived in this context. An important difference between the method of Kreuzer and
Hoofd and that of Murray is the treatment of the boundary layers in the membrane.
Whereas Murray (1971) assumes local equilibrium exists all the way to the edges of
the membrane, Kreuzer and Hoofd find separate approximate solutions for a thin
boundary layer at each of the surfaces of the membrane. By this approach one finds
lowest order corrections to the zero’th order perturbation solution. More important-
ly the Kreuzer and Hoofd method requires four boundary conditions for the complete
solution since the order of the set of differential equations has not been reduced, al-
though the condition that neither hemoglobin nor myoglobin can flow across the
boundaries of the membrane is implicit in the linearized approximations for the
boundary layer solution. For their calculations they set the oxygenated protein flux
equal to zero at both boundaries and assume equilibrium of the oxygen between the
gas and liquid phases at both edges of the membrane as boundary conditions. Since
the boundary layer corrections vary inversely with membrane thickness for thick
membranes, the Kreuzer-Hoofd solution approaches the same functional form as
Murray’s for thick membranes and differs from it only in the choice of a boundary
value at the low Py, side of the membrane. As with Murray’s, their results are appli-
cable to hemoglobin membranes that are greater than approximately 10 pu in thick-
ness.

In a paper by Kutchai et al. (1970) the non-linear differential equations were solved
numerically using the method of quasilinearization (Jacquez, 1970). The boundary
conditions used were the same type as those used by Kreuzer and Hoofd (1970)
although the actual values differed. It was found that if the curves of the oxygen and
oxyhemoglobin concentrations were plotted in terms of dimensionless variables that
the concentration profiles changed with membrane thickness. However, Wittenberg
(1970) criticized this work for the parameter values taken for the reaction rate con-
stants and for use of the assumption of equilibrium of the oxygen between gas and
liquid phases at the low P, boundary. The equilibrium assumption seemed reasona-
ble because data (Wittenber, 1966) on the dependence of the oxygen flux on membrane
thickness suggested that the resistance of the boundaries to the oxygen flux was
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negligible for membranes greater than 64 u in thickness. However, even a small
interfacial resistance to oxygen flow could have a significant effect on the low P,
boundary. In this way an interfacial resistance might add credence to Murray’s local
equilibrium solution (Murray, 1971) which implies a resistance at the low Pg,
boundary.

For these reasons it seemed important to us to solve the equations of facilitated
diffusion with the method of quasilinearization using improved parameters and
boundary conditions which incorporate the possibility of interfacial resistance. In
this paper we report the results of this study.

Theory and methods

THE EQUATIONS OF STEADY STATE FACILITATED DIFFUSION

Following the notation of Kutchai, Jacquez and Mather (1970), let w be the concen-
tration of oxygen, let u be the concentration of free carrier (Hb or Mb) and let v be
concentration of carrier-O, complex. The steady state equations are given by egs. (1).

d*w
Dwd—xz‘ == kl(b—V)kazv
(1 2
dv
I)v E)‘(T e —kl(b--V)W-i-kZV .

In egs. (1) D,, and D, are the diffusion coefficients for w and v respectively; u and v
are assumed to have the same diffusion coefficients, consequently the total carrier
concentration is constant throughout the membrane, u+v=>b. The constants k,
and k, are the rate constants of the reaction (2).

ky
2 w+u = v.

k2
Reaction (2) and thus egs. (1) are exact for myoglobin but are approximations for
hemoglobin. However this approximation has been used in all previous studies and
the rationale for its use and its drawbacks have been discussed (Wittenberg, 1970;
Kutchai et al., 1970).

THE BOUNDARY CONDITIONS

The membrane is of thickness L, and we assume the partial pressure of oxygen is
higher on the side for which x=0. Since the protein molecules cannot cross the inter-
faces, the flux of v at the boundaries must be zero. Hence one set of boundary con-
ditions is given by (3).

dv dv

axz():a'; =0

x=L

()

Let P(0) and P(L) be the partial pressures of O, just inside the membrane at the
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boundaries of the membrane and P, and P, be the partial pressures in the gas phases

just outside the membrane. In the studies of Kutchai et al. (1970) it was assumed that
the interface presents no resistance to the flux of O, so that P(0)= P,, P(L)= P,
and hence w(0) = a,Po, w(L) = o, P, where o, is the solubility coefficient of the mem-
brane solution for oxygen. As Wittenberg (1970) points out, this is probably a good
assumption for the high Py, boundary but may be poor at the low Py, side. The con-
centration of oxyhemoglobin is quite sensitive to the partial pressure of oxygen at

low partial pressures so that the shape of its concentration curve at the low O, side

of the membrane might change appreciably with small changes in P{L). Thus even

small values of interfacial resistance might have significant effects on the concentra-
tion profiles at the low oxygen side of the membrane.

