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INTRODUCTION 

VEUAL cues play an important role in “rheotropism”, the tendency of many fish to swim 
againat a current. LYON (1904) found that this motor response could he triggered by move 
ment of visual contours alone, in the ab#nce of currents, and he suggested that the response 
nulled these movements. Aa a result, the animal’s position relative to stationary landmarks 
would be maintained in spite of physical forces tending to carry it downstream. 

This optomotor response is reproduced in the laboratory by placing a fish inaide a 
striped cylindrical drum which rotatea about the vertical axis. There is considerable inter- 
speci5c variability, but many fish move with the drum, whik others respond only with their 
eyes, particularly if they are in tactik contact with a non-moving surface such as the bottom 
of their tank -Jo=, 1963). The whole-body optomotor response has been widely 
used as a behavioral indicator of vision, on the assumption that when the fi8h can de&t 
the moving field, it responds to it (e.g. a-, 1931; CRONLY-DILUIN and Mvmz, 

1965). The ocular response ha8 not been 6tudi& for none of the investigators of finh eye 
movementsprr se dealt with vimullyured eye movement.8 (see w 1971, for ruferences), 
and those investigators of the whole-body optomotor response who mentioned eye move 
ments at all, did so only in passing (S-Y, 19-M; HARDEN-JONEP), 1963). 

Yet it seemed likely that there was potentially interesting information to be gained from 
a quantitative study of pursuit eye movements, a study in which the magnitude of the 
response was noted, rather than just it8 presence or absence. In particular, three featares 
of the gold&h visual system are different from most other vertebrates whose eye movements 
have been studied. 

Firstly, the eyes are situated laterally, with only about 30” of binocular overlap 
(TRuvAxrEmN, 1968). This is very different from the case in primates with visual overlap 
of more than 100“. Since the lateral eyea look at very different parts of the world, there is 
no reason, apriori, to suppose that motion sensed by one eye should influence the movements 
of the other, but there is no report in the literature dealing with this matter in vertebratea 
H~R~UDCW (1966) has demonstrated a very strong coupling of eye movements in crabs. 

Secondly, the golffih lacks a fm (Hmna, 1968) and for this reason is thought to have 
a functionally homogenous retina. But this does not wcessarily follow, for Scuw- 
and KRUCWR (1965) found that the receptive field8 of tectal afferents (retinal ganglion cells) 
were considerably 8malkr in the central retina than in the periphery, and Hasw~ (1968) 
showed that the receptor density was also higher centrahy. These observationa suggest that 
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the goldfish might use the central retina as a functionally specialized region, much like the 
cat’s ureu cenrralis. If so, the fish should attend to objects of interest by “looking at them”; 
that is, by directing its eyes so that the objects are imaged on this area, and a record of eye 
position should reveal such attention. 

Thirdly, the goldfish lacks a cerebral cortex (AIUENS-KUPERS, HUBER and CROSBY, 
1967). The most extensive comparative study made on vertebrate eye movements was 
restricted to mammals, all of which normally have a cortex (TER BRMK, 1936). 

Finally, a more general reason for undertaking this study lay in the hope that the 
sensory-motor integration could be easily analyxcd. The stimulus, a moving target, can be 
altered in a variety of specified ways. The response, eye movement, can be measured 
accurately and simply. The intervening nervous system, lacking a cortex, is physically quite 
small and therefore amenable to detailed physiological analysis. This report deals with the 
relation of stimulus and response; the organization of the intervening nervous system will 
be taken up in future reports. 

Moving taruts wem presented either on a rotating drum comMtricwiththa-sbsrd,orontangant 
uruu;inbothcua3+thetarutwasoutofwater.Thedntm ubtudul1oO”oftheaniaul’aviaualfbldin 
the vor&al plane and 280” horizontally. Its inner surface was llnad with altcrn&ng bluk and white atripes 
of 7” subtutu, and rotated about the vertical axis. The drum poaitku wu monitomdby8Cntlductiwplatic 
circular potontiomster, the shaft of which was the axle for a uml’l frlatkm wbul mating an the top of the 
drum. As the drum rotated, it drove the friction wheel, and the potW&uater voltaga varied lhwuly with 
drum angle, although 0~ turn of the drum cauud many tutu of the f&ion whsel. ‘I’ba voltage out was 
dilferentiated electronically, to give a signal which calibration proved wu llnur with dnnn utgular Vosocity. 
Figure 3, for example, shows two recorda of drum wlodty; upward aul downwatd d&&nna oonupond 
to counterdockwiu and clockwise rotations rcapectiwly. The per&d&z spike-like excura&u fmm the 
maintalned lersls are electrical artifacts ruulting from the lo” dud space in tho potolrtiomstu. Tba tan+nt 
screens were two kymogmphdriven belts, 25 cm higb and 1 m long, with attipu almilu to thou on the 
drum. The belts were placed on either side of the animal, 1S cm from tha cornou, and moved iabpmdmtly. 

