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ABSTRACT

The results of various numerical experiments on quasi-
geostrophic turbulence are presented and discussed. The model
used for these experiments is essentially that described by
Steinberg (1971, 1973).

The results presented are from four different experi-
ments. In the first three of these the model was forced by
maintaining a heat source at wave number 8. These experiments
differed in the specifications of the frictional mechanisms
which were used.

The fourth experiment contained the same frictional
specification as the first one but the forcing was in wave
number 1 (the largest permissible scale).

The discussion focusses predominantly on two features
of the experiments. The first of these is the effect of varying
the scale of the forcing on the approach to a quasi-steady energy
spectrum. The second feature of interest is the effect of the
frictional specification on the final shape of the energy spectrum,
particularly as regards the slope of the spectrum for higher wave
numbers.

In the later part of the report the distribution of
energy under quasi-steady conditions is discussed theoretically
for a specification of heating and frictional parameters typical

of that used in experiment 3.
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1. INTRODUCTION

In an earlier paper (Barros and Wiin-Nielsen (1974)),
hereinafter referred to as BW the authors presented the results
of a numerical turbulence simulation experiment using a two-
level quasigeostrophic B-plane model. Although this experiment
resembled that of Steinberg (1973) in some respects there were
important differences, perhaps most significantly in the speci-
fication of lateral boundary conditions and the model forcing.
The BW study used a B-plane channel and zonal velocity and thermal
fields. The model was forced through diabatic heating via a
Newtonian mechanism in which the equilibrium temperature field
was a specified function of latitude. Although the purpose of
the experiment reported upon in BW was to simulate large scale
atmospheric flow it was also mentioned that a number of experiments
had been carried out with the simplified model of Steinberg (1973).
The purpose of these experiments was to examine the effects of
changing various empirical parameters. We shall, in the present
report, display and discuss some of the results of a selected
group of these experiments, paying particular attention to the
separate effeéts of changing the scale at which the model is

forced and/or different specifications of frictional mechanisms.

2. THE MODEL

The model which was used is the quasi-geostrophic two
level model as discussed in BW. The horizontal domain and boundary

conditions which were used are as in Steinberg's (1973) study, i.e.



a square region with cyclic boundary conditions in both directions.
Consistently with this the B-effect is neglected so that the

governing equations for the model are then as follows:

0q1 2

i “61'Vq1 + é g H + w?3g, - A(g; - C3) (2.1)
op

g3 2

e = =V3-Vqs - AR p+ w2gs + A(gy - T3) - Kzu (2.2)

ot v focp

where the quantities and parameters entering into these equations
are as explained in BW.

The square domain is divided into a grid of 64 points
on each side such that Ax = Ay = 475 km. We follow the convention
of Steinberg (1971) in defining a two dimensional Fourier expan-

sion for a quantity such that

N
Vo= ) ¥ (2.3)

v o= L IA 1d (mx+ny) max (|m|, |n]) = « (2.4)
m n ' !

and J = 2n/L with L = 64Ax. The summation in 2.4 is over both
positive and negative values of m and n with reality being ensured
by requiring that A = A* wher *

v q ing -lml,-]nl In|, |n] ere ()* denotes the
complex conjugate. Here N is the maximum of m or n allowed by

the dimensions of the region and the grid length. In the present

case N = 32.



The diabatic heating function, H, was specified by a
first order Markov process as outlined by Steinberg (1973). 1In
this process the heating fields at times t and t + At are related
as follows

t+At t

H = ru® + [1 - r2]1/2 gL

H (2.5)

where H is composed of Fourier components whose larger wave

number is m, . The amplitude of the Fourier coefficients are
chosen randomly from a Gaussian distribution and normalized so as
to maintain the total amplitude of H at a specified constant value.
The quantity m, is specified and fixed for a given experiment.

In all experiments the time integration of the model was
begun from an initial state of rest. 1In order to speed up the
generation of available potential energy a value R = 0.8 was used
for the first 100 time steps. Thereafter R was fixed at the value
0.7.