In general the boundary conditions should include the possibility of a resistance to
the O, flux at the interfaces (Davies and Rideal, 1963). Such a resistance could be
given by a monolayer of lipid or protein, a small unstirred boundary layer of gasora
combination of these. It should be noted that unless special precautions are taken it
is difficult to prepare solutions which do not have some contaminating lipids in the
interface. Furthermore hemoglobin itself forms monolayers at air-water interfaces
(Guastalla, 1939). Assuming that the flux at the boundaries of the membrane is
proportional to a drop in partial pressure across the interfaces we can account for a
resistance at the interfaces with the boundary conditions given by egs. (4).

Jo=G[P,~P(0)]
J.=G[P(L)-P.].

/E\
N
e’

Note that G is a conductance and has units of flux/mm Hg. For given J,, if G is very
large, Py~ P(0) and P(L) >~ P,. However, J, is not known and in fact should come out
of the solution of the problem. Addition of egs. (1) and integration gives relation (5)
for the steady state total flux at any distance, x, in the membrane.

dw dv

(5) J;= D, — - D, 1.

Itis a property of the steady state that J, is independent of x[see Fatt and LaForce
(1961)]. If we substitute eq. (5), evaluated at the boundaries into egs. (4) and set
P(0) = w(0)/, and P(L)=w(L)/a,, we obtain eqgs. (6) and (7) which do not contain
the unknown flux, J,.

w(0) D, dw|

(6) o TG & 0 =Py
w(lL) D, dw)

¢ “;:*“6“5;\,_—"»

Boundary conditions of this type are generally known as mixed boundary conditions.
Equations (3), (6) and (7) give exact boundary conditions and in theory egs. (1) are
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solvable if we know the parametersk,, k,, o, D, D,, G and b and the partial pressures
in the gas phases, P, and P,.

Although egs. (6) and (7) provide us with exact boundary conditions there is still
some question in practice about the true value of P;. On the high P, side there is no
problem. But in experiments the low P, side is usually flushed with O,-free gas and
because a small amount of O, is constantly entering this gas phase from the mem-
brane P, cannot be zero. For example, using the data in fig. 1 of Wittenberg’s paper
{Wittenberg, 1966) one finds that for a 150 4 membrane with P, =200 mm Hg the
oxygen flux is 3.5 ul/min. A stream of helium flowing at the rate of 60 ml/min was used
to flush the chamber on the low oxygen side of the membrane. Since the total pressure
was maintained a 1 atm, the assumption of uniform mixing of the oxygen flux with the
flushing stream would imply that P, was0.044 mm Hg. Fora 25 y membrane exposed
to the same high side Py, the oxygen flux would be about 6 fold greater than for the
150 ¢ membrane. Thus for the same flushing rate P, would be about 0.25 mm Hg.
However, in Wittenberg’s experiments the helium stream was directed at the surface
of the membrane and we are not certain that the uniform mixing assumption is valid.
Lacking more information we have arbitrarily set P, =0.05 mm Hg for all of our
computations. In the Appendix it is demonstrated that small changes in P; will make
negligible difference in the results if the surface conductance, G, is 10~ or less. Ac-
tually, if provision is made to obtain uniform mixing in the chamber on the low Py,
side, the dependence of P, on the flux, J,, and the flushing rate can be incorporated
into the boundary conditions. Let V be the volume flow rate at sTP in mi/sec of the
flushing gas, let J, be the O, flux in moles/cm?/sec, and let A be the surface area of the
membrane in cm?. Then, if we assume the flushing gas is oxygen free, the flushing rate
is much greater than the oxygen flux and the total pressure is 760 mm Hg, P, is given

by eq. (8).

