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ON SURFACE WAVES GENERATED BY TRAVELLING
DISTURBANCES WITH CIRCULAR SYMMETRY

1l. Introduction

The ship-wave problem treated by Kelvin! in 1887 has recently
received added attention in the literature. The most interesting papers
in this connection are those by Peters2 and Dean3. The former deals with
the surface wave created by a concentrated pressure which moves on the
surface of a body of water that is infinitely deep, and the latter treats
the two-dimensional analoque of the same problem.

This paper deals with the more general problem of the surface
wave generated by an arbitrary distribution of pressure moving with con- .
stant velocity on the surface of the infinitely deep body of water. It
is shown that the amplitude of the surface wave can be obtained directly
in terms of the applied pressure as the solution of an integrodifferential
equation. The particular case in which the pressure distribution has
circular symmetry is treated in-some detail.* Tt is shown that in this
case the surface wave is uniquely determined by requiring that the ampli-
tude of the wave vanish at remote distances ahead of and on either side
of the region over which the pressure is prescribed. Finally, in the
last section, the surface wave generated by a pressure point is interpreted
in terms of the results obtained for the symmetric pressure distribution.
This is defined in the usual way as the limiting case of the wave corre-
sponding to a pressure distribution that is constant over a circle and
zero elsewhere as the radius of this circle tends to zero, the total force
remaining constant. It is shown that this definition is consistent rel-
ative to a certain class of distributions which might equally well be
employed in the definition.

It is believed that the method employed in the treatment of the
ship-wave problem in this paper is new. Although the results are not

*However, the method is not restricted to this special case. A more care-
ful study of the case with arbitrary pressure distributions is now in
progress.
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altogether novel, nevertheless the simplicity of the forma;ism and the
mathematical precision afforded by the method in dealing with the cases
involving more general pressure distributions may deserve some attention.

2. Formulation gf_the Linearized Problem for the Surface Wave

Let the undisturbed water fill the space z, £ 0, and let it move
relative to a fixed (xl,yl,zl)coordinate system with constant speed c¢ in
the direction of the negative x,-axis. The problem:then is to determine
the shape of the free surface corresponding to an arbitrary system of
forces acting over this-surface. In particular, let the applied surface
pressure p = pl(xl,y ) be independent of the time, so that the shape of
the free surface rela%ive to the fixed system of axes is also independent
of the time. The equation of the free surface which must be determined
can then be expressed in the form z, = q (%y,y,). It is also supposed that
the motion of the water is everywhere irrotational, that viscosity is neg-
ligible, and that the density & is constant.

For convenience, the problem for the surface wave is formulated
in terms of a set of nondimensional quantities. Let the components of the
fluid velocity in the directions of the xl,yl,:and z, coordinate axes be
denoted by u, - c, vy, and w,, respectively, so that u,, v,, and w, are
the components of a vector ﬁl representing the velocity of the fluid rel-
ative to its undisturbed motion. A set of nondimensional quantities may
then be introduced as follows:

(2.1)

where

K = g/c2

and g is the acceleration due to gravity. The components of the nondimen-
sional velocity vector § in the directions of the X,y, and z coordinate
axes will be denoted by u,v, and w, respectively.

Let it be supposed that the disturbance produced by the applied
surface forces is negligible at large distances upstream (x > 0), at great
depths, and at large distances on either side of the (x,z)-plane. In
particular, let the reference point on the pressure scale be selected so
that on the free surface p -~ O as |x| + » or |y| = ». Then the boundary-
value problem for the wvelacity vector § will, in accordance with the
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linear theory of surface waves, take the form:*

(2.3) curl g = divg = O for z <O,
(2.4) u=p=-1 = O for -z =00,
(2.5) §£'+'W = 0 for z =0,
(2.6) u=vs=w=0 for x =+®, y=+0o Or 2z = -0,

The assumptions which are made in the formulation of the linearized prob-
lem are already well known*¥* and will not be discussed further.

It is convenient to make the additional assumption that the pres-
sure p(x,y) representing the distribution of the forces applied on the
surface is normalized, so that

(2.7) jﬁ}pp(x,y) dxdy = 1.

This assumes, of course, that the total force acting over the surface is
bounded.

3. Formulation of an Integrodifferential Equation for the Surface Elevation

The equation of the free surface which corresponds to the sol-
ution of the boundary-value problem for the surface wave is of primary
interest. It is therefore desirable to solve directly for the amplitude
n(x,y) of the wave. It is shown in this section that n(x,y) can be ex-
pressed in terms of the prescribed pressure p(x,y) by means of an integro-
differential equation.

