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1. INTRODUCTION

In [1} Curtis showed that certain types of finite Lie type groups had a
unique block of defect 0. Blocks of defect 0 were studied later in [7} and [2]
in the apparently more general context of a finite group with a split (B, N)-
pair. This note completes the discussion started in [7] and [2] by determining
the number of blocks of defect 0 in a group with a split (B, N)-pair. The more
difficult question of determining all blocks has been successfully attacked by
Dagger [3] and Humphreys [6] in the contexts of finite Chevalley groups and
finite Lie type groups, respectively. Some of their techniques seem difficult
to use with only the split (B, N)-pair axioms, i.e., without appealing to classi-
fication theorems which say that a given split (B, IV) pair is really a Lie type
group.

The finite groups with a split (B, N) pair have been classified by Tits [9],
Fong and Seitz [4], and Hering, Kantor and Seitz [5], and so the theorem of
this note is a theorem about “known” groups. Nevertheless, the proof covers
all these groups simultaneously and is much more elementary than the classi-
fication theorems.

We assume familiarity with either [2] or [7]; however, most of II can be
read with only a familiarity with the first facts about groups with (B, N)
pairs as presented in [8], for example. The notation is standard. {--+) is
the subgroup generated by -+, and X = g~1Xp.

II. A SusGrour oF A MINIMAL PArABOLIC SUBGROUP

Let G be a group with subgroups B, N which give G a (B, N) pair. Let
{51, $3 5., 5.} be the generating involutions of the Weyl group W = N/H,
H = BN N. Assume G is saturated, that is H = (\{B" : ne N}. (In the
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terminology of Tits’ buildings [9], this is the same as assuming that N is
the full set-wise stabilizer of an apartment.) For w € IV, let I(w) be the smallest
integer 7 such that w can be represented as a word of length n in the 5,’s. There
is a2 unique element =, € W such that I(zv,) is maximal. w2 = 1. Let B, =
B, = B N B*ifor ] <1 < n Recallthat B U Bs;B is a subgroup of G.

ProposiTION 1. Foreachi, | < i < n, let wys;wy = s;and P; = B U Bs;B.
Theﬂ PZ N P;l_b‘o = B?, W) BiSiB,i .

In the context of Tits’ buildings, we are considering a face 4 of codimension
one in the chamber stabilized by B and the face 4’ in the opposite chamber
(opposite with respect to the apartment stabilized by N) of the same type.
The subgroup of the proposition is the stabilizer of 4 and 4, and the prop-
osition asserts that this subgroup is 2-transitive on minimal galleries connect-
ing 4 and 4.

Proof. That wys, = s; for some j is a fact about root systems. (See,
e.g., [2, 1.8 viii].)

Let P; 0 P}’ act by conjugation on the set of conjugates of B which are
contained in P; . It suffices to show that this action is 2-transitive and that the
stabilizer of B in P, N Pvis B, .

Every parabolic subgroup, B included, is self-normalizing [8, Théoreme 3].
Thus the stabilizer of B in P, P is BN P; NP> But BN P; =
B N (B Y Bs;B) = B by the Bruhat Theorem ([8, Théoréme 1 (ii)], which
says if w, w' € W and BwB = Bw'B, then w = w") s;€ P;; so BN P} =
B N Pji*o = B N PP, B N B’ = B; by definition, and so, to show
that the stabilizer of B in P; N P{ is B;, it suffices to show that
B N (Bs;B)v0% = ¢. Using the axioms for a BN pair, one can easily show that
s;20,Bs;Bw,s; C U BwB, where w ranges over certain elements of I with the
property that [(z) > 1. Knowing this, the Bruhat Theorem implies that
B N (Bs;B)wosi = ¢, This proves that B, is the stabilizer of B in P; N P},

Théoréme 3 of [8] says that two conjugate parabolic subgroups contained
in a common parabolic subgroup P are conjugate in P. Thus the set on which
P, N PP actsis {BY: g€ P;}. But P, = B U Bs;B; (2.11 of [2]). Thus the set
being permuted is {B} U {B*? : b € B;}. B;, the stabilizer of Bin P; N P}y, is
certainly transitive on the second set in the union. Moreover, wys,w, = s, € P;
says that s; € P; N P}, and so P; N P}e is transitive on the entire set. Thus
it is 2-transitive, and the proof is complete.

IT1. SpriT (B, N)-Pairs AND BLoCKs OF DEFECT ZERO

The notation is the same as in Section II. In addition, we assume that G is
finite and that its (B, N) pair is split and has characteristic p for some prime p.
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This means that B has a normal p-subgroup U which complements H and
that H is Abelian and has order coprime to p. (See Section 3 of [2] or [7]. In
[7], U is called X, V is called ¥, but otherwise the notation in [2] and [7] is the
same as here.) -

We collect some facts about G which will be needed below. For we W,
define U, = U N U® and U, = U N U, (U, is well defined in spite
of the fact that w is a coset of  in N and not an element of N because
U is normalized by H, and so any coset representative of w will give the same
Uy )Let U, =Ug, ¥V, = U$: and note that U, - H = B;.

(A) Let weW. I(ws)> l(w) implies U, = U(U,)* and
U, 0 (Uy)> = {15

lws;) < l(w) implies U,~ = UyUy, )% and U; 0 (U, ) = {1].

(B) ForweW, U=U,U,.

(C) G = UpewlU (@) B and U¥e N B = {1}, where (@) is any coset
representative of wkH, and U, Uy ()L is a set of coset representatives of
BinG.

Let(s;), I <1 < nbe coset representatives in N of the s; .

(D) If uelU;, w1, then (5, %ufs;) = flu) hlu)s,) g{u). where

flw)ye Us, filw) # 1, h(w) € H, and g(u) e U, gi(u) + 1.