Finite differences were used to evaluate the right sides
of 2.1 and 2.2, the Arakawa second order scheme being used for
advective terms. The Adams-Bashforth scheme was used for time
differencing.

Diagnostic calculations of the stream function fields
at levels 1 and 3, £he vertical motion field at level 2, and
various energetics quantities were carried out every 24 time steps.
For this purpose fast Fourier transforms were used to compute the
Fourier coefficients of g; and g3. The stream functions y; and y; are
obtainable directly in transformed form from the definitions of

gy and gj:



VZy; - A2 (y1 - y3) q1 (2.6)

V2s + A2 (Yy - V3)

ds3 (2.7)

These procedures are identical to those used by Steinberg (1973)

and therefore need not be discussed further.

3. EXPERIMENTS

The relevant externally imposed parameters for the
experiments which will be discussed here are presented in Table 1.
We include also the number of time steps for each experiment in
hours of simulated time. 1In each case the time step was one hour.
All other parameters appearing in equations 2.1 and 2.2 were
assigned the numerical values given in BW.

As illustrated in Table 1, experiments 1 and 4 differ
only as to the wave number at which the forcing is applied, while
experiments 2 and 3 are concerned with variations in the horizontal
and Ekman frictional coefficients v and k. The choice m, = 8 was
made to facilitate comparison with Steinberg's (1973) study. On
the other hand it was found in BW that, although the forcing was
in the lowest mode of the model (in that case the zonal thermal
field) the major part of the potential to kinetic energy conversion
took place in the baroclinically active part of the spectrum. To
see if a similar behaviour could be obtained in the present model
we chose also, in experiment 4, to force the thermal field in the

lowest mode, in this case m, = 1.
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3.1 The Development of a Quasi-Steady Energy Spectrum.

The integration time for all experiments was long
enough to ensure the development of a quasi-steady energy
spectrum. This is illustrated, in Figure 3.1, for experiment
number 1. In this case quasi-steadiness was reached after 200
time steps.

The approach to steadiness varies in an interesting
way when the scale of the forcing is varied. This is illustrated
in Figure 3.2 where similar results are presented for experiment
4, 1In this case there are several features which distinguish the
time dependent behaviour from that illustrated for experiment 1.
The presence of considerably more energy in experiment 4 indicates
that the energy generation is more efficient in this case. It is
also interesting to note that although available potential energy
is initially predominant it is eventually exceeded by kinetic
energy.

Another noteworthy feature is illustrated in the
behaviour of the kinetic energy for wave numbers 1 and 4. While
the kinetic energy in wave number 1 is predominant for several
hundred time steps it is eventually exceeded by that in wave
number 4. 1In fact, towards the end of the integration period the
predominant amounts of both available and kinetic energy were to
be found in wave numbers 3 to 5.

To illustrate the energetics of experiment 4 we show,

in Figures 3.3 and 3.4 the non-linear cascades of available potential
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energy and kinetic energy. As illustrated by Figure 3.3,
potential energy is cascaded to higher wave numbers with the
dominant gain through non-linear interactions being in wave
number 4. On the other hand Figure 3.4 shows that wave numbers
7 to 9 lose kinetic energy by the non-linear cascade process.
Most of this cascade is to the larger scales (2<k<6).

Figure 3.5 depicts the conversions of available
potential energy to kinetic energy. Again, the dominant conver-
sions are in the wave number range 3<k<5. Note that the quantity
plotted in Figure 3.5 is C(X,A), and that C(K,A)<0 for all wave
numbers.

The kinetic energy, available potential energy, and
enstrophy spectra for case 4 are shown in Figures 3.6 through 3.8
respectively. The slope of the kinetic energy spectrum in the
range 10<k<20 is =-2.2, somewhat less negative than the values which,
as we shall illustrate below, were found for the remaining three
experiments. The corresponding potential energy slope is con-
sistent with what would be expected from the analysis of Merilees
and Warn (1972).