(8) P, = %Jt (22.4 x 10%)(760)mm Hg.
Substituting for P; in the second of egs. (4) gives eq. (9) to replace eq. (7).
a[1+17x 10°AG/V] = G dx|

We have used egs. (6) and (7) but eq. (9) could be used instead of (7) if provision is
made to obtain uniform, rapid mixing of gases in the chamber on the low oxygen side
of the membrane.

INTERFACIAL O, CONDUCTIVITY

We must decide what numerical values to use for G. Wittenberg (1966) found that the
flux of N, and the facilitated flux of O, across millipore filters filled with hemoglobin
solution was inversely proportional to thickness for filters from 64 u to 300 g thick.
The proportionality may extend down to 25 u thickness as well. If the O, flux resis-
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tance of the interface (1/G) is taken to be constant, analogy with electrical resistances
shows that the effect of the interfaces should become greater with decreasing layer
thickness. The proportionality observed by Wittenberg shows that the O, pressure
drops across the interfaces are negligible at least in layers thicker than 64 u and
possibly in layers 25 u and thicker. In layers thinner than this, the interfacial resistance
may play an important role.

To obtain a rough estimate of a lower bound for G consider the following. If we
treat the interface as though it were a layer of water of thickness ¢, the O, flux across
the interface can be written,

(10) Jo=GAP = P-EES- AP

so that G=D,a/c. The precision of Wittenberg’s results seems to rule out the
effective value of ¢ being more than 10 u. Taking D, = 1.7 x 10~ 3 em?/sec, ;= 1.5 x
10~° mole/(ml-mm Hg), and ¢=10"3 cm we compute G=2.5x 107 !! mole/(cm?-
sec-mm Hg) as a lower limit for G. It might be noted wat Murray’s solutions imply a
value of G in the range of 10~ 1° to 10~ %, We have solved the problem for G=10""1,
107191072, 10~ ® and for G = oo for various values of L. We know of no experimental-
ly determined values for G for the air-water interface.

THE NORMALIZED EQUATIONS

As in our previous paper (Kutchai, Jacquez and Mather, 1970), we normalize egs.
(1) with use of the following transformations:

W=W/Wo
(11) V =v/b
y =x/L.

In egs. (11}, b is total carrier concentration, b==u+v and w, is defined to be «, P, i.e.
it is the hypothetical concentration for solution in equilibrium with the Pg, at the
high side. With these transformations egs. (1) become:

2
v
0= 17 + ay(1-V)W—aV
(12)
d*w
0= o7 afy (1= V)W +afV
where the dimensionless parameters in egs. (12) are as follows:
o= k2 LZ/DV
(13) B =D,b/D,w,

7 =k, wo/k; .
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In terms of the normalized variables the boundary conditions are given by egs. (14).

dv
dy
v
dy

=0

y=0

=0

y=1

14
(4 o, D, dW

L dyl|,-0
o, D, dW _ P
GL dy|,-, Py

W(0) —

Wl +

NUMERICAL METHODS AND COMPUTATIONS

Equations (12) with boundary conditions (14) were solved by the method of quasi-
linearization (Jacquez, 1970). The method was programmed in FORTRAN IV and
the computations were carried out in double precision arithmetic on the IBM 360/67
at the University of Michigan Computing Center. A finite difference approach is used
in which the membrane is divided into 2" equal intervals. Initiaily, results were
computed using 16 intervals. The number of intervals were than increased until
successive computations yielded results which were identical to five significant
digits ; 64 intervals were used for all of the computations reported in this paper. The
user initiates the process by providing an initial guess for the solution and the program
then iteratively generates a sequence of approximations. If the initial guess is not close
enough to the true solution the process does not converge but if it converges it con-
verges quadratically. For each value of G the initial trial solution which we used for
L =1 p was a linear gradient across the membrane in W(y) and a V(y) which was in
equilibrium with W(0). This converged for all cases. This solution when used as the
initial guess for L=2 y gave convergence ; the latter solution was then used as the
initial guess to obtain the solution for L =15 u. In this way we successively generated
solutions for 1 to 300 4 membranes with interfacial conductances G, of 10711, 10719,
107, 1078 and oo.