According to the theory of the vector potential, the vector ﬁ

‘for which (2.3) holds can be represented for z < O by the integral formula¥**

400
(3.1) & (xy,2) = El'fja(x"y"o)' x (Bxvg) ax'ay,
n : :

*See Peters®, pp. 126-127
**see Lamb4, pp. 363-364

**See v. Mises5, p. 604. The Cauchy formula (26) given by v. Mises is
easily expressed in the formula (3.1) with the aid of Poisson's integral
formula for the plane.
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>
where R' = [(x'-x)2 + (y'-y)2 + 2231/%, n is the unit vector in the
direction of increasing z, and x denotes vector product. Consequently,
the component u is represented in the space z < O by the integral formula

+00 .
(3.2)  ulx,y,z) = = s w(x',y',0)dx'dy"' .
w 2“:0[(}{'%)2 s (yey)2 o+ 2220

After integrating by parts and setting z = 0, this yields an integral
relation between the components u and w on the surface z = O, namely,

(3.3) u(x,y,0) =
. 400
1 | 1 o) w(x',y',0) dx'dy’
2";./J[(x'-X)Z + (y'=y)21*72 ox'

This relation is particularly suited for the problem of the surface wave.
For, in this case, u and w satisfy the conditions (2.4) and (2.5) on the
surface z = 0. Therefore the components u and w can be eliminated from

(2.4), (2.5), and (3.3) to obtain an integrodifferential equation for the

amplitude n(x,y) of the surface wave, namely,
+00

(3.4) n(xy) + plx,y) + 2 1 9=
2"[[ [(x'-2)2 + (y'-y)21*/2 gu'2

As a consequence of (2.4), (2.6), and (2;7) the boundary conditions that
are satisfied by the function n(x,y) can be written in the form

n(x',y")ax'xy' =0;

(3.5) n(x,y) = 0 for x = 4+ and y = +o.

It is clear from the above that in those cases in which the
problem consists merely of determining the shape of the surface wave, the
boundary-value problem of the preceding section for the velocity vector a
can be replaced by one in the wave amplitude n(x,y) consisting of the equa~-
tion (3.4) and boundary conditions (3.5). It is this form of the problem
which is treated in the subsequent sections. No attempt is made here to
establish the complete equivalence of these two forms. A solution is
obtained for the case in which the pressure distribution has circular sym-
metry with respect to the origin.

If the Fourier transforms of the functions n(x,y)» 02 n(%,y),

ox2

and p(x,y) with respect to y exist, and if
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+c0
£(x,v) = Jf n(x,y) e ay,

+00

(5.6)  £"(x,v) = ;izf(x,v) - Zﬁn(x,y> 1V gy,
x Joox
400
g(x,v) = p(x,y) W dy,

-0 -

then the equation (3.4) takes the form
o
(3.7) £(x,v) + g(x,v) + u/\ k(x-x',v) £"(x',v) ax'

0O

]
o
-

where

(3.8) w(x,v) = =K ([vx]),
s

and Ko(x) is the modified Bessel function of order zero. Moreover, if the
Fourier transform of n(x,y) in (3.6) converges uniformly for x > O, then
the condition (3.5) implies that :

(3.9) f(x,v) = 0 for x = 4w,

4. Solution of the Integrodifferential Equation for f(x,v)

A formal solution of equation (3.7) can be obtaié%d very simply
with the aid of the two-sided Laplace transformation or the Fourier trans-

form in the complex plane.*: Let
+00

F(s,v) = k/n £(xv) e™5% ax,

- 00
+o00
g(x,v) e 5% ax,

(4.1) G(s,v)

+00
JF k(x,v) e % ax,

- 00

"

K(s,v)

*For the properties of the two-sided Laplace transformation see DoetschS;
for a discussion of the Fourier transform in the complex plane see
Titchmarsh? and the introduction of Paley and Wiener®.
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where s = o + it. Then,* for 0 < |o| < |v|,
{ s
(4.2) K(s,v) = ;,f K (lvx|) e ax = (v2-s2)7¥/2,
It

=00

where (112-52)-1/2 denotes the single-valued branch of the corresponding
algebraic function that is real and positive for o = 0. For reasons that
are made clear later, the right-hand member of (4.2) will be taken as the
definition of K(s,v) in the cut s-plane formed by deleting the points of
the real axis for which ]c| 2 |v| (see Fig. 1). Also, in accord with the
formal properties of the Fourier transform,