Pursuit velocities were obtained from oscillographs of eye position by muuring tha alopu of the purauit 
movements at no fewer than five preselected places in the photograph. Moat commo&, the alopu were 
musumd at @ 1,03.0*5,0*7. and O-9 of the full horizontal awup, which vatiod from 5 sac for high s&cities 
to SO see for the slow ones. 

MostAshwc~~usedoonlyone~on.whichuMcillylPrtsd~thn2ht.Eschexpsrimolltwu~ 
“FEM-” followed by some numkr. The early c xparimuto (FBI-1 to FBM-56) worn u&d out ln Bukeley, 
the later ones in Ann Arbor, and the sxpetintantal eqptPmaat W dyltly ln the two phor In Wkeky, 
thednandia.wrrs46an.thesamplingrPteofthe~yiagrpotrumerwu~~~tbeIdkol~ 
of the black and white stripes was l/9 as determimd with pbWut?r @&xd Ebctrhl Im@umcata, Ltd.) 
In Ann Arbor. the numbers mm 102cm. 6o/uc, and 1120. ruputt~ly. In Brkeby, t& ocular po&lons 
were recorded on the screen of the stomge ouilloscnpa u dots, brief -oftbse~bam 
whose vertical input was a sawtooth voltage linear with tba phau oftlw fIylng apot. Tba nwtooth, usually 
invbi~,wMint~oalywbenonapttnlkintarcsptod~dytal~.Thhmcahodurrlimitodini~ 
pssfulness by the fact that the data wcm available only from tha w andnotuakctrfuslguls. 
In Ann Arbor, this liitation was overcome by employing a umpb-8&bnld circuit (Butr-Brown Modal 
401n~whichsunplsdthenlueoftbeuIRtooth~r~tbltrmdlpatmst,mdbsldtbhnlus 
until commanded to sample again. Sparate sample-and-bold units were ~4 for the two eyu, tuultlng in a 
pair of analog elutrical voltages, each sigulhng the moat rcuntly umpbd position of one eye. 



FIG. 1. This is a lateral view of a goldfish, restrained in a sponge-lined holder, with the opaque 
polyethylene stalk attached by suction to the cornea. The length of the stalk is 1.2 cm. 
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FIG. 8. Tangent screen experiments (FEM-19). The sketches at the right schematize the 
experimental conditions which evoked the responses at the left. In all cases, the tangent 
screens were lined with alternate black and white stripes and moved at u)“/sec. Calibration: 

1 S*Y/large division vertically, 5 set/large division horizontally. 



FIG. 11. Adaptation and OKN. (FEM-33) In all four oscillographs, the upper two traces give 
the eyes’ positions, the lowest gives the output of a photocell monitoring the general illumina- 
tion. In all, the drum rotated at 3O”/sec. Top left: The lights dimmed, and OKN ceased. Top 
right followed by lower left: These two were taken in that order, minutes apart; the tracking 
speed gradually increased as the animal adapted to the dark. Lower right: Finally, after about 
5 min of dark adaptation, standard OKN was resumed in the dim light. When the lights went 
on again, OKN continued. Calibration: 23*0”/large division vertically, 5 set/large division 

horizontally. 
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Qualitative aspects of pursuit 
RESULTS 

In the presence of a stationary visual field, the restrained goWish ~~~~~ fiicked 
its eyes from side to side, as may be seen in Fig. 2, upper row. During the intersaccadic 
intervals, the eyes drifted nasally with a velocity of about O~S~/sec (EMTRR, 1971). (With the 
convention used here, nasad rotations are downward in the upper trace, upward in the 
lower.) When the drum rotated slowly, at less than about f”/sec, the spontaneous saccades 
continued with much the same rhythm as before, but during the intersaccadic intervals, 
a new drift in the direction of the drum’s rotation was superimposed on the spontaneous 
nasad drifI already present. For example, clockwise movement of the drum would be 
expected to induce nasad movements by the left eye, temporad motion by the right. When, 
as in Fig. 2 (second row, right column), the drum moved clockwise at 1*6”/sec, the nasad 
drifts by the left eye increased, while those of the right eye were essentially abolished. For 
larger target speeds, the spontaneous saccades ceased, and the animal showed standard 

cw 

dark and light stripes &u -05 and 0% I& ft-i, mpmtivaly. Conventions: left cr~la above, 
right eye below; clockwii downward, cc~unt8rcl~ upward. CaBration: 300 vertially, 

10 WC horizontally. 
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optokioetic nystagmus (OKN), in which nearly every pursuit movement was followed by 
a reset saccade in the opposite direction (Fig. 2, third and fourth rows from the top). 
It should be noted that the nasally directed pursuit velocity was still generally the larger, 
even for a target velocity of 1 S”/sec. The asymmetry shown in this figure is more pronounced 
than usual, but it was generally true that the tracking responses were not perfectly equal 
in both eyes, even when both saw the same drum velocity, as here. 

