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Abstract. The equations of facilitated diffusion were solved numerically for steady state diffusion of 
oxygen across membranes of hemoglobin and myoglobin. An interfacial resistance was included in the 
boundary conditions and the dependence of the solutions on membrane thickness and interfacial con- 
ductance was studied. The data of Wittenberg on millipore membranes was fitted adequately if a tortuosity 
factor for the millipore membranes was taken into account. Comparison of the solutions with Wittenberg’s 
data shows that the interfacial conductances must be large, 10-a mole/cm’-see-mm Hg or larger. More 
accurate estimates of interfacial conductance could be obtained from data on thin membranes, l-5 ft, 
but such data are not available. It was found that the concentration profiles are not inde~ndent of thickness 
and that the facilitation decreases as the membrane thickness decreases. The latter occurs even for zero 
interfacial resistance and hence cannot be attributed to a back pressure effect. The effect is present because 
the dissociation reaction at the low Po2 boundary increasingly becomes the limiting factor in the establish- 
ment of the steady state as L decreases. 
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Much work has been done recently on the solution of the equations for the facilitated 
diffusion of oxygen through membranes containing solutions of hemogiobin and 
myoglobin. Kreuzer (1970) and Wittenberg (1970) have reviewed this field in detail. 
Murray (1971) has obtained solutions using singular ~~urbation methods (Murray, 
1968a,b). However, he retained only the zero’th order solution which implies local 
equilibrium throughout the membrane. As a consequence he can satisfy only two 
boundary conditions since this solution satisfies only the reduced set of differential 
equations. For boundary conditions Murray assumes that the dissolved oxygen at 
the high Po, (oxygen partial pressure) boundary is in equilibrium with the adjacent 
gas phase and then chooses the value of the fraction of oxygenated protein on the low 
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Po, boundary so as to yield the measured facilitated oxygen flux. Since measurements 
of the facilitated component of the oxygen flux through hemoglobin solutions (Witten- 
berg, 1966) show an essentially inverse relationship with membrane thickness, Witten- 
berg (1970) with the aid of Murray’s analysis concluded that the profiles of oxygen and 
oxyhemoglobin are independent of membrane thickness down to thicknesses of 1 p 
when plotted in terms of dimensionless variables. However, since the singular pertur- 
bation technique is applicable only to hemoglobin solutions which are thicker than 
roughly 10 p (Murray, 1971) and Murray’s boundary conditions depend crucially on 
facilitated flux measurements, which are not available for very thin membranes, one 
must view Wittenberg’s conclusion as being speculative. 

Kreuzer and Hoofd (1970) have also found approximate solutions for the equations 
of facilitated diffusion. Although their derivation is not presented in the language of 
singular perturbation theory but is based on physical reasoning, their results can be 
derived in this context. An important difference between the method of Kreuzer and 
Hoofd and that of Murray is the treatment of the boundary layers in the membrane. 
Whereas Murray (1971) assumes local equilibrium exists all the way to the edges of 
the membrane, Kreuzer and Hoofd find separate approximate solutions for a thin 
boundary layer at each of the surfaces of the membrane. By this approach one finds 
lowest order corrections to the zero’th order perturbation solution. More important- 
ly the Kreuzer and Hoofd method requires four boundary conditions for the complete 
solution since the order of the set of differential equations has not been reduced, al- 
though the condition that neither hemoglobin nor myoglobin can flow across the 
boundaries of the membrane is implicit in the linearized approximations for the 
boundary layer solution. For their calculations they set the oxygenated protein flux 
equal to zero at both boundaries and assume equilibrium of the oxygen between the 
gas and liquid phases at both edges of the membrane as boundary conditions. Since 
the boundary layer corrections vary inversely with membrane thickness for thick 
membranes, the Kreuzer-Hoofd solution approaches the same functional form as 
Murray’s for thick membranes and differs from it only in the choice of a boundary 
value at the low PO, side of the membrane. As with Murray’s, their results are appli- 
cable to hemoglobin membranes that are greater than approximately 10 p in thick- 
ness. 