Results and discussion

RESULTS

Computations were first carried out with use of the parameters for 159 human
hemoglobin for membranes of thickness 1, 2, 5, 10, 25, 50, 100, 150 and 300 u and for
surface conductances, G=oc0, 1078, 107°, 1071° 10~ !! moles/sec cm?> mm Hg.
Partial pressures of oxygen of 200 and 0.05 mm Hg were chosen for the high (P,) and
low (P, ) sides, respectively. Table 1 gives the values of the parameters used and the
reference from which the value of the parameter was obtained. In the study of Kutchai
et al. (1970) and in the computations of this study a value of 1.8 x 10™° mole/ml-mm



HEMOGLOBIN-FACILITATED DIFFUSION OF OXYGEN 173

1O 6
D‘ll
9 10-*
oo
8
7
£
[ K
: ;
g o) o™ § .
§ Al o % ;
S 5
3 }— ;
2k o®
P
o
i °c
0 05 10
x/L
1.O

o-e

v

—

8 g’
& 2
£°0 g
g w0° g
A £
“)-tl
3p " :
2
iR we
L o
0 05 10

x/L

Fig. 1. Computed concentration profiles for the facilitated diffusion of oxygen through 15% hemogliobin
for interfacial conductances of 107 !! tor oo and for membranes of thickness 1, 10, 25, 100 p.

Hg was used for the solubility of oxygen in hemoglobin solutions. Kreuzer and Hoofd
(1970) give 2 value of 1.663 x 10~ ?. For his computations on the time course of uptake
of O, by thin layers of 34%, hemoglobin, Kutchai (1970) used the value reported by
Sendroy, Dillon and Van Slyke (1934) for red cells, 1.51 x 107° mole/ml-mm Hg. We
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TABLE 1

Values of parameters used for hemoglobin and myoglobin

Parameter  Units 159 349% Horse myoglobin
115%
b mole/cm® 09375x107% 2.125x10°3 72x10°%
(Wittenberg, 1966)
Dy cm?/sec 3.6x1077 68x1078 86x1077
(Wittenberg, 1970)
D, cm?/sec 14x10"3 7.0x10°9 1.5x10°3
(Kreuzer and Hoofd, 1970)
k, cm?®/mole-sec 3.0x10° 3.0x10° 14.0 x 10°
(Wittenberg, 1966)
k, sec™! 40 40 11
{Wittenberg, 1966}
o, mole/cm® mm Hg 1.8x107% 1.8x107° 1.5x107°
(Kutchai et (Kutchai et al., {Kutchai, 1970)

al.,, 1970) 1970)

TABLE 2 _
Summary of findings for 155 hemoglobin, G = 0. P, =200 mm Hg. P, =0.05 mm Hg.

Membrane thickness-microns

1 2 5 10 25 50 100 150 300
v(0) 09523 09597 09627 09635 09639 09641 09642 09642 09643
V(1) 08678 08013 06594 05018 02858 01673 00930 00654 00362
V(0)/V (0 09876 09953 09983 09991 0999 09998 09999 09999  1.0000
V{1V (1)* 1294 1195 9835 7484 4263 249 13876 9759 5406
F (facilitation)** 00566 01061 02031 03092 04543 05335 05834 06020 06214
1 t
10‘01,;( Tio%es ) 285 267 205 156 915 538 294 200 104
cm=-sec
I
1015, ( =2 es) 504 252 101 504 202 101 S04 336 168
cm--s€C
i
A ( ~_ ) 384 35 275 209 123 0723 0395 0272  0.40
cm“-min,

* Vql(0) and V(1) are calculated equilibrium values for V for the W(0) and W (1) present; W(0) =1, W (1) =0.00025,
V{0) =0.9643, V, (1) =0.0067 for all membrane thicknesses.
** The facilitation F is defined as I./J;.