The saccadic response to movement was surprising. An abrupt step-like rotation of the 
drum failed to trigger a matching saccade, as occurs in humans (WESTHEIMER, 1954). 
Instead, the fish either failed to respond at all or else made a saccade in the opposite direc- 
tion. A saccade directed against the movement could also be evoked by slow or moderate 
rotations of the drum, as Fig. 3 illustrates. In both records, the trace begins with the drum 

motionless, and the eyes moving spontaneously from side to side over 30-40”. Then, about 
halfway through each record, the drum began to move, clockwise above, couamti 
below, and the eye18 quickly rcqonded with 88oca&1 in the opposite d&Uona During 
the in&mmcadie intervals, the smooth pursuit movemaWs e&al the eyes ia &be direction 
ofthednrm,but,withinafewssc,thtsaccades~prevailad,andtbe~wsrarstotivay 
restrictsdto~8awolPsrritiolpoint,rLiftsd~wsYfromt8omidlinatOwUdtbi)~Oftbb 
movement. The range of positions is much smaibr during OKN than during the qontaneous 
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mode, and its position relative to the midline is interesting, in view of the common supposi- 
tion (e.g. WALLS, 1962) that during OKN the eyes pursue until they can go no farther, and 
then reset. This is clearly untenable, since the fish reset long before reaching an extreme 
position, and in fact reset from a relatively intermediate position to an extreme one. 

This observation that the direction of the stimulus movement set the positions of the 
eyes was investigated further to ascertain if the position of the stimulus played any role in 
setting the ocular positions. This was prompted by the guess that if the retina contained 
some region specialized for acute vision, then the animal might make some effort to direct 
it toward the moving part of the field, as mentioned in the Introduction. Inasmuch as most 
of the animal’s field was filled by the moving drum, it was necessary to localize the move- 
ment, and to this end, opaque black felt cloths were draped over the chamber, leaving only 
a single window subtending 45” horizontally and 100” vertically. (When the cloth covered 
the entire tank, the fish did not respond to movement of the drum, proving that the cloth 
was in fact opaque.) The window was positioned in either the nasal, central, or temporal 
region of the left visual field; that is, centered at 45”, 80”, or 115”, with the anterior direction 
taken as zero degrees. The results from one animal are seen in Fig. 4, a dozen scatter 
diagrams obtained by connecting the outputs of the two sample-and-hold units to the 

LFIza-llb WLF:tJ=4S CLFI6S-1lS TlFt9S-140 

FIG. 4. Target position and ocular kitions. These are scatter diagrams in which the kfi 
eye’s position is plotted vertically, the right eye horizontally, with clockwise movement to the 
right and upward. The axes subtend 35” each. and intersect at the midpoint of the extreme 
positions assumed by the eyes in this experiment. The kgends to the ~ett mdiatc the state 
of the drum: still, rotating clockwise or counterclockwka at lT/sec. The k@nda below indi- 
cate the &Id of view for the data in each column: LP, left &Id; W, CLF, TLF. nasal. 
central and temporal kft ikld. The numbers indkato the an~ukr po&ion of the Wd of view 

in the horizontal plane, relative to O“, the anterior didon. 
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storage oscilloscope. The left eye appeared on the vertical axis, the right, on the horizontal. 
The clockwise direction is along the 45” line; that is, upward (left eye) and toward the 
right (right eye). As the eyes moved, the beam discontinuously indicated the most recently 
sampled positions of each. Since left and right eye samples were obtained at approximately 
8 msec intervals, the beam jerked around the screen in steps separated by this period. First, 
say, it moved upward indicating that the left eye had shifted clockwise since last sampled. 
Then, about 8 msec later, it moved to the right, indicating a clockwise shift by the right 
eye. Thus the beam stayed at each position for 8 msec, and this was sufhciently long to 
leave a stored image of the nearly simultaneous positions of the eyes. During the beam’s 
quick shifts, it left no trace. In the scatter diagrams, most single dots represent interim 
positions during a saccade, while the presence of a broader blackened area indicates that 
the eyes spent a relatively long time there, either drifting or tracking between saccades. 
Each of the oscillographs represents one minute’s movements, and each was’obtained under 
different conditions. The rows have in common the drum movement: still, clockwise at 12”/ 
set, or counterclockwise at the same speed. The three osciliographs in each.column were 
obtained with identical fields of view, as indicated below each. In the upper row, the drum 
was stationary, and the eyes flicked back and forth over the normal range of 30-40”, regard- 
less of the position of the window. When the drum moved, the eyes responded with a sluggish 
but unmistakable OKN despite the restricted view of the target, and the second and third 
rows show that the range of positions assumed did not depend on the window. In the 
second row, where the drum moved clockwise, the eyes shifted toward the lower left 
quadrant, corresponding to the left and right eyes assuming temporal and nasal positions, 
respectively. This shift in position was the same no matter where the window appeared. 
Similarly, when the drum moved counterclockwise, the eyes shifted toward a clockwise 
set of positions. These data do not support the hypothesis of a specialized retinal region ; 
they favor the notion that the goldfish retina is functionally homogeneous. 