In a paper by Kutchai et al. (1970) the non-linear differential equations were solved 
numerically using the method of quasilinearization (Jacquez, 1970). The boundary 
conditions used were the same type as those used by Kreuzer and Hoofd (1970) 
although the actual values differed. It was found that if the curves of the oxygen and 
oxyhemoglobin concentrations were plotted in terms of dimensionless variables that 
the concentration profiles changed with membrane thickness. However, Wittenberg 
(1970) criticized this work for the parameter values taken for the reaction rate con- 
stants and for use of the assumption of equilibrium of the oxygen between gas and 
liquid phases at the low P,, boundary. The equilibrium assumption seemed reasona- 
ble because data (Wittenber, 1966) on the dependence of the oxygen flux on membrane 
thickness suggested that the resistance of the boundaries to the oxygen flux was 
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negligible for membranes greater than 64 p in thickness. However, even a small 
interfacial resistance to oxygen Row could have a si~i~cant effect on the low PO, 
boundary. In this way an interfacial resistance might add credence to Murray’s local 
equilibrium solution (Murray, 1971) which implies a resistance at the low Po, 
boundary. 

For these reasons it seemed important to us to solve the equations of facilitated 
diffusion with the method of quasilinearization using improved parameters and 
boundary conditions which incorporate the possibility of interfacial resistance. In 
this paper we report the results of this study. 

Theory and methods 

THE EQUATIONS OF STEADY STATE FACILITATED DIFFUSION 

Following the notation of Kutchai, Jacquez and Mather (1970), let w be the concen- 
tration of oxygen, let u be the concentration of free carrier (Hb or Mb) and let v be 
concentration of carrier-O, complex. The steady state equations are given by eqs. (1). 

D$ = k,(b-v)w-k,v 

D, 2 = -k,(b-v)w+k,v. 

In eqs. (1) D, and D, are the diffusion coefllcients for w and v respectively; u and v 
are assumed to have the same diffusion coefficients, consequently the total carrier 
concentration is constant throughout the membrane, u+ v== b. The constants k, 
and k, are the rate constants of the reaction (2). 

(2) 
kl 

w+u=v. 
kz 

Reaction (2) and thus eqs. (1) are exact for myoglobin but are approximations for 
hemoglobin. However this approximation has been used in all previous studies and 
the rationale for its use and its drawbacks have been discussed (Witten~rg, 1970; 
Kutchai et al., 1970). 

THE BOUNDARY CONDITIONS 

The membrane is of thickness L, and we assume the partial pressure of oxygen is 
higher on the side for which x = 0. Since the protein molecules cannot cross the inter- 
faces, the flux of v at the boundaries must be zero. Hence one set of boundary con- 
ditions is given by (3). 

Let P(0) and P(L) be the partial pressures of 0, just inside the membrane at the 
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boundaries of the membrane and P, and P, be the partial pressures in the gas phases 
just outside the membrane. In the studies of Kutchai et al. ~1970) it was assumed that 
the interface presents no resistance to the flux of 0, so that P(0) = P,, P(L) = P, 
and hence w (0) = a,PO, w(L) = t(,PL where a, is the solubility coefficient of the mem- 
brane solution for oxygen. As Wittenberg (1970) points out, tliis is probably a good 
assumption for the high Po, boundary but may be poor at the low Po, side. The con- 
centration of oxyhemoglobin is quite sensitive to the partial pressure of oxygen at 
low partial pressures so that the shape of its concentration curve at the low O2 side 
of the membrane might change appreciably with small changes in P(L). Thus even 
small values of interfacial resistance might have significant effects on the concentra- 
tion profiles at the low oxygen side of the membrane. 

In general the boundary conditions should include the possibility of a resistance to 
the 0, flux at the interfaces (Davies and Rideal, 1963). Such a resistance could be 
given by a monolayer of lipid or protein, a small unstirred boundary layer of gas or a 
combination of these. It should be noted that unless special precautions are taken it 
is difficult to prepare solutions which do not have some contaminating lipids in the 
interface. Furthermore hemoglobin itself forms monolayers at air-water interfaces 
(Guastalla, 1939). Assuming that the flux at the boundaries of the membrane is 
proportional to a drop in partial pressure across the interfaces we can account for a 
resistance at the interfaces with the boundary conditions given by eqs. (4). 

(4) 
J, = G[P,- P(O)] 

J, = G [P(L) - Pr] . 