* Jy and Jp, are the facilitated and diffusive fluxes respectively.

t 4§, is the facititated flux in g lfcm®-min. A is the area for a millipore filter used by Wittenberg. i.c. 9.09 cm?.
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TABLE 3

Summary of findings for 11.59%, Myoglobin G=00. Py=200 mm Hg. P, =0.05 mm Hg Membrane
thickness-microns

V(0) 09967 0.9974 09974 09974
vl 0.9878 0.9383 0.8495 0.5432
V(0)/V,(0)* 0.9993 1.0000 1.0000 1.0000
V(1)/Vq(1)* 11.34 10.77 9.75 6.23

F 0.01225 0.0813 0.2036 0.6251
101° J 5.51 3.66 3.66 2.81
100, 450. 450 18.0 450
Fr 0.741 0.492 0.492 0.378

* For these membranes, W (0} =1.0000, W(1}=0.00025, V., (0}=0.9974, V(1) =0.08714.

o (T WP U N BV SIS YV SO TS RS 1YY
| 4 0 4 100 400 1000
L{microns)
Fig. 2. Dependence of facilitated flux on membrane thickness and interfacial conductance for 15% hemo-
globin. Wittenberg’s results corrected for a tortuosity factor of 1.44 and for the difference in hemoglobin
concentrations are shown by the points-@

have not repeated our computations with these other values for a, because the results
cannot differ much and the extra cost is considerable. Rather than repeat the compu-
tations for many combinations of the parameters and partial pressures we would
prefer to wait and compute results for simulations of specific experiments for which
the parameter values and experimental conditions are specified. However, it should
be noted that the solubility of oxygen appears only in the boundary conditions,
eqs. (6) and (7), not in the differential equations, egs. (1), and it appears in the boundary
conditions as a result of the relations w(0) = P(0)o,, w(L)=P(L)x,. If we divide
egs. (6) and (7) by P, then it may be seen that provided b, k,, k,. D, and D, are fixed,
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Fig. 3. Dependence of diffusive flux on membrane thickness and interfacial conductance for 15% hemo-
globin,
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Fig. 4. Dependence of facilitation on membrane thickness and interfacial conductance for 15 %, hemoglobin.

the boundary conditions remain invariant if the combinations of parameters o, Py,
GP, and P /P, remain invariant.

Computations for 11.5% horse myoglobin were done for L equal to 1, 10, 25 and
100 p for the same range of values for G as was used for the hemoglobin studies; «,
was taken as 1.5 x 10™? for the myoglobin computations. Figure 1 shows the concen-

tration profiles

obtained for 159, hemoglobin. We have also done the computations

for 34 9, human hemoglobin for different membrane thicknesses. However, the graphs
for 34 %, hemoglobin and 11.5% myoglobin are qualitatively similar to those for 157
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hemoglobin and are not shown. Tables 2 and 3 summarize the results obtained for
15%, hemoglobin and 11.5% myoglobin for G = oo. Summaries for other values of
G are not given because our findings imply that G is 1078 or larger in value and the
results obtained for G= 1072 differed little from those obtained for G = co. Figures
2 and 3 show the dependence of facilitated and diffusive fluxes on thickness and fig. 4
shows the facilitation, F=Jg/J, as a function of membrane thickness for 159
hemoglobin.

COMPARISON WITH KREUZER-HOOFD FOR G=o0

When G is infinite our boundary conditions become the same as those used by
Kreuzer and Hoofd (1970), and in view of the discussion in the introduction we should
expect agreement between their results and ours for sufficiently thick membranes.
We have computed the Kreuzer-Hoofd solutions using our parameters for 159,
hemoglobin. Table 4 gives the difference between our result and that given by the

TABLE 4

Comparison of Kreuzer-Hoofd results for 15 %, hemoglobin with ours

L Percent differences Percent difference
in J¥ inJg
i
300 0.06 0.16
100 0.06 0.17
25 0.21 0.68
10 1.16 492
5 4.10 243

* Difference between Kreuzer-Hoofd results and ours as % of ours.

Kreuzer-Hoofd method as percent of our result, for different membrane thick-
nesses. The total flux was obtained by integrating eq. (5) to obtain eq. (15), the first
term of which

D, W, D,b ..
=1 T [V(0)-V(1)]

is the diffusive flux, Jp, and the second term the facilitated flux, Ji. The values of V(0)
and V(1) given by the two methods were then substituted in the equation, the values
of W(0) and W(1) being the same for the two methods. Thus the diffusive flux is cal-
culated exactly by both methods, given W(0) and W(1) and the difference is in the
calculated facilitated fluxes. However since the total flux is the experimentally measur-
ed quantity we give the percent deviation in that as well as in the calculated facilitated
flux. Note how close the results are for membranes down to 25 u in thickness. Even
for a 10 y membrane the deviation is not large but it increases markedly as one goes
to thinner membranes.