+00
(4.3) JF £"(x,v) e ¥ ax = 82 F(s,v),
+00 +00 -
(4.h) Jf e X [ w(x-x',v) £"(x',v) d&x' ax = s2 F(s,v) K(s,v),

where the latter represents the transform of the Faltung of k(x,v) and
f"(x,v). Consequently, by (3.7),

(k.5) F(s,v) = = G(s,v)
1 + s2 K(s,v)

Hence, making use of the complex inversion integral in the theory of the

Laplace transform**, a solution of (3.7) can be written in the form:
g, 41w
1

(1.6) £(x,v) = — L G(s,v)  oxs gg,
2ni i 1 + s2 K(s,v)
l— 0

where the integration is taken along the vertical line R(s) = o

1°
The validity of formula (4.6) as a solution of equation (3.7)

can be established under very general conditions on the function g(x,v).***

It is sufficient to suppose, for example,¥*¥** that g(x,v) and its deriv-

ative with respect to x are sectionally continuous in every finite interval
of x, and that these functions are O(e~ vx ) for some v £ 0 as x|+ .

*Magnus and Oberhettingerg, p. 116.

**See Doetsch®, p. 210.

***see Titchmarsh7, p. 305.

*¥**¥XConditions of the pressure distribution p(x,y) that are sufficient to

establish these conditions on g(x,v) are given in the next section.

6
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Under these conditions G(s,v) is analytic in the vertical strip
- |v] < 0 <|v|and the integral in (4.6), with K(s,v) defined as in (4.2),
converges absolutely for O < ‘oll < |v|.

The function defined by (4.6) does not, however, represent the
only solution of equation (3.7). In other words, the homogeneous equation
obtained from (3.7) by setting g(x,v) = O has nontrivial solutions. For
it is observed that the characteristic function [1 + s2 K(s,v)] =1+
52 (v2-82)71/2 pas two simple zeros on the imaginary axis. Setting 2T =
sinh™12v, these zeros correspond to (v2-s2)1/2 = cosh2T or s = + it,
where

(4.7) to = cosh T.

Tt is then readily verified by direct substitution that the function

v(x,v) = cleitoX + cze'itox
is a solution of the homogeneous equation independent of the constants c,
and Cye More generally, it can be shown¥* that the family of functions
¥(x,v) contains all the solutions of the homogeneous equation corresponding
to (3.7) and (3.8) which are twice differentiable for all x and which are
o(e M%) in (-w,0). Consequently the most general solution of the non-
homogeneous equation (3.7), which is of the latter class of functions, is
given by

0y +ie
f(x,v) = - L \/p G(s,v) eXs ds + ¢ eltoX 4 c, eitox
2l 1 + s2 K(s,v) *

with 0 < l“il < |v|, Under the supposed conditions on the function g(x,v),
the solution can also be written in the form

(4.8) f(x,v) =
o, +ico .
- glx,v) + 1 G(s,v) 52 K(s,v)
2ni 1 + s2 K(s,v)

Ul-iw

itax =it X
e*® as + c,e o +C e o

5. The Surface Wave for a Pressure Distribution with Circular Symmetry

Let the prescribed pressure distribution over the surface of the
water have circular symmetry with respect to the origin. That is, let
p(x,y) = p(r) be a function of r = (x2 + y2)22 alone. Then, under the
assumption that the integral in (2.7) converges absolutely, the function

*The proof is suggested by Titchmarsh7?, pp. 306-307.

7
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G(s,v) in (4.1) can, for s = it (t real), be expressed in the form* -

—+00 00, (7{
G(s,v) = plx,y) e~ (Ex-V¥) 4y - rp(r) elrfcosd gp4:
(5.1) [J @ °f[

1]

End/ﬁrp(r) Jo (tr) dr,

where J, (tr) is the Bessel function of the first kind of order zero and

¢t = (v2 + t2)172 = (v2 - §2)172, Thus G(s,v) is a Hankel transform of p(».
In the subsequent extension of the definition of G(s,v) to all points of

the s( = o + it)-plane, the complex parameter ¢ = A + ip will be defined

over the cut s-plane by the single-valued branch of the function (v2 - s2)1/%2
which has already been introduced in (4.2).

Let the pressure distribution p(r) be further restricted by
requiring that there exist a positive number a such that**

(5.2) p(r) =2 0 forr>a
and such that p(r) has a bounded derivative for O < r < a. Then, since
Jo (¢r) is an entire function of s, G(s,v) is also an entire function of s.