Note that G is a conductance and has units of flux/mm Hg. For given J,, if G is very 
large, P, z P(0) and P(L) 2: P,. However, J, is not known and in fact should come out 
of the solution of the problem. Addition of eqs. (1) and inte~ation gives relation (5) 
for the steady state total flux at any distance, x, in the membrane. 

(5) 
dW 

J,= -D, -d-x - DV$. 

It is a property of the steady state that J, is independent of x [see Fatt and LaForce 
(1961)]. If we substitute eq. (5), evaluated at the boundaries into eqs. (4) and set 
P(0) = w (0)/as and P(L) = w(L)/a,, we obtain eqs. (6) and (7) which do not contain 
the unknown flux, J,. 

(6) w(0) __DwdW =p 
a, Gdx, ’ 

w(L) (7) - 
a, 

+gg =P,. 
i L 

Boundary conditions of this type are generally known as mixed boundary conditions. 
Equations (3), (6) and (7) g ive exact boundary conditions and in theory eqs. (1) are 
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solvable if we know the parameters k,, kz, a,, D,, D,, G and b and the partial pressures 
in the gas phases, P, and P,. 

Although eqs. (6) and (7) p rovide us with exact boundary conditions there is still 
some question in practice about the true value of P,. On the high Po, side there is no 
problem. But in experiments the low Po, side is usually flushed with 02-free gas and 
because a small amount of 0, is constantly entering this gas phase from the mem- 
brane P, cannot be zero. For example, using the data in fig. 1 of Wittenberg’s paper 
(Wittenberg, 1966) one finds that for a 150 p membrane with P, = 200 mm Hg the 
Jxygen flux is 3.5 $/min. A stream of helium flowing at the rate of 60 ml/min was used 
to flush the chamber on the low oxygen side of the membrane. Since the total pressure 
was maintained a 1 atm, the assumption of uniform mixing of the oxygen flux with the 
flushing stream would imply that P, was 0.044 mm Hg. For a 25 ~1 membrane exposed 
to the same high side Po, the oxygen ffux would be about 6 fold greater than for the 
150 p membrane. Thus for the same flushing rate P, would be about 0.25 mm Hg. 
However, in Wittenberg’s experiments the helium stream was directed at the surface 
of the membrane and we are not certain that the uniform mixing assumption is valid. 
Lacking more information we have arbitrarily set P, =0.05 mm Hg for all of our 
computations. In the Appendix it is demonstrated that small changes in P, will make 
negligible difference in the results if the surface conductance, G, is 1O-9 or less. Ac- 
tually, if provision is made to obtain uniform mixing in the chamber on the low Po, 
side, the dependence of P, on the flux, J,, and the flushing rate can be incorporated 
into the boundary conditions. Let V be the volume flow rate at STP in mljsec of the 
flushing gas, let Jt be the O2 flux in moles/cm’/sec, and let A be the surface area of the 
membrane in cm’. Then, if we assume the flushing gas is oxygen free, the flushing rate 
is much greater than the oxygen flux and the total pressure is 760 mm Hg, P, is given 

by eq. (8). 

PL = $ J,(22.4 x 103)(760)mm Hg. 

Substituting for P, in the second of eqs. (4) gives eq. (9) to replace eq. (7). 

(9) 
w(L) D, dw 

~[1+17x 106AG/V] + -??- dx L=“’ 

We have used eqs. (6) and (7) but eq. (9) could be used instead of (7) if provision is 
made to obtain uniform, rapid mixing of gases in the chamber on the low oxygen side 
of the membrane. 

INTERFACIAL O2 CONDUCTIVITY 

We must decide what numerical values to use for G. Wittenberg (1966) found that the 
flux of N, and the facilitated flux of O2 across millipore filters filled with hemoglobin 
solution was inversely propo~ional to thickness for filters from 64 p to 300 p thick. 
The proportionality may extend down to 25 p thickness as well. If the O2 flux resis- 
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tance of the interface (l/G) is taken to be constant, analogy with electrical resistances 
shows that the effect of the interfaces should become greater with decreasing layer 
thickness. The proportionality observed by Wittenberg shows that the 0, pressure 
drops. across the interfaces are negligible at least in layers thicker than 64 p and 
possibly in layers 25 ,u and thicker. In layers thinner than this, the interfacial resistance 
may play an important role, 