(15) J; WO -w(1)] +
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EFFECTS OF MEMBRANE THICKNESS AND INTERFACIAL RESISTANCE

It may be seen from figs. 1a—1d that for a given interfacial conductance the concen-
tration profiles, plotted in dimensionless variables, are not independent of the
membrane thickness. This effect is also present in the Kreuzer-Hoofd solutions. As a
result V(0)— V(1) in eq. (1 ) is not constant for fixed W(0) and W(1) so that the facili-
tated flux does not depend solely on 1/L as does the diffusive flux for fixed W (0) and
W(1). If V(0)—V(1) were constant for G=co the facilitation, F=Jp/Jr, would be
independent of membrane thickness but in fact both our results and those of Kreuzer
and Hoofd predict that it must eventually decrease as membrane thickness decreases.
Kutchai (1970) reaches the same conclusion from his studies of the time dependent
equations for O, uptake by layers of hemoglobin.

For thick membranes our results approach those of Kreuzer and Hoofd (1970).
It should be noted that as L— oo the effect of any finite interfacial resistance eventually
becomes negligible and hence for sufficiently large L the dimensionless profiles be-
come essentially invariant and J; becomes inversely related to membrane thickness.
As shown in fig. 2 the smaller the interfacial conductance, G, the greater the thickness
required to give an approximately 1/L behavior in Jg. This departure of J¢ from 1/L
behavior with decreasing G is much more marked than for the diffusive flux, Jp, as
is seen in fig. 3. The straight line in fig. 2 is obtained by replacing V(0) and V(1) in the
equation for Jg by VZ(0) and V& (1), respectively, which are the values that V would
take at the boundaries if the hemoglobin were in equilibrium with W for the G= oo
case. Thus the straight line is the large L a symptote of J.

Wittenberg's data on the facilitated diffusion of oxygen through hemoglobin
indicates that the facilitated flux is inversely proportional to membrane thickness
down to L.=64 p with possibly a small deviation for L=25 . We must conclude,
therefore, that G must be of order 1078 or greater.

In fig. 4 we have plotted the facilitation, F = J/J;,, as a function of membrane thick-
ness for different vatues of G. For all values of G, F approaches a fixed asymptotic
value as L increases, the approach to the asymptotic value being more rapid in L
for high values of G. The asymptotic value for large L corresponds to the solution for
which the oxygen-hemoglobin reaction may be assumed to be at equilibrium.

COMPARISON WITH MURRAY'S SOLUTION

It is not possible to compare our results with those of Murray in the same way as we
have done in comparing them with those of Kreuzer and Hoofd. Murray’s solution
differs from the Kreuzer-Hoofd solution in that the reaction equilibrium assumption
is extended to both boundaries and this reduces the number of boundary conditions
by two. Whereas in our method and in that of Kreuzer and Hoofd the fluxes are
determined by the solutions, Murray introduces the experimentally determined flux,
Jg, into the problem and uses it to fix V(0) — V(1). But as a result of this manuever the
assumption of reaction equilibrium at the low P, boundary gives a value of W(1)
which is too large for the experimental conditions which he simulates unless one
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assumes a value of G that falls between 10~° and 10~ '°. But as we have shown (fig. 2)
this pushes the region of 1/L. behavior for the facilitated flux outside the range in which
Wittenberg’s results (1966) place it. Murray’s solution can only be good for very thick
membranes for which the reaction equilibrium assumption is good right out to the
boundary and we have to conclude that it is really not adequate to describe the results
Wittenberg obtained for his thinner (25 u and 64 u) membranes.