Moreover, the growth of the function G(s,v) for large [sl is then restricted
in accordance with the following inequalities:

(5.3) |G(s,v)| < metlsl for a1 s,
(5.4) la(s,v)| < ,M' e2lul < M e® 191 yhenever |t > |o|>0
s gt s oz del>o

where M and M' are constants independent of v. These expressions are
readily derived from (5.1) and (5.2) with the aid of the inequality***

|Jala + 18)| < elgl for all g and B, (n=0,1,2,...),

*For an extensive discussion on the correspondence between the two-

dimensional Fourier transform and the Hankel transform see, for example,
Sneddonl©, p. 62.

**This corresponds to the practical situation in which the finite region
over which p # 0 is that which is covered by a ship. It is evident that
condition (5.2) can be considerable weakened. For example, it is suf-
ficient to require that p(r) = 0(e"PT) as r + » for every positive
number B.

¥ This inequality readily follows from Bessel's integral representation

for the function Jy(z): Watsonll, pp. 19-21.

8
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and the following properties of the relation between the complex variables
s =0+ it and { = A + ip : '

u] € |o| € [s] forall s

and

|¢] > |s| whenever [t| > |o]-

Finally, it should be observed that, as a consequence of (2.7),

0
(5.5) G(+ v,v) = 2ﬂfrp(r) ar = 1.
0
Under the foregoing assumptions, the function
2 2
s2K(s,v) a(s,v) = 8
1 + s2 K(s,v) s2 + t

(5.6) L(s,v) = G(s,v)

that appears in the integrand of the integral in (4.8) is analytic every-
where in the cut s-plane except for the simple poles at the points s = + itg.
The residues of L(s,v)e*® at these poles are respectively

. +
(5.7) +1 COSh3T  p(r)e—itox
— cosh 271

where by (4.7)
(5.8) P(1) = G(ty,v) = Eﬂt/qrp(r) Jo (r cosh2r) dr.
0
Also, as a consequence of (5.5), (5.3), and (5.4), the function L(s,v) can

be shown to have the following properties:

(5.9) 1lim  L(s,v) = 1.
s>+ |v|

(5.10) !L(s,v)l oelsl)y  as [s| + .

(5.11) [L(s,v)|

o(‘%[ealﬁl) as |s| >~ with |t| 2 |g].
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Therefore the vertical path R(s) = o, of integration for the integral in
(4.8) can be replaced by either one of the hairpin paths C, or C, with the
directions indicated in Fig. 1. Making use of the expressions in (5.7) for

Cp 1

Fig. 1 The cut s-plane

the residues of L(s,v)e*® at its poles, it is possible to write

£,(x,v) - £ (x,v) = ﬁ L(s,v) e*®ds - .2.11_& L(s,v) eX8ds
02 Cl
(5.12)
= fo(x}v))

where f.(x,v) and f2(x,v) represent the integrals along C, and C_, respec-
tively, and '

(5.13) fo(x,v) = 2 cosh®T  p(1) sin xto.
cosh 271

Moreover, as a consequence of (5.9) and (5.10), the integrals f (x,v) and
f (x v) have the following asymptotic behavior:*

*3See the treatment of the Abelian theorems for the complex inversion integral
of Doetsche, chapter 15. The identity

n .
L(s,v) = ~->: (-1)¢ a(s,v) E_'Zl'“ + (-1)® [6(s,v) - L(s,v)] 2_2
K=1

n+1

is the starting point for the derivation of an asymptotic expansion of the
functions f (x, ) and £ (x, ). Following Doetsch, it is readily show that

_;__Jf <é?:> G(s,v) e‘x‘sds ~ ___JZELE_E$ IVXI as |x|+ o, where a = 1 or 2.
2ni
& n(3) ™

10
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0] <Tf:l2ﬁ as X -+ = o,
x|

['VX ’ X = -+ 0,
fun

Hence the solution of equation ( that satisfies (3.9) is the unique¥
member of the family (L4.8) obtalned by setting ¢, = c, = 0 and

"

fl(x,v)

(5.14)
£,(x,v)

]

f(x,v) = -g(x,v) + fz(x,v)
or, by virtue of (5.12),
£(x,v) = -g(x,v) + f5(x,v) + £ (x,v).