To obtain a rough estimate of a lower bound for G consider the following. If we 
treat the interface as though it were a layer of water of thickness E, the 0, flux across 
the interface can be written, 

(10) J,=GAP = ~ Dw% AP 
& 

so that G= D,cr,/a_ The precision of Wittenberg’s results seems to rule out the 
effective value of E being more than 10 p. Taking D, = 1.7 x 10T5 cm’/sec, aS= 1.5 x 
lo-’ mole/(ml-mm Hg), and .a= 1O-3 cm we compute G=2.5 x lo-” mole/(cm’- 
see-mm Hg) as a lower limit for G. It might be noted ttlat Murray’s solutions imply a 
value of G in the range of lo- lo to lo-‘. We have solved the problem for G = lo- 'l, 
10-lo, lo-‘, lo-‘andforG= co for various values of L. We know of no experimental- 
ly determined values for G for the air-water interface. 

THE NOR~LIZED EQUATIONS 

As in our previous paper (Kutchai, Jacquez and Mather, 1970), we normalize eqs. 
(1) with use of the following transformations: 

w = w/w0 

(11) v =v/b 

y =x/L. 

In eqs. (1 l), b is total carrier concentration, b = u + v and w. is defined to be or, PO, i.e. 

it is the hypothetical concentration for solution in equilibrium with the Po, at the 
high side. With these transformations eqs. (1) become: 

(12) 

0 = d2V 
dy2 + uy(l-V)W-crv 

0 = dZW 
dy2 

- a~~(l-V)W+a~V 

where the dimensionless parameters in eqs. (12) are as follows: 

(13) 

a = k, L2/D, 

B = D,b/D, wo 

y =k,wo/k, - 
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In terms of the normalized variables the boundary conditions are given by eqs. (14). 

dV - 
dy y=o 

=0 

(141 

dV 

dy y=l 
=o 

W(O) - 
asI& dW 
GL dy Y=O==l 

WI + or,& dW 
i 

PL 
GL dy Y=l = p,’ 

NUMERICAL METHODS AND COMPUTATIONS 

Equations (12) with boundary conditions (14) were solved by the method of quasi- 
linearization (Jacquez, 1970). The method was programmed in FORTRAN IV and 
the computations were carried out in double precision arithmetic on the IBM 360/67 
at the University of Michigan Computing Center. A finite difference approach is used 
in which the membrane is divided into 2’ equal intervals, Initially. results were 
computed using 16 intervals. The number of intervals were than increased until 
successive computations yielded results which were identical to five significant 
digits; 64 intervals were used for all of the computations reported in this paper. The 
user initiates the process by providing an initial guess for the solution and the program 
then iteratively generates a sequence of approximations. If the initial guess is not close 
enough to the true solution the process does not converge but if it converges it con- 
verges quadratically. For each value of G the initial trial solution which we used for 
L = 1 p was a linear gradient across the membrane in W(y) and a V(y) which was in 
equilibrium with W(O~. This converged for all cases. This solution when used as the 
initial guess for L =2~ gave convergence ; the latter solution was then used as the 
initial guess to obtain the solution for L= 5 I”. In this way we successively generated 
solutions for 1 to 300 ~1 membranes with interfacial conductances G, of lo- ’ ‘, lo- lo, 
10p9, IO-* and co. 

Results and discussion 

RESULTS 

Computations were first carried out with use of the parameters for 15% human 
hemogiob~ for membranes of thickness 1,2,5, 10,25,50,100,150 and 300 ~1 and for 
surface conductances, G= 03, 10w8, 10e9, lo- lo, lo- l1 moles/set cm* mm Hg. 
Partial pressures of oxygen of 200 and 0.05 mm Hg were chosen for the high (PO) and 
low (PL) sides, respectively. Table 1 gives the values of the parameters used and the 
reference from which the value of the parameter was obtained. In the study of Kutchai 
et al. (1970) and in the computations of this study a value of 1.8 x lo-’ mole/ml-mm 
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x/L x/L 

x/L x/L 

Fig. 1. Computed concentration profiles for tke facilitated diffusion of oxygen through 1S % hemoglobin 
for interfacial conductances of lo- ” tcf CO and for membranes of thickness 1, 1425, 100 p. 