THE EFFECT OF TORTUOSITY

To compare our results with Wittenberg’s data we must take into account a correc-
tion for tortuosity of the channels in the millipore filters. Our calculated fluxes were
usually 1.4-1.6 fold greater than Wittenberg’s measured fluxes for a given thickness
of membrane. The tortuosity effect has been discussed by Keller and Friedlander
(1966) who found a factor of 1.63 for diffusion of methemoglobin through millipore
filters and by Wittenberg (1970). Murray (1971) corrected for this by assuming the
diffusion path was 220 u for a 150 u thick membrane, a factor of 1.47. Kreuzer and
Hoofd (1970) on the other hand used an L of 180 x in their calculations for comparison
with Wittenberg’s results on 150 4 membranes. We have found that we need a cor-
rection factor in the range 1.40-1.50. The correction factor involved has to do with
the estimation of the ratio of area for diffusion divided by path length, A/L. Recall
that the measured amount of oxygen crossing a membrane is the membrane area
multiplied by flux, J,, of eq. (15). Thus the measured amount crossing a membrane is
proportional to (A/L) and so we are faced with the problem of estimating this ratio if
channels are not straight through and uniform in cross-section. The tortuosity
correction is a correction from the measured ratio (A/L) to an effective ratio (A*/L*).
For the diffusive flux the entire correction for non-straight through channels is in this
ratio; for facilitated flux this is probably the main effect although we cannot exclude
a further effect due to effective path length, L*, because of the non-linear reaction
terms. For specific geometries the correction in A/L may actually be partitioned
between the estimated area and channel length. For example if the channels are all of
uniform cross section of total area A* and channel length L* > L then the true ratio
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Fig. 5. Dependence of facilitated flux on hemoglobin concentration for a membrane of 150 x thickness and
for G=co. Wittenberg’s data (O); our computed results (—); computed result corrected for tortuosity
factor of 1.44(--).
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is A*/L*. The measured membrane thickness is L. If as is frequently done the cross
sectional area is calculated from the measured volume entrained in the filter, V=AL =
A*L* and A/L=(A*/L*)(L*/L)>. Thus for this geometry the measured ratio A/L is
(L*/L)? times the true ratio (A*/L*). We have corrected our results as though the
correction could be partitioned between the area and channel length in this way. Thus
points in fig. 2 are Wittenberg’s data for 17.7 % hemoglobin corrected for tortuosity
by the factor (L*/L)*=1.44 and reduced to 15% hemoglobin by the approximate
correction factor, (D,"b);s0,,/(D,"b);7.70,=1.096. Using the tortuosity factor
correction of 1.44 we have also fitted Wittenberg’s (1966) data which show the
dependence of facilitated flux on hemoglobin concentration for a 150 4 membrane.
Figure 5 shows Wittenberg’s data, our calculated results for a 150 u membrane
and our results corrected for a tortuosity factor of 1.44.

Appendix
Referring to eq. (15) of the text, the facilitation is given by eq. (Al).

_ D,[v(0)—v(L)]
@) F=5 o wa)l”

Hence the total flux can be written as in eq. (A2).

(A2) J=(1+F) % [w(0)—w(L)].

Substituting w(0) = o, P(0) and w(L) = «, P(L) gives eq. (A3).
D,

=¥ [P(0) —~P(L)].
Add eq. (4) of the text to give the following eq. (A4).

@) Do p-p-[PO-PO.

(A3) J,=(1+F)

Substituting for P(0)—P(L) in eq. (A3) above gives us (A5).
(1+F)o, D, [Po—P,]

AS J = .

(AS) ‘T L¥(1+F)2D, «,/G

Let V be the volume flow rate in cm?®/sec of the gas flushing the low P, chamber.
Let A be the membrane area in cm?2. Then if there is rapid, uniform mixing of gases
and V>J,

(A6) P =J,-224

10°A
\%

A
760=J'V 17 x 10° mm Hg .
Substituting for P, in eq. (AS) and solving for J, gives eq. (A7).
(1+F)D,a, P,

1 A 6] '
L+(1+F)2chxs[a— + W(ﬂx 10°)

(A7) Jy =
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For Wittenberg’s experiments let us take A=9 cm?, V=1 cm®/sec. Then 17x 10% A/
2V=1/(1.3x 107 #). Hence if G < 1.3 x 10~ ° the small P, at the low Py, side has little
effect and J, is given approximately by eq. (A8).

__ (1+F)Dya, Py
(A8) Jo= L+(1+F)2D, /G’

However if G >1.3x 1077 the conductance term is negligible and the P set by the
flushing of the low Py, side of the chamber plays the major role in eq. (A7) to give
eq. (A9).

N (1+F)D,a, Py
(A9) Jo= 1o (1+F)D,o,A(1.7x 107V "
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