The expression for the amplitude n(x,y) of the surface wave cor-
responding to the symmetric pressuré distribution can be obtained from f£(x;v)
by applying the inverse of the Fourier transform defined in (3.6). Under
the foregoing conditions on the function p(r), the amplitude can be expressed
either as

+00 .
(5.15) n(x,y) = -p(x,¥) +_»1_l £ (x,v) e 1VV av,
2n, ,
or
4o )
(5.16) n(x,y) = -p(x,y) + 1f folx,v)e~1¥vay +2_1_f £ (x,v)e"1Vay,
7

- 00

Since the asymptotic behavior of f,(x,v) and fz(x,v) given in (5.k4)
holds uniformly with respect to v in every finite interval, and since**

¥It should be observed that the term c eitox + cze"itox in (4.8), which

represents the solution of the homogeneous equation associated with (3.7),
determines the so-called free waves. These are the steady-state waves that
can subsist on the surface of a stream of an inviscid fluid in the presence
of no disturbing surface forces. To avoid the indeterminateness which pre-

vails if this term is present, Lord Rayliegh employed the artifice of mod-
ifying ‘the equations of motion by including the effects of small dissi-

pative forces; see Lamb%, p.399. However, as shown above, the natural
boundary condition (3.5), of which (3.9) is a consequence, is sufficient
to insure a unique solution of the surface-wave problem.

**Magnus and Oberhettinger®, p.116.

11
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+0 L lyx ‘
1 e l ,]e-iyv av = (Xz.,.y25~l = r-2, x £ 0,
2 [, =

0

it is evident that the contribution to the amplitude 7n(x,y) of the wave by
the terms in (5.15) and (5.16) involving fl(x,v) and f_(x,v) behave asymp-
totically for large r as O(r-2).* Since p(r) = O for r > a, it is there-
fore possible to conclude that the disturbance produced on the water surface
at large distances ahead of (x > a > 0) a ship (corresponding to the applied
surface forces) is negligible, and that at large distances behind (x < -a)
the ship the surface wave is predominately determined by the integral¥**

. +00 400
(5.17)  nolx,y) = L [ folx,v)eWVav = f P(r) x(x,y;7) ar,
27 .
where
(5.18) k(x,y;T) = 2 cosh®r sin(x cosh T) cos (% y sinh 27).
T

6. The Surface Wave Produced by a Moving Point of Disturbance

Because of its classical importance, the surface wave generated
by a travelling pressure point will be interpreted in terms of the foregoing
results. To this end, consider first the wave corresponding to the very
special pressure distribution over a circle of radius & > O:

(6.1) P = 1/na® fora<0 and p = O for a > 0.

Since (2.7) is satisfied for all a > O, the total applied force acting over
the surface is independent of the radius a. According to (5.17), the ampli-
tude No(x,y;a) of the predominant part of the disturbance generated behind
(x < =a < 0) the circle is given by

*Pursuing further the suggested asymptotic expansion in the footnote on page
10, it is possible to show that the first term in the expansion represent-
ing the contribution of the terms in f (x,v) and f,(x,v) to the surface
elevation is O(r's) as r + «», This same result is obtained by Petersz,
p. 142, for the case in which G(s,v) = 1.

**The resolution of the surface wave into expressions representing respec-
tively the disturbance that is produced in front of and behind a moving

source appears to have been given for the first time by Peters2. Peters
expresses the disturbance behind the ship by an integral that can be ob-
tained by setting P(7) = 1 in (5.17) above: see Peters2, p. 1h2. How-
ever this integral diverges for all x # 0 and y # 0.

12
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00

(6.2) No(x,y38) = f P(a;T) w(x,y;7) dr,
0

where by (5.8)

J;(a cosh3r)

a cosh2T

(6.3) Plazt) = 2

A
Then, following the well-known procedure, the amplitude N,(x,y) of the sur-
face wave generated by a pressure point is defined by the limit

9]

n
(6.4) No(x,y) = lim Ny(x,y3a) = limf P(a;T) k(x,y;7) dr.
a~>0 a0 .

0

It can be shown that the limit in (6.4) exists for x < O and
y # 0.*¥ THowever, this limit cannot be obtained by merely interchanging
the order of the integration and limit processes. For, it is evident that

(6.5) lim P(ajt) = 1, O < T < o,
a+0 _ =

00

and that the integral\/nn(x,y;T) dt does not exist in the ordinary sense.

0
On the other hand, the limit (6.4) may be regarded as an evaluation of this

divergent integral by a method of summation¥** with respect to the kernel
PlazT).