Hg was used for the solubility of oxygen in hemoglobin soIutions. Kreuzer and Hoofd 
(1970) give a value of 1.663 x 10 -g. For his computations on the time course of uptake 
of Q2 by thin layers of 34% hemoglobin, Kutchai (1970) used the value reported by 
Sendroy, DiIIon and Van Slyke (1934) for red cells, 1.51 x lo-’ mole/ml-mm Hg. We 
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TABLE 1 

Values of parameters used for hemoglobin and myoglobin 

Parameter Units 15% 34% Horse myoglobin 
11.5% 

b mole/cm3 0.9375 x 1o-5 2.125 x 10-s 

D” cm’/sec 3.6 x lo-’ 6.8 x lo- * 

DW cm2/sec 1.4 x 10-s 7.0 x 10-6 

k, cm3/mole-set 3.0 x lo9 3.0x lo* 

kz see-’ 40 40 

mole/cm3 mm Hg 1.8 x 1O-g 1.8 x lo-’ 
(Kutchai et (Kutchai et aI., 
al., 1970) 1970) 

7.2 x lO-6 
(Witt~~rg, 1966) 
8.6 x 1O-7 
(Wittenberg, 1970) 
1.5 x 1o-5 
(Kreuzer and Hoofd, 1970) 
14.0 x lo9 
(Wittenberg, 1966) 

~~itten~rg, 1966) 
1.5 x 1o-g 
(Kutchai, 1970) 

TABLE 2 

Summary of findings for 15% hemoglobin, G = co. P, = 200 mm Hg. P,=O.O5 mm Hg. 

Membrane thickness-microns 

1 2 5 10 25 50 100 150 300 

V(O) 0.9523 0.9597 0.9627 0.9635 0.9639 0.9641 0.9642 0.9642 0.9643 
V(1) 0.8678 0.8013 0.6594 0.5018 0.2858 0.1673 0.0930 0.0654 0.0362 
V(O)/v,,(O)* 0.9876 0.9953 0.9983 0.9991 0.9996 0.9998 0.9999 0.9999 l.OXlO 
V(l)/v,,(l)* 129.4 119.5 98.35 74.84 42.63 24.96 13.876 9.759 5.406 
F (facilitation)** 0.0566 0.1061 0.203 1 0.3092 0.4543 0.5335 0.5834 0.6020 0.6214 

10i”.Jr(-m$i 28.5 26.7 20.5 15.6 9.15 5.38 2.94 2.02 1.04 

1O’O.J 504 252 101 50.4 20.2 10.1 5.04 3.36 1.68 

3.84 3.59 2.75 2.09 1.23 0.723 0.395 0.272 0.140 

* V,, (0) and V,, (1) are calculated equilibrium values for V for the W (0) and W (1) present ; W (0) = 1, W (1) = 0.00025, 
V,, (0) = 0.9643, V,,( 1) = 0.0067 for all membrane thicknesses. 
** The facilitation F is delined as J,/J,. 
’ 1, and J, are the facilitated and diffusive thtxes respectively. 
‘$, is the facilitated flux in p l/cmz-min. A is the area for a millipore filter used by Wittenberg. i.e. 9.09 cmZ. 
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TABLE 3 

Summary of findings for 11.5 % Myoglobin G = cc. P,= 200 mm Hg. P, =0.05 mm Hg. Membrane 
thickness-microns 

V(O) 
VW 
v w/v,,@)* 
w/v,,(1)* 
F 

10” J F 
10” J 
bF D 

0.9967 0.9974 0.9974 0.9974 
0.9878 0.9383 0.8495 0.5432 
0.9993 l.OOoO 1.0000 l.COOO 