Finally, we complete the documentation of case 4 by
displaying, in Figure 3.9, the flux of enstrophy through the wave
number domain. The procedure for computing this quantity has
been outlined in BW. We note that, although the enstrophy flux is
not constant anywhere, it varies by a relatively small amount in

the range 9<k<15.

11
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It is of interest to compare the energetics of experi-
ment 1 with those of experiment 4. Figures 3.10 and 3.1l depict
the non-linear conversions of available potential energy and
kinetic energy respectively for experiment 1. Figure 3.12 depicts the
conversion from available to kinetic energy. The generation of
available potential energy is in wave number 8. While potential
energy is cascaded both up and down the spectrum the predominant
gain is by the smaller scales (kx>8). It is interesting to note that
there is a small loss of available potential energy, due to non-
linear cascades, in waves 1 to 5. This loss is compensated in
part by a conversion of kinetic energy to available potential
energy in these same waves (Figure 3.12). The non-linear cascade
of kinetic energy is predominantly from wave number 8 to the
larger scales.

While both kinetic and potential energy are cascaded out
of the potential energy”source region, Figure 3.12 demonstrates
that potential energy is converted to kinetic energy predominantly
in this source region. This in in contrast to experiment 4 where
the conversion is predominant in the range 3<k<5.

The non;linear enstrophy gain is shown in Figure 3.13.
This figure demonstrates that the predominant enstrophy cascade
is toward smaller scales.

Finally we show, in Figures 3.14, 3.15, and 3.16, the
spectral distribution of kinetic energy, available potential

energy, and enstrophy respectively. Apart from the sharp local

17
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maximum at wave number 8 the energy maxima are at wave number
4. The slopes of -2.7 and -4.7 in the range 10<k<20 are in fair
agreement with the -3 and -5 which may be deduced from the

current quasi-geostrophic turbulence theories.

4. THE EFFECT OF VARYING FRICTIONAL PARAMETERS

We shall now proceed to a comparison of the results of
experiments 2 and 3 with those of 1. Discussion of experiment 2
can be limited at the outset to the comment that the results
differ only in minor respects from those of experiment 1. This
is perhaps best illustrated by examining the energy and enstrophy
spectra for this case. These are shown in Figures 4.1 through
4.3, It is apparent from these figures that the effect of
modifying the boundary layer frictional coefficient is very minor
in this case, especially as regards the structures of the spectra
for high wave numbers (k>10). This is in agreement with the con-
clusions reached in BW.

On the other hand the effect of introducing horizontal
friction is quite pronounced, again in agreement with the con-
clusions of BW. The energy and enstrophy spectra for experiment 3
are shown in Figures 4.4 through 4.6. It is apparent not only that
the slopes in the range k>10 are steeper but also that they deviate
systematically from constant values, tending to steeper for the
higher wave numbers.

This behaviour is also consistent with the theory pre-

sented in BW where it is shown from similarity arguments that the

25
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-3 power law for the kinetic energy spectrum in high wave
numbers can be modified, when v#0 to the following form:

K

K(k) o k3 exp[- 2 (k2 - Kez)], K> Ky (4.1)
(@]

where

1/6 -1/2
Ko = TNe \Y
and o is a dimensionless constant. Here ng is the enstrophy
cascade rate at k = Ke®
Where boundary layer friction is present in the model

also 4.1 is modified to

L
K(k) = « (3%os) eXp[-Ot —-E—'-z——g] (4.2)
o

where s = ka/nel/3, a = 0.2, and k is the boundary layer frictional

coefficient. For experiment 3 as = 0.8. Equation (4.2) explains

the steepering of the spectrum for large values of K(K>>Ke).