Onset of drum rotation evoked pursuit within a fraction of a second, as Fig. 3 showed, 
but the response initially was rather slow and gradually, over seconds, built up to a steady, 
high velocity. Figure 5 illustrates the results of an experiment investigating the behavior 
when the drum stopped rotating. The upper trace (PC) is the output of a photocell monitor- 

FEW-IO3 

FIG. 5. Optokiitic rf\unustolmurFc:thisnaccgivastheoutputofapitotocdl~ 
lightin~tyinridsthedrum.InWlrllyitbMlhbboth~;hlfway~tha~oa 
theIeftitir~iy~tor~I~t~thednrmbnalolPpsdlcornibk.DV:~ 
gives tha drum votity, initaly m/s, tiwa w/sot about halfway tbm4Bgb cacb e. LB, 

RE: the left and right eyea. Calibration: 30” watially (eye position), 1 aec horimnuljy. 



Pursuit Eye Movements in Goldtish (Curmsius auru~.~) 679 

ing ambient light level; downward deflection indicates a decrease. The second trace is the 
drum velocity, initially lZ”/sec clockwise, and later zero. The lower two traces give the eye 
positions. The record on the right shows that when the drum stopped and remained visible, 
the eyes responded abruptly, with a rapid deceleration, quite unlike the gradual acceleration 
with onset of drum rotation. However, when the room lights were extinguished simul- 
taneously, as they were in the record on the left, then the eyes continued “‘pursuit” in the 
dark for several seconds. They did so if the drum continued to rotate or even reversed 
direction, and then reverted to the spontaneous mode, indicating that the decrease in light 
level had rendered the drum imperceptible. This prolongation of the response is called 
optokinetic afternystagmus (OKAN), and it has been observed before by TSR BRMK (1936) 
in mammals. They showed OKAN even when the field remained visible, unlike the goldfish. 
More recently, WEGMANN (1958) has investigated the phenomenon in man under much 
the same conditions as used here, with similar results. 

FEM-46 

-----.d-v..,_~~.‘ls*-. 
90 *‘,_*..-c..,.r~” . . . . -..*_..*. ....---..r,u.... c 

L 
FIG. 6. OKN and the optomotor respolua In each of the three pairs of traces, the upper is the 
right eye, the lower, the r&in pectoral &t. The numbcxx to the right give the drum velocity in 

degnesfsccond. G&ration: 40” vertically (eye position), O-5 see hourly. 

An indicator of the whole-body optomotor response could be observed when one of 
the pectoral fins was not clamped along with the body. When this was done, the fin was 
free to stroke as it would if the animal were unrestrained, and its position was sensed by 
the flying spot. The lower trace in each of the three pairs in Fig. 6 shows the right pectoral 
fin’s movement, the upper trace, the right eye. This figure illustrates that the phases of the 
two responses-fin stroke and eye movement-were not related, but seemed to be indepen- 
dent events. Moreover, the fin stroke was a much more erratic response than OKN ; so is 
the whole-body response as observed in freely-swimming goldfish. 
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Quantitative aspects of pursuit 

In this subsection, a number of factors were varied and their quantiative effects on the 
pursuit velocity noted. 