11.34 10.77 9.75 6.23 
0.01225 0.0813 0.2036 0.6251 
5.51 3.66 3.66 2.81 

450. 45.0 18.0 4.50 
0.741 0.492 0.492 0.378 

* For these membranes, W (0) = l.m, W(1) =0.00025, V,,(O) =0.9974, V,(l) =0.08714. 
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Fig 2. Dependence of facilitated flux on membrane thickness and interfacial conductance for 15 % hemo- 
globin. Wittenberg’s results corrected for a tortuosity factor of 1.44 and for the difference in hemoglobin 

concentrations are shown by the points-0 

have not repeated our ~ompu~tions with these other values for a, because the results 
cannot differ much and the extra cost is considerable. Rather than repeat the compu- 
tations for many combinations of the parameters and partial pressures we would 
prefer to wait and compute results for simulations of specific experiments for which 
the parameter values and experimental conditions are specified. However, it should 
be noted that the solubility of oxygen appears only in the boundary conditions, 
eqs. (6) and (7), not in the differential equations, eqs. (l), and it appears in the boundary 
conditions as a result of the relations w(0) = P(O)or,, w(L) = P(L)a,. If we divide 
eqs. (6) and (7) by P, then it may be seen that provided b, k,, k,. D, and D, are fixed, 
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Fig. 3. Dependence of diffusive flux on membrane thickness and interfacial conductance for I5 % hemo- 

globin. 
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Fig. 4. Dependence of facilitation on membrane thickness and interfacialconductance for 15 % hemoglobin. 

the boundary condjtions remain invariant if the combinations of parameters a, PO, 
GP, and P,/P, remain invariant. 

Computations for 11.5% horse myoglobin were done for L equal to 1, 10,215 and 
100 ,B for the same range of values for G as was used for the hemoglobin studies; u, 
was taken as 1.5 x 10m9 for the myoglobin computations. Figure 1 shows the concen- 
tration profiles obtained for 15 ‘4 hemoglobin. We have also done the computations 
for 34 “/;, human hemoglobin for different membrane thicknesses. However, the graphs 
for 34% hemoglobin and 11.5 % myoglobin are qualitatively similar to those for 15 P/, 
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hemoglobin and are not shown. Tables 2 and 3 summarize the results obtained for 
15% hemoglobin and 11.5 % myoglobin for G= co. Summaries for other values of 
G are not given because our findings imply that G is 10m8 or larger in value and the 
results obtained for G= lo-* differed little from those obtained for G= co. Figures 
2 and 3 show the dependence of facilitated and diffusive fluxes on thickness and fig. 4 
shows the facilitation, F= Jr/J,, as a function of membrane thickness for 15 7; 
hemoglobin. 

COMPARISON WITH KREUZER-HOOFD FOR G=co 

When G is infinite our boundary conditions become the same as those used by 
Kreuzer and Hoofd (1970), and in view of the discussion in the introduction we should 
expect agreement between their results and ours for sufficiently thick membranes. 
We have computed the Kreuzer-Hoofd solutions using our parameters for 15% 
hemoglobin. Table 4 gives the difference between our result and that given by the 

TABLE 4 

Comparison of Kreuzer-Hoofd results for 15 % hemoglobin with ours 

L Percent differences Percent difference 
in J: in J, 

3k 0.06 0.16 
100 0.06 0.17 
25 0.21 0.68 
10 1.16 4.92 
5 4.10 24.3 

* Difference between Kreuzer-Hoofd results and ours as y0 of ours. 

Kreuzer-Hoofd method, as percent of our result, for different membrane thick- 
nesses. The total flux was obtained by integrating eq. (5) to obtain eq. (15), the first 
term of which 

(15) J, = - D:wO [W(O) -W(l)] + D,b [V(O) -V(l)] 
L L 

is the diffusive flux, Jn, and the second term the facilitated flux, Jr. The values of V(0) 
and V(1) given by the two methods were then substituted in the equation, the values 
of W(0) and W(1) being the same for the two methods. Thus the diffusive flux is cal- 
culated exactly by both methods, given W(0) and W(1) and the difference is in the 
calculated facilitated, fluxes. However since the total flux is the experimentally measur- 
ed quantity we give the percent deviation in that as well as in the calculated facilitated 
flux. Note how close the results are for membranes down to 25 ~1 in thickness. Even 
for a 10 p membrane the deviation is not large but it increases markedly as one goes 
to thinner membranes. 
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EFFECTS OF MEMBRANE THICKNESS AND INTERFACIAL RESISTANCE 