5. A THEORETICAL DISCUSSION OF THE DISTRIBUTION OF ENERGY UNDER
JUASI-STEADY CONDITIONS FOR EXPERIMENT 3

A characteristic feature of all the experiments which
have been discussed is that the evolution of energy and potential
enstrophy is such that, after an initial adjustment period, these
quantities become quasi-steady. In order for this state to be
maintained there must be an approximate balance between generation
and dissipation of both energy and enstrophy. Some insight into

the distribution of energy in wave number space in this situation

32



can be obtained by examining explicitly the circumstance in
which there is an exact balance between generation and dissipa-
tion of energy and potential enstrophy. We shall confine
attention to the role of lateral diffusion in maintaining this
balance.

We define total potential enstrophy as follows:

2 = 1 (@1? + gs?)da (5.1)
p 28 s

where S is the total horizontal area of the model and dA is an

increment of area. Now, taking acpz/at 0 we may easily show

from equations 2.1 and 2.2 that the following must be true:

-— %—g I (ql - qS)HdA + \2)—8- J [qlvqu + q3vzq3]dA = 0 (5-2)
S S

Similarly we define the total energy as the sum of

available potential energy and kinetic energy as follows:

E=K+A-= 5 f [(T61)2 + (V93)? + A2 (Y1 = ys) ?]1dA (5.3)
S

If this quantity is also steady then it also follows from 2.1 and
2.3 that

f [(V2y;)2 + (V2y3)2 + A2VT-VT]dA + L J HTdA = 0 (5.4)
S S

0ic

S

where T = Y1 - V3.

We shall transform 5.3 and 5.4 into the wave number
domain by defining the Fourier transforms of y¥; and Y3 to be given
by

33



elJ(mx+ny),

<
I

~1

~1
>

j=1,3 (5.5)

= A%, (5.6)

where J = 2m1/L and L = 64Ax. M and N can not exceed 32 in this

case.
The following definitions will also be useful:
K = 3’ ) (m? + n?) |A. | 2
m,n 2 5=1,3 j,m,n (5.7)
Bm,n = A1,m,n - AS,m,n (5.8)
Poon T %i ) ,Bm nl2 (5.9)
! j=1,3 !
K = ) J)K ; m?+n®=«? (5.10)
K m o men
_ Y . 2 2 _ 2
P, = ) Pm,n’ m? + n? = k (5.11)
m n

We specify the heating function H to be made of a

single Fourier component whose (integral) wave number is m, i.e.

eiJ(,Q,X + pY) , H - *

- H le
2,p _Ql_p 2,p (5 )

H = ) ) H
Lp

This expression for H, where used in 5.2 and 5.4 leads to the

following

B H_|
2 2) 2 | m'm

y 2) 2 u
Z{ k'K + <—ﬁ+ 2K>PK}

34



1
2 2 =
Z{ KK, + K pK} = =375 |BgHy (5.14)

where

= H* + B* H
BmHml % 2 (BQIIP L,p L,p ’Q'Ip)’
P

22 + p? = m? (5.15)
Before proceeding further we may note that 5.13 provides
some immediate information on the behaviour of K . Since the
right side of 5.13 is finite the sum on the left side must be also.
If we ignore for the moment the practical requirement that k must
be bounded and assume that all integral valyes are permissible
then it is obvious that, for large «, KK must decrease more rapidly
than «~'. (Note that, for large k, PK~K'2KK). This requirement
explains, in part at least, the steepening of the energy spectrum
in the high wave number range which was observed in experiment 3.
In order to put 5.13 and 5.14 into more convenient form

we define the following quantities:

K = ] K ; P=1])P, (5.16)
K K
nKZ = (z KZKK)/K; nK‘+ = (EK“KK)/K (5.17)
- 2 . v _ L
np2 = (Z ?P )/P; n,' = (z k*P ) /P (5.18)
g2 - 2)\2/J2 (5.19)

Using these definitions it is easily shown, from 5.13 and 5.14, that

35



P _ K .