Target velocity. The frequency, amplitude, and velocity of pursuit movements increased 
with drum velocity up to some maximum value, usually in excess of 4O”/sec (drum velocity) 
and then levelled off or decreased. The quantitative relation between drum and ocular 
velocities was investigated in a series of identical experiments on four fish (FEW1 18-121). 
Each was restrained as usual, and viewed the drum binocularly over 280” horizontally, 100” 
vertically. The inside of the drum was illuminated by flood lights, several meters distant, 
resulting in the white stripes having a brightness 19-2.1 log ft-L, the black stripes, O&O*8. 
The animal was allowed about 10 min to adapt to the relatively high light level, and then 
was exposed to two ascending velocity series, one each in the clockwise and counterclock- 
wise directions. Two animals experienced the series in clockwise-counterclockwise order, 

two in the reverse. First, a record was obtained of the animal’s eye movements with a 
motionless drum, then the velocity was set at I .O'/sec, and at leaat 30 aec &peed Wore an 
oscillograph was made. Preliminary expariments showed that this 30 set delay allowed the 
animal to stabilize at its maximum response. The velocity was then &remenM, and the 
process repeat& until two ascending aerie were completed. Velocities were: OO,14,2O, 
34, 644 94, 12, 15, 30, 25, 30, 35, and 4O”/sec. Earlier experiments bad ahown that the 
response to a given velocity was often smaller during a descending series than in an ascend- 
ing one, so the former were not used. 
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Figure 7a gives the velocity gain (pursuit vel~i~~d~rn velocity) for one animal, as a 
function of the drum velocity. The other fish gave qualitatively similar plots, although their 
gains differed. It should be noted that the pursuit velocity used is the mean value of both 
eyes. This is preferable to either alone, because errors in centering the animal in the circle 
of light traced out by the flying spot cause equal movements by the two eyes to be recorded 
unequally (E~rux, 1971), one larger than the true value, the other smaller. Their mean 
gives the true mean value. 

The gain was always less than unity; that is, the eyes never matched the velocity of the 
drum. The mean gain was 0.68, but differed significantly depending on which direction the 
drum rotated. In all cases but one (lS’/sec), gain for clockwise rotation was the greater. 
The mean clockwise gain, averaged over all twelve velocities, was O-73, while the mean 
counterclockwise gain was 0.63. These differences are only barely significant statistically, 
but in the other animals, the imbalance was much gaeater, and very significant. For instance, 
FEM-1.19 had a mean clockwise gain of O-87, while the value for the other direction was 
only 0944. This unexpected asymmetry suggests an instrumental artifact of some kind, but 
a reexamination of other records obtained on the same instrument under identical condi- 
tions revealed that other fish showed a pronounced counterclockwise bias, while still 
others were essentially equal in the two directions. Thus the effect seems to be a real one. 

Figure 7b was obtained from the same experiment as Fig. 7a, and the data are plotted 
to illustrate quantitatively the point made qualitatively from the records of Fig. 2; namely, 
that nasad rotation exceeded temporad. The ordinate gives the log of the ratio (left eye 
vel~i~~~ght eye velocity). The horixontal line shows, for reference, unity ratio. The upright 
triangles were obtained for clockwise rotation, which causes nasad movement by the left 
eye, temporad by the right. All are above this line, indicating that the left eye’s velocity was 
larger for all clockwise stimuli. The reverse was true for counterclockwise rotations-all 
the inverted triangles are below the horizontal. It seemed possible that this nasad bias was 
due solely to the resting drift in each eye, and if each eye’s pursuit velocity were corrected 
to represent the difference from this resting drift, rather than from xero, then the pursuit 
movements might be conjugate. Such was not the case, however. When these corrections 
were made, the nasad response still exceeded the temporad. 

Binocular and monocular viewing. It is of some interest to learn how a target seen by one 
eye affects the movements of the other, and these interocular relations were assessed by 
measuring the pursuit velocities of each eye when both or either alone viewed the drum. 

First the anterior 45” (in the horizontal plane) were shielded by black cloth. This more 
than covered the region of binocular overlap ANTE, 1968) and gave each eye an 
independent view of the drum. Either or both of these views could then be shielded by a 
second black cloth. The drum rotated at 3”, 6”, or 9*/set, clockwise or counterclockwise, 
and the movements of both eyes were monitored when both, or the left alone, or the right 
alone, viewed the drum. Then the mean velocity of each eye was determined for each drum 
velocity, and the values compared. The comparison was made by computing two ratios: 

E’,JE‘,,,, and Geo/E’b,,, 

where: 

Elbv = the response by one eye when both eyes viewed the drum (binocular view), 
E’t, = the response by one eye when it alone viewed the drum (ipsilateral view), 
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and 

E’,, = the response by one eye when only the other viewed the drum (contralateral view). 
This same experiment and analysis were carried out on three fish, with similar results for 
all. They were pooled, and are summarized as follows (means fS.E.M.): 

(E’,“/Elb”) = 0.65 * 0.03, (N = 18) 
(E’,“/E’,“) = 044 * 0.03. (N = 18). 