It may be seen from figs. la-ld that for a given interfacial conductance the concen- 
tration profiles, plotted in dimensionless variables, are not independent of the 
membrane thickness. This effect is also present in the Kreuzer-Hoofd solutions. As a 
result V(0) -V(l) in eq. (1 ) is not constant for fixed W(0) and W( 1) so that the facili- 
tated flux does not depend solely on l/L as does the diffusive flux for fixed W (0) and 
W(1). If V(0) -V(l) were constant for G= co the facilitation, F = J,/J,, would be 
independent of membrane thickness but in fact both our results and those of Kreuzer 
and Hoofd predict that it must eventually decrease as membrane thickness decreases. 
Kutchai (1970) reaches the same conclusion from his studies of the time dependent 
equations for O2 uptake by layers of hemoglobin. 

For thick membranes our results approach those of Kreuzer and Hoofd (1970). 
It should be noted that as L+co the effect of any finite interfacial resistance eventually 
becomes negligible and hence for su~~iently large L the dimensionless profiles be- 
come essentially invariant and Jr becomes inversely related to membrane thickness. 
As shown in fig. 2 the smaller the interfacial conductance, G, the greater the thickness 
required to give an approximately l/L behavior in Jr. This departure of Jr from l/L 
behavior with decreasing G is much more marked than for the diffusive flux, Ju, as 
is seen in fig. 3. The straight line in fig. 2 is obtained by replacing V(0) and V(1) in the 
equation for Jr by V:(O) and V;(l), respectively, which are the values that V would 
take at the boundaries if the hemoglobin were in equilibrium with W for the G = co 
case. Thus the straight line is the large L a symptote of Jr. 

Wittenberg’s data on the facilitated diffusion of oxygen through hemoglobin 
indicates that the facilitated flux is inversely proportional to membrane thickness 
down to L= 64 p with possibly a small deviation for L= 25 p. We must conclude, 
therefore, that G must be of order 10T8 or greater. 

In fig. 4 we have plotted the facilitation, F = J,/J,, as a function of membrane thick- 
ness for different values of G. For all values of G, F approaches a fixed asymptotic 
value as L increases, the approach to the asymptotic value being more rapid in L 
for high values of G. The asymptotic value for large L corresponds to the solution for 
which the oxygen-hemoglobin reaction may be assumed to be at ~uilibrium. 

COMPARISON WITH MURRAY’S SOLUTION 

It is not possible to compare our results with those of Murray in the same way as we 
have done in comparing them with those of Kreuzer and Hoofd. Murray’s solution 
differs from the Kreuzer-Hoofd solution in that the reaction equilibria assumption 
is extended to both boundaries and this reduces the number of boundary conditions 
by two. Whereas in our method and in that of Kreuzer and Hoofd the fluxes are 
determined by the solutions, Murray introduces the experimentally determined flux, 
Jr, into the problem and uses it to fix V (0) -V (1). But as a result of this manuever the 
assumption of reaction equilibrium at the low P,, boundary gives a value of W(1) 
which is too large for the experimental conditions which he simulates unless one 
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assumes a value of G that falls between lo-’ and lo- lo. But as we have shown (fig. 2) 
this pushes the region of l/L behavior for the facilitated flux outside the range in which 
Wittenberg’s results (1966) place it. Murray’s solution can only be good for very thick 
membranes for which the reaction equilibrium assumption is good right out to the 
boundary and we have to conclude that it is really not adequate to describe the results 
Wittenberg obtained for his thinner (25 p and 64 ,u) membranes. 