This result can, in turn, be used to show that

E[SZKZKK - K”PK] = ) [k* - mzKZ](P|< + K (5.21)
K K

A slight rearrangement of terms leads to a useful inequality:

I (2" = m?*®) (P + K) = )(s*k® +«")K_ >0 (5.22)
K K
Consequently most of the contribution to the sum on the left hand
side of (5.22) must come from scales which are smaller than that
defines by k? = m?/2.
If it should happen that the right side of 5.21 is also
positive (i.e. most of the contribution comes from scales which

are smaller than the generation scale) then

(5.23)

This inequality appears to be satisfied for experiment 3. 1In
that case s? = 75 so that s?k? > k" for « < 8. Moreover K, > P,
everywhere.

The experiments also show that, typically, potential
energy is cascaded to smaller scales while kinetic energy is
cascaded to larger scales. Now the denominator of 5.20 will be
negative if there is a sufficient potential energy in the small

scales so that
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] ('m?* - 2¢")P_ < 0 (5.24)
K
When this is the case the numerator of 5.20 must also be negative
and this implies that
D (k" = (s? + m*)k’]IK_ < 0 (5.25)
K
or, that most of the kinetic energy must be contained in scales
which are larger than that defined by k? = s? + m?2.

The above inequalities are most likely to be satisfied
when m is small. In particular 5.23, 5.24 and 5.25 are all
satisfied when m=1. All of the experiments share the feature that
K>P when equilibrium is established. This is consistent with the
fact that available potential energy is cascaded to smaller scales
while kinetic enefgy is cascaded to larger scales.

The truth of the preceding statement for experiment 3 is
illustrated by Figures 4.4 and 4.5 and by Figure 5.1 which depicts
the time evolution of energy for this case. It is interesting to
examine also the non-linear energy conversions for this experiment.
These are shown in Figures 5.2 and 5.3. It is apparent from these
figures that kinetic energy is cascaded predominantly to lower wave

numbers while potential energy is cascaded to higher wave numbers.

6. CONCLUDING REMARKS

It is useful at this stage to summarize the salient
features of the various experiments discussed in this report. To

begin with we examined experiment 4 which differed from the others
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Figure 5.1: As Fig.3.2 but for Exp.3.
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in that the forcing scale was that corresponding to k=1, the
largest permitted scale.

There were several distinctive features in the results
of experiment 4. First of all the total amount of energy generated
was larger than that in the other experiments. Moreover, al-
though available potential energy was dominant in the early stages
of the time evolution, kinetic energy eventually dominated.

Another interesting feature was that under near equilibrium con-
ditions the predominant conversions of available potential

energy to kinetic energy were in the wave number range 3<k<5. 1In

this respect the model behaved in a manner reminiscent of the

channel model discussed in BW. By analogy with that study, the

range 3<k<5 would appear to be the baroclinically active range

for experiment 4. It is also interesting to note that kinetic

energy is cascaded to larger scales from scales in the range 7<k<9.
This behaviour also resembles, qualitatively, that of the channel model
in BW.

The remaining experiments were designed to test the effect
of varying frictional parameters. The forcing scale for these
experiments were chosen to correspond to wave number 8. The energy
generation was much less efficient in these experiments (i.e. as
compared to experiment 4) and as a consequence the equilibrium
state was reached much more quickly (typically in 100-300 time steps
as compared to approximately 800 for experiment 4). This lack of
efficiency may, in part, be due to the possibility that k=8 is a
scale which is smaller than the baroclinically active scale. Con-

sequently, the available potential energy to kinetic energy
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conversions are less effective both in the generation region near
k=8 and in the region 3<k<5. This latter region is inhibited
because potential energy is cascaded mainly to scales which are
smaller than the generation scale.

The results of experiments 1 and 2 were very similar.
However, these results differ significantly from those for
experiment 3. Perhaps the most marked difference was in the
behaviour of the kinetic energy spectra for high wave numbers.
In experiment 2 this spectrum followed, fairly closely, a -3
power law. In contrast experiment 3, which has a horizontal
frictional mechanism, showed a pronounced steepering of the
spectrum in the high wave numbers. In fact the spectrum deviates
systematically from a power law behaviour in this range of wave

numbers.
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