They indicate that an eye’s response was largest when both viewed the target, next largest 
if the eye itself viewed it alone, and smallest if only the contralateral eye did so. The 5 per 
cent confidence limits for the two ratios are set by the means f two S.E.M. which makes: 

(E’&!?& = 0.59471 
(6,/E’,) = 0.38450. 

The ranges of uncertainty are large enough to support the hypothesis that the response to a 
binocular view was the linear sum of the responses to the two monocular views. This is 
undoubtedly an oversimplification, but it is quite surprising to find that the results even 
approximate this linear addition. 

Another approach to the interdepe&nce of the eyes is to present them with stimuli 
expected to evoke non-conjugate pursuit. This was done using tangent screens, as schema- 
tized in Fig. 8. The sketches on the right show the experimental situation as viewed from 
above; in all cases, the scan velocity was 2O”/sec at the point nearest the cornea. The bottom 
record, in which the right screen moved nasally and the left one caudally, corresponds to 
counterclockwise movement of the drum, and the animal responded with ordinary OKN. 
In the middle record, both screens moved nasally, and each eye responded appropriately 
to the ipsilateral screen, although with a slower speed than in the lowest record. Apparently 
the stimulus to the contralateral eye slowed the response to ipsilateral stimulation. In any 
case, the response was not OKN, for the saccades were sometimes in the direction of the 
slow phase, sometimes opposed. Simultaneous saccades were usually in the same direction 
as one another, and unequal in magnitude. The temporallydirected one was systematically 
the larger, thus making the saccades divergent. This same use of disconjugate saccades 
to stabilize vergence (the interocular angle) was noted before in spontaneous movements 
(EASTER, 1971). Finally, the top record shows that when both screens moved caudally, the 
animal ignored them both; the activity is indistinguishable from what was observed in a 
stationary field or darkness. 

Window size. Black opaque masks were positioned outside the animal’s container and 
placed to provide a window through which it viewed the drum. The angular subtense of this 
window could be varied in both the horizontal and vertical dimensions. The drum rotated 
at a constant speed and the size of the window varied. When the vertical subtense was tied 
at the maximum (1000) and the horizontal subtense changed from 0 to 280”, the animal 
responded with a tracking speed that increased monotonically with the horizontal subtense; 
these data appear in Fig. 9a. Similarly, when the horizontal subtense was fixed and the verti- 
cal varied, the same sort of spatial integration was observed (Fig. 9b). Apparently, the 
velocity of the tracking response depended not only on the velocity of the target, but on its 
size as well, and no threshold size could be discerned. 

Conrrarr. In all the experiments described thusfar, the entire drum was lined with stripes 
of the same contrast ratio. In order to assess the effect of contrast, the dark stripes on one 
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Fm. 9. Target size and pursuit velocity. In both cnses, the drum rotated at a constant 15”/sec 
countex&&wisc and the f& viekd it through windows of variable subtense. (a) Both eyes 
viewed the drum through a window subtending 1W vwtically, and a variaMe amount 
(abscha) horisnntally. The window was centend anteriorly and imzased symmetrically to 
eithw: side. The ordinate gives the mean response of both eyes. (b) Both eyes viewed the drum 
througb a window subtending 280 degrees horizontally and a variabIe amount (abscissa) 
vcrtklfy. The window was centered at eye level and increased s~~~iy above and below. 

The ordinate gives the mean response of the left eye. 
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FEM.95 

half of the drum were replaced with lighter ones, leaving this half with relatively low con- 
trast. Once again, the fish’s container was shielded over most of its surface, with only a 
window subtending 60” horizontally, 100” vertically, in the left central field. When the drum 
moved, the right eye saw only the uniform black cloth, while the kft eye saw a moving 
striped pattern which was at first (say) all low contrast, with the high contrast portion just 
coming into view. For l/6 revolution, the high contrast field gradually supplanted the low, 
until it occupied the entire 60” window. Then, for l/3 revolution, the view was entirely high 
contrast, until it too was supplanted by the low over l/6 turn. Then the cyck was compkted, 
as the fish viewed exclusively low contrast over the final l/3 turn. It was noted i&pan&ntly 
when the field changed, and the pursuit behavior was observed for a number of revolutions 
at various speeds. Some of the results of one experiment are given in Fii. 10, which shows 
five successive traces by the kft eye. Ckarly, when the high contraat ftekl was in view 
(indicated below) the reqxmse was a vigorous OKN. As the low contraat took over, the 
tracking llpbsd diminirhed, and the eyes wandered from their ralatiwly mw poritions. 
When Merent drum veloeitiea were used, the cyclic behavior wan in Fig. 10 was always 
phase-lo&dwiththctdrum. Avarktyofcontms&allgmaterthantbegd&&athmahold 
(Hxsnm, MS), were used, and the tracking velocity increased monotonically with contrast. 
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In a related experiment, the number of uniformly dark stripes on the drum was varied, 
and as they decreased, so did the pursuit response, in a graded fashion. 