THE EFFECT OF TORTUOSITY 

To compare our results with Wittenberg’s data we must take into account a correc- 
tion for tortuosity of the channels in the millipore filters. Our calculated fluxes were 
usually 1.4-1.6 fold greater than Wittenberg’s measured fluxes for a given thickness 
of membrane. The tortuosity effect has been discussed by Keller and Friedlander 
(1966) who found a factor of 1.63 for diffusion of methemoglobin through millipore 
filters and by Wittenberg (1970). Murray (1971) corrected for this by assuming the 
diffusion path was 220 p for a 150 p thick membrane, a factor of 1.47. Kreuzer and 
Hoofd (1970) on the other hand used an L of 180 p in their calculations for comparison 
with Wittenberg’s results on 150 p membranes. We have found that we need a cor- 
rection factor in the range 1.40-1.50. The correction factor involved has to do with 
the estimation of the ratio of area for diffusion divided by path length, A/L. Recall 
that the measured amount of oxygen crossing a membrane is the membrane area 
multiplied by flux, J,, of eq. (15). Thus the measured amount crossing a membrane is 
proportional to (A/L) and so we are faced with the problem of estimating this ratio if 
channels are not straight through and uniform in cross-section. The tortuosity 
correction is a correction from the measured ratio (A/L) to an effective ratio (A*/L*). 
For the diffusive flux the entire correction for non-straight through channels is in this 
ratio ; for facilitated flux this is probably the main effect although we cannot exclude 
a further effect due to effective path length, L*, because of the non-linear reaction 
terms. For specific geometries the correction in A/L may actually be partitioned 
between the estimated area and channel length. For example if the channels are all of 
uniform cross section of total area A* and channel length L* > L then the true ratio 

2.5 

-2 
E 2.0 
1 
3 1.5 

Hemoglobin Condmd 

Fig. 5. Dependence of facilitated flux on hemoglobin concentration for a membrane of 150 p thickness and 
for G= 00. Wittenberg’s data (0); our computed results (-); computed result corrected for tortuosity 

factor of 1.44(--). 
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is A*/L*. The measured membrane thickness is L. If as is frequently done the cross 
sectional area is calculated from the measured volume entrained in the filter, V =AL = 
A*L*, and A/L= (A*/L*)(L*/L)‘. Thus for this geometry the measured ratio A/L is 
(L*/L)’ times the true ratio (A*/L*). We have corrected our results as though the 
correction could be partitioned between the area and channel length in this way. Thus 
points in fig. 2 are Wittenberg’s data for 17.7 % hemoglobin corrected for tortuosity 
by the factor (L*/L)2= 1.44 and reduced to 15% hemoglobin by the approximate 
correction factor, (Dv - b)150,0/(Dv. b)17,70,0 = 1.096. Using the tortuosity factor 
correction of 1.44 we have also fitted Wittenberg’s (1966) data which show the 
dependence of facilitated flux on hemoglobin concentration for a 150 p membrane. 
Figure 5 shows Wittenberg’s data, our calculated results for a 150 p membrane 
and our results corrected for a tortuosity factor of 1.44. 

Appendix 

Referring to eq. (15) of the text, the facilitation is given by eq. (Al). 

(Al) Dv [v(O) -WI 
F = Dw[w(0)-w(L)1’ 

Hence the total flux can be written as in eq. (A2). 

(A2) J,=(l+F)$“[w(O)-w(L)]. 

Substituting w (0) = a, P(0) and w(L) = cr, P(L) gives eq. (A3). 

(A3) J,=(l+F)F [P(O) - P(L)1 * 

Add eq. (4) of the text to give the following eq. (A4). 

(A4) 2 = PO -PL-[P(o)-P(L)]. 

Substituting for P (0) - P(L) in eq. (A3) above gives us (A5). 

Let V be the volume flow rate in cm3/sec of the gas flushing the low PO, chamber. 
Let A be the membrane area in cm2. Then if there is rapid, uniform mixing of gases 
and V % J,. 

P, = J, * 22.4 
103A 
v 760=J+7x106mmHg. 

Substituting for PL in eq. (A5) and solving for J, gives eq. (A7). 

(A7) J, = (l+F)D,a,Po 

L+(l+F)2D,a,[k + &(17x106)] ’ 
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For Witt~berg’s experiments let us take A=9 cm’, V = 1 cm3/sec. Then 17 x lo6 A/ 
2V= l/(1.3 x 10e8). Hence if G< 1.3 x lo-’ the small PL at the low PO, side has little 
effect and J, is given approximately by eq. (A8). 

(A81 t - J _ (l+FPwcc,Po 
L+(l +F)2D,a,/G ’ 

However if G > 1.3 x lo-’ the conductance term is negligible and the P, set by the 
flushing of the low Po, side of the chamber plays the major role in eq. (A7) to give 
eq. (AS). 

w (l+~PwasP~ 
Jt N L+ (1 +F)D,a,A(1.7 x lO’)/V - 
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