These are 3.3,3.4,3.5and 3.7 in [7] or 3.3 and 4.4 in [2].

From Proposition 1 we see that UH U UH(s,) U, is a group. It contains
the (8;)7Yuls,), fi(w), h(u) and (s;) of (D), and so g,(u) belongs to the inter-
section of U and this group which is just U;. Thus AJ{u)s,) =
Fu)y Hu)sdg ()t e U VU, . We have proved

ProrOSITION 2. (s;) may be selected from UV U, N s;H.

In the terminology of [2], Proposition 2 says that all split (B, N) pairs are
restricted (3.9 of [2]). This fact is useful for the construction of characteristic-p
representations of G. (See 5.7 of [2] or 3.17 (c) of [7].)

From now on, assume that the (s;) are chosen according to Proposition 2.

Lemma. (U, V> = UH, U UH(s;) U;, where H; = H U, VD,

Proof. The inclusion 2 is clear, since (s;)e U;V;U;. To prove C, it
suffices to show that U,H; U UHs;) U; is a group because it certainly
contains U; and Uji == V;. Checking that UH; v U;H(s)U, is a group is
straightforward using (D) and remembering that gJx)e U;, that {s)
normalizes H; and that H; normalizes U, . This proves the lemma.

Now let Hy = H»:weW, 1 <i<a>. (H¥ is well defined as
H is Abelian.) By 3.28 of [7] or 3.10 of [2], a coset representative
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() of each we W may be chosen in such a way that for any =, o’ € I¥,
(w)(2w Yww') L € Hy . We choose the (w)’s with this property.

ProposITION 3. Let G, be the subgroup of G gemerated by the p-sub-
groups of G. Then Gy = Uyew Uy~ (w) 1HU. G, has a split (B, N) pair with
B, = HU, Ny = NN G, and with Weyl group generated by (s,) Hy,...
(s2) Hy. Gy <0 G and G,H = G.

Proof. Once the second sentence is checked, every other assertion is
easily verified. We first check O. G, contains U and each H; by the Lemma.
G, is normal in G and so G, contains H,,. By Proposition 2, (s;) € G, and
since modulo H, each (w) is a product of the (s;)’s, each (w) € G, . This is
sufficient to give the inclusion 2. To check the other inclusion we show that
the set e Up () 1H U, is a group which contains all p-Sylow subgroups
of G. Call this set X.

U is p-Sylow in G by (C) and the fact that U,,~ = {1} implies that w = 1.
Hence an arbitrary p-Sylow subgroup of G is of the form U™, we W,
ue U by (C). Thus if X is a group, then it surely contains all p-Sylow sub-
groups.

We check that X is a group. Let w, @' € W. Then Ug(w ) H,U
U, (w)1H U = Uy (w') U, ~(w) 1H,U, using (B) and remembering that
H, normalizes any U,, and any () normalizes H,, . Using induction on I("),
(B), and the fact that (v, )(ws) == (2,2,)(mod H,) for all w;, w, € W, we see that
to prove that this complex is contained in X it suffices to check that for all £
(591U, (w)* C X.

If l(ws;) > I(w), then

(5:) U (@)™ = (Up)os;) Nw) ™ C Uy (wsi)H, € X by (A).

Now suppose [(ws;) < l(w). Then (5,) 21U, (w) ™ = UF(s,)2U,, (s:)(w)™
by (A). But U C{1} U UHs,) U; by (D). Thus (s)72U, (w)*C
Uy (w05:) 7 Hy O UH (53) Ui(si) 2 U (s:)(w) ™. The first set in the union
is contained in X and the latter is just U,(s;) U; U’ ws,(8)Hw) " H, - ((s:)* € Hy,
and so normalizes U, .) But this is contained in U (s,) Uss (8:) () T HU by
(B) which is equal to U, ~(w)y*H,U by (A). (That (U, )‘34’ = (Uy,s )‘sn)
easily checked, since s> = 1 and since H normalizes U;;s, .) But this set is
contained in X and the proof is complete.

THEOREM. Suppose G, a finite group, has a saturated split (B, N) pair of
characteristic p and that G, is the subgroup of G generated by the p-subgroups
of G. The number of p blocks of G of defect zero is | G : Gy |.

Proof. Corollary 5.12 of [2] and Proposition 3 say that G, has a unique
p block of defect 0 (A hypothesis was omitted in 5.12 and 5.11 of [2]. You
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must assume that Hy = H, where Hy (what we have called Hy) is defined
in 3.10 of [2]. The argument used to prove Theorem 4 of [1] may be used
with facts from [7] to show that G has a unique p block of defect 0, also.)
Let { be the ordinary character of G in this block. Then, (1) = | U | by
5.11 of [2].

By Theorem 2 of [1], G has an ordinary character of degree | B: H| =
| U'| which must then belong to a block of defect 0. In fact, the ordinary
character y in any block of defect 0 has degree | U | because | U | 1 ¥{1} and
the irreducible modular representation afforded by y has degree less than or
equal to | U | (4.3(b) of [2] or 3.9(b) of [7].)

Now Clifford’s Theorem implies that the restriction of any such y to Gy is
just { since (j G : Gy |, p) = 1. Thus to prove the theorem it suffices to show
that there are | G : G | extensions of { to a character of G. There are at least
| G : Gy | extensions which may be obtained by multiplying a fixed extension
by the various (linear) characters of G which contain Gy in their kernels.
But there are no more than | G : G, | extensions as each is a constituent of
{6 of degree | U | and as L°(1) = | U | | G : Gy |. The proof is complete.

This theorem corrects 3.30 [7] and extends 3.12 [2] (where, as pointed out
in the first paragraph of the proof, a hypothesis about H was omitted.)
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