Ambient Zig& intensity and ~~f~ti~n. An experiment ideating the effects of light 
level is shown in Fig. 11. The top two traces in each oscillograph are the left and right eyes. 
The lowermost trace is the output of a photocell monitoring the ambient illumination of 
the experimental chamber. As the experiment began, in the top left oscillograph, the drum 
was moving at 3O”/sec clockwise, and the animal was responding. About half way into this 
picture, the ambient intensity was reduced to that provided by scatter of the flying spot 
by the water. Although the drum continued to move, the tracking speed gradually slowed 
down (OKAN). A few moments later, when the top right oscillograph was made, the eyes 
were no longer tracking, presumably because the drum was no longer perceptible. As dark 
adaptation proceeded (bottom left), the eyes gradually began to track; note the occurrence 
of many downward sloping intersaccadic intervals in both eyes. Finally, when dark adapta- 
tion was complete, the eyes were tracking at about the same speed as in the light (bottom 
right). When the light was turned on again, OKN continued unabated. 

This gradual increase of tracking velocity probably reflected the increasing apparent 
contrast of the target. As the animal dark adapted, the stripes became more pronounced, 
and therefore constituted a more powerful stimulus, despite the fact that their velocity 
was constant. 

DISCUSSION 

Probably the most surprising part of the results is the wide range of factors which 
influenced the pursuit velocity. Since these eye movements are usually considered to stabilixe 
the retinal image, it would be expected that once a moving target was detected, it would be 
tracked with an ocular velocity dependent only on that of the target. But this was not the 
case. To be sure, it did depend on target velocity, but only partially. Figure 9b shows that 
when the movement was observed through a ribbon-shaped window subtending only two 
degrees in the vertical plane, the eye clearly responded, but its speed, 2’/sec, was much 
smaller than the target itself. As the window grew, so did the response, indicating that the 
pursuit velocity was computed from a spatial summation of movement sensed over a Sarge 
part of the retina. This suggests that the retina is indeed functionary homogeneous, that a 
large velocity in a small area has the same behavioral result as a smaller velocity in a larger 
area. The other two factors which influenced pursuit velocity, contrast and state of adapta- 
tion, can be construed as making the target movement more noticeable, and tending to 
make the eyes approach a velocity which is limited by, but not equal to, the velocity of the 
target. 

The animals showed directional selectivity, in that movement of the target from posterior 
to anterior was generally a more effective stimulus than movement in the opposite direction. 
It is quite clear in Fig. 2, Fig. 7b and Fig. 8, and this same preference is evident in a variety 
of species when the optomotor response is observed (DAUBER and ATKIN, 1968). There are 
two ways to interpret this. One is the naturalist’s approach, to recognize that the animal 
spends all its life swimming forward through the water, so that its visual field is always 
moving backward. This direction of movement is usual, and therefore u~nfo~ative, 
whereas movement in the opposite direction is rare and for that reason alone warrants 
attention. 

A plausible physiological interpretation is in terms of directionally selective movement 
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detectors in the retina. CRONLY-DILLON (1964) first described these units in the goldfish, 
and he noted that most units sensitive to movement in the horizontal plane had a preferred 
direction in the visual field from rear to front. If the pursuit movements were governed by a 
neural center responsive to the number of directionally selective units firing, then large 
areas would be more effective than small ones, and the anterior direction would be the more 
effective, as observed. WARTZOK (1971) has confirmed and extended Cronly-Dillon’s results 
to investigate the relation between the stimulus velocity and the response of these units. He 
found that they are sensitive to velocities between about 1 and 12”/sec, and both of these 
limits compare favorably with the pursuit eye movements. As noted above, the restrained 
fish’s eyes drift nasally at something less than I”/sec, even when there is no movement in 
the field. This spontaneous drift results in a drift of the retinal image, and the fact that the 
animal fails to stabilize the eye suggests that its velocity sensors do not respond to drifts 
of this speed. The upper limit found by Wartzok is compatible with the finding that the 
velocity gain was approximately constant up to drum velocities of 4O”jsec. A typical velocity 
gain was 0.7; this means that when the drum rotated at 40°/sec, the eyes responded at 28”/sec 
resulting in a slip speed on the retina of 40-28 or 12”/sec. If these retinal units are involved 
in setting the pursuit response, then it would be predicted that saturation, as evidenced by 
a decrease in gain, would occur for slip speeds greater than 12”/sec. Unfortunately, the 
maximum velocity of the drum did not allow testing of this prediction, but the fact that 
saturation had not occurred at 4O”/sec does weakly support the hypothesis. 