It is not difficult to show that the method of summability with
respect to P(a;T) is regular in the sense that it sums every convergent
integral and assigns to it the,same value as defined in the ordinary sense.
However, since the integral | k(x,y;T) dr does not converge, the question

0
regarding the consistency of the result of summing this integral by any

regular process immediately arises. 1In particular, is the definition of the
wave amplitude generated by a pressure point strongly dependent on the form

*¥Tt has been shown by the junior author that the limit does not, however,
exist when x < O and y = 0. This implies that the amplitude of the sur-
face wave is unbounded along the path of the pressure point. This result
agrees with that indicated by Kelvinl, but is contrary to the assertion
by Peters2 that the amplitude of the wave generated by a préssure point
is finite along its path.

**por a detailed discussion of the summstion of divergent integrals, see
Hobson'2, pp. 384-388.

13
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of the distribution chosen in (6.1)? Does there exist a second distributien
also depending on a characteristic parameter a and describing, in the limit
as a X 0, a pressure point for which the corresponding limiting wave ampli-
tude N (x,y) in (6.4) is distinctly different from the first? In still an-
other form, the question may be phrased thusly: Total forces being equal,
does the amplitude of the wave at large distances behind the source of the
disturbance depend on the form of the pressure distribution in this region?
A satisfactory answer to these questions can be given for a certain class

of pressure distributions, which is introduced below.

v In addition to (5.5), let the pressure distribution p(aj;r) also
satisfy the following conditions:*
(i) p(ajr) is continuous, and p'(ajr), p"(aj;r) are sectionally
continuous for r 2 0 and a > O (primes denote derivatives
with respect to r).

(6.6) (11) p(azr), rp'(a;r) and p"(asr) are O(r %), with o > 2,
as r »> o,

(i1i) 1lim p"(ajr) = O uniformly with respect to r in every finite
a~0

interval with r # 0.

After substituting (5.8) into (5.17), integrating by parts, and interchang-
ing the orders of integration, the function ny(x,y;a) defined by the inte-
gral in (5.17) can be expressed in the form

(6.7) no(x,y38) = f B(asp) No(x,¥;5p) dp,
0

where Ny(x,y;p) is defined by (6.2) and
f(azr) = -mr2p*(a;r) = o2nrp(asr) - xlrzp(as;r)]’.

As a consequence of (5.5) and (6.6), the function f(a;r) has the following

properties:
® ©
(i)\/n¢(a;r) ar = ET/ﬂrp(a;r) dr = 1 for a > O.
-0 o |
[oo]
(ii) f|¢(a;r)| dr <o for a > O.
0

*No attempt is made here to describe the largest class of functions for
which the definition in (6.4) is consistent.
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(iid) li% @(asr) = O uniformly with respect to r in every finite
a~>

interval with r # O.

Tt therefore follows from (6.7) and these properties of $(ajr) that*

A
(6.8) lin No(x,y358) = g}g No(x,y50) = N (x,¥).

Hence the definition in (6.4) for the amplitude of the surface wave generated
by a pressure point is consistent with respect to the class of pressure
distributions described by (6.6).

As an example, take p(r;a) = 2na(a2+r2)”®2, Then,** from (5.1),
G(s,v) = ag and the kernel P(a;t) in (6.4) becomes

P(a3;t) = expl-a cosh2r].

Therefore the amplitude of the wave generated by a pressure point can also
be defined by the limit

- 200

A .

(6.9) N (x,y) = 11 E\/ﬂ e~a coshZr ,e13r sin(x cosh T) cos(% sinh 27) dr.

T } _
0

This is not unlike the Abel-Poisson summation method for infinite inte-:
grals .*¥¥* The last expression serves to give a partial justification for
the artifice employed by Lamb, Havelock and others ¥*¥¥¥ pof -introducing an
exponential factor in the integrals representing the amplitude of the wave
generated by a pressure point so as to insure the necessary convergence of
the integrals.¥¥¥¥x¥

*
The limit (6.8) follows from the theory of singular integrals; see for
example Titchmarsh?, p.28, or Hobsonl2, pp. 446-456.

**sneddon1o, p. 528.

*¥%
See Hardyl3, p. 1l.

*HKH*
See Lamb%, p. L4L13; Havelockl%.

R KN %
See the paper of Peters2 for a discussion of the history of the prob-

lem. Peters also gives an excellent treatment of the asymptotic ex-
pansion of the integrals of the type in (6.9) by Debye's method of
steepest descent.
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