In summary, there is much to suggest that the velocity of the smooth pursuit movements 
in goldfish are controlled by the massed activity of the retinal directionally selective move- 
ment sensitive ganglion cells. OYSTER and BARLOW (1967) have suggested a similar scheme 
for the rabbit. 

SUMMARY 

(1) Horizontal rotatory eye movements made by restrained goldfish in response to 
moving targets have been measured objectively. The target was either a striped drum rotat- 
ing about the vertical axis concentric with the animal’s head or striped tangent screens on 
either side. 

(2) Rotation of the drum evoked saccades in the opposite sense, slow (pursuit) move- 
ments in the same sense (optokinetic nystagmus). Movement of the tangent screens evoked 
appropriately directed pursuit movements in both eyes if both screens moved anteriorly, 
but no response if both moved posteriorly. 

(3) Pursuit velocity varied linearly with the drum for speeds up to 4o”/sec, the highest 
tested. The velocity gain (pursuit velocity/drum velocity) was typically about O-7, but was 
seldom the same for both eyes. Generally the eye moving nasad was the faster. 

(4) Movement sensed by either eye caused both to pursue, but the response by one was 
greatest when both viewed, intermediate when it viewed alone, and least when only the 
contralateral eye viewed. 

(5) The size and contrast of the target and the state of adaptation of the animal also 
influenced pursuit over wide ranges. 

(6) It is concluded that pursuit velocity is set by a spatial integration of retinal image 
velocity sensed over a large part of both retinas, and weighted by the visibility of the pattern. 

(7) It is argued that directionally-selective movement-sensitive retinal ganglion cells 
are probably involved in this process. 
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Abstract-Pursuit eye movements made by goldiish were investigated with an optical tech- 
nique in which the horizontal orientations of both eyes were measured automatically. Moving 
targets were provided by: (1) a striped drum which rotated about the vertical axis concentric- 
ally with the animal’s head, and (2) tangent screens on either side. Movement seen by either 
eye alone caused both to move, but the response was greater when both viewed the drum. The 
angular velocities of the eyes were always less than that of the drum. The ocular velocity depen- 
ded upon the velocity, area, and contrast of the target, over wide ranges, and upon the state of 
adaptation and the recent history of the visual system. Evidence is offered supporting the 
hypothesis that the pursuit movements are controlled by directionally-selective movement- 
sensitive retinal ganglion cells. 

R&um6-On etudie les mouvements de poursuite des yeuz du cyprin dare au moyen dune 
technique optique qui mesure automatiquement les orientations horizontales des deuz yeux. 
On utilise les cibles mobiles suivantes: (1) un tambour ray6 qui toume autour dun aze vertival 
concentrique avec la t&e de l’animal, et (2) des &ram tangents de chaque c&6. Le mouvement 
vu par un seul oeil produit un mouvement des deuz, mais la r6pons.e est plus grand0 quand 
lea deuz yeuz voient le tambour. Les vitesses angulaires des yeux sont toujours moindres que 
oelle du tambour. La vitesse oculaire depend dans une large mesure delavltesse,delasurface 
et du contraste de la cible. ainsi que de P&at d’adaptation et de l’histoim r&ente du systeme 
visuel. On pr&sente les arguments en faveur de l’hypoth&se que les mouvemen ts de poursuite 
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sent cootr6Es par des c&da ganglionnaires de la rCtine. sensiblcs au mouvetnent et A sa 

dilWXiOlL 

Zm-g-Su&Augmbewegunpn des Goldfitches werda mit einem optischm 
Aufbau untemucht, bei dem die horizontale Ausrichtung beider Augen automat&h gemessen 
wurde. Bewegte TesMchen werden erzeugt durch: 

(1)’ eine gestreifte Trommel, die urn eioe &kale Achse konzentrisch zum Kopf des Tieres 
rotierte, 

(2) Beri&rende Schirme auf jeder Seite. 
AuchmnnnureinAuOecineBeweguagroh,folOtcnbclideAupll,d~wprdieRciEPntwort 

gr66er, wenn beide Augeu die Trammel spben. Die WinLslsachwiDdipltd dez A- war 
dPbdimmtr~a~~diedaTrommel.DieAu~~votlderGesch- 
windigkeit, der F&he und dem Kontrast dea Testz&c&ts tkbcr &en grollca BemU ab, 
sowie vom Adaptatim dunddaVorgad&htedcsviwdlenSyatamaBmWewerden 
an@Nut, wonach die Suchberrsqu~ vom richtungaddrtiven, -Iii 
Ganglienzelkn der Retina kontrolliert wefden. 


