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Abstract. Rabin has given an example of a game with recursive rules but no recursive winning 
strategy. We show that such a game always has a hyperarithmetical winning strategy, but arbi- 
trarily high levels of the hyperarithmetical hierarchy may be needed. We also exhibit a recur- 
sively enumerable game which has no hyperarithmetical winning strategy. 

To each set G of infinite sequences of natural numbers, we associate 
the infinite two-perso.n game played as follows. The two players alter- 
nately and perpetually choose natural numbers. At each move, the 
players know all the previous moves (perfect information). If the se- 
quence of their choices is in G, then the first player wins; otherwise, the 
second player wins. A winning strategy for the first player is a function 
c mapping finite sequences of natural numbers to rsatural numbers, and 
s<2 tisf ying 

(1) Vf[VnCf(2n) = oCf(2n))) +f~ Gj , 

whereJF(k) is the sequence <f(O), . . . . f(k-1)). This means that the first 
player is assured of winning the game if, at each of his moves, he chooses 
the number c;(s), where s is the sequence of previous moves. Similarly, a 
winning strategy for the second player is a function 0 satisfying 

Vf[VnCf(2n+l)=o~(2n+l)))+f$W l 

Clearly, at most one of the players has a winning strategy:, but it is 
possible that neither does. The problem of finding conditions on G which 
guarantee the existence of a winning strategy has been studied by Gale 
and Stewart [ 21, Davis [ 1 ] and 
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We shall be coilcerned rna’tily with games for which G is recursive. It 
is lknown (see [6, p. 3521 and ]2] ) that then one of the players has a 
winning strategy. The question arises of how comptex (in the sense of 
Turing degrees or hierarchies) such a strategy must be. (Here, and in 
the future, we assume that finite sequences of natural numbers have 
been identified with natural numbers in one of the standard recursive 
ways. ‘Thus, strategies are functions from C. to u.) 

If G is recursive, then the formulas ( 1) and (2) are II;. As already re- 
marked, one of them is satisfied by some BT. By the Kondo-Addison 
theorem R,O;, p. GO] , one of them is satisfied by a Ai function U. Thus, 
we hz=e a ,ountl for the complexity required of winning strategies for 
recursive games, but we have not used the full strength of the recursiv- 
eness of C. Indeed, the same argument shows that, if a player h.as a 
winning strategy for a hyperarithmetical game, then he has a A; winning 
strategy, It is tfl;ls reasonable to expect (and we shall obtain) a better 
bound when G iri recursive. 

b:t G be a recursive set of functions. Then there are recursive -predi- 
cates, P and Q, such that 

(3) fE c * 3XP@(X)) 

and 

(4) fG G ++ 3xQ(7(~:1l). 

Consider a particular play of the associated game. If the ftist player won, 
then, by (3), thire is a number x such that P(s) holds, where s is the 
sequence of the %t x moves. Anything the players did after the se- 
quence s was played had no effect on the outcome. Of course, similar 
remarks apply if the second player wurl. v Thus, no matter ho?w they play, 
the players will eventually produce a finite sequence 9 such that p(s) v 
Q(s); at this point, they may as well stop playing and declare the first 
(resp. seoond) player the winilsr ifp(s) (resp. Q(s)): for Ale) further moves 
can alter this outcome. M/hen viewed in the light of ?:he preceding dis- 
cussion, recursive games are seen to be essentially the same as the actual 
games defined by Rabin [ 5]_ Rabin showed that such a game need not 
admit a rezursive winning strategy. 
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Theorenr 1. If G is recursive, then one of the pluyer~ has G hyperarithme- 
tied winning strategy. 

Proof. Consider the function u hose value at a finite sequence s is 1 

(resp. 2) if, after s has been played, the first (resp. second) player has 
a winning strategy. This u clearly has the following properties: 

(5) v(s) = 1 or 2 9 

(6) (3x < length (s 1) P (3@jj -+ u(s) = 1 9 

(7) (3x G length (s)) Q (S(x)) -3 U(S) = 2 : 

(8) length (s) is even-+ [v(s)= 1 *(Bz)u(wI) = 11 , 

(9) length (s) is odcl + [u(s) = 2 e (3n)v(s*rl) = 21 ; 

here F(X) is the sequence of” the first x components of s, sw is the se- 
quence obtained by adjoiring n to s as a last term, and P and Q are re- 
cursive relations such thz? (3) and (4) hold, Statements (6) and (7) say 
that a player who “has alr!:ady --*an” has a winning strategy. Statements 
(8) and (9) say that the player v;nose move it is has a winning strategy 
iff he ca,p move so ais to have a winning strategy afterward. 

Formulas (5) through (‘3) completely characterize u. For if U’ were 
another such function and u’(s) * u(s) for some s, then, by (8) and P), 
there is an n such that u’(s*n) * u(s$n). Proceeding inductively, we ob- 
tain a function f and a number k (=length (s)) such that 

(Vx a k) v’@(x)) + I.Y@x)) . 

By (6) and (7). it follows that 

which is impossible because of (3) and (4). 
As the unique function satisfying the arithmetical conditions (5) 

through (9$, LJ is hyperarit hrnetical. ThereLfore, so is the function 0: re- 
c;ursCe in u, defined by 
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(10) u(s) = the least n ST: ch that v(s) = v(swz) ; 

such an y1 always exists by (8) and (9). 
To complete the proof; we show that CT is a winning strategy for one 

of the players. Suppose the empty sequence is mapped to 1 by v. Let f 
be any function satisfying the hypothesis of (1): 

(11) (Vn)f(2n) = ag(2n)). 

I claim that (W) v g(k)) = 1. This is proved by induction on k. It is true 
by assumption if k = 0. If it is true for an even k, then it is true for k+l 
by (IO) ;;lqd (11). If it is true for an odd I’c, then it is true for k+l by (9). 
In view of (7), 

so, by (4), 1% G. Thus. c is a winning strategy for the first player. Simi- 
larly, if v of the empty sequence is 2, then u is a winning strategy for the 
second player. 

Having reduced the bound on complexity of winning strategies;; from 
Ai to A:, we may ask whether further reductions are possible. The 
following theorem shows that thev are not. It also improves the result . 

of Rabin [5]. 

Theorem 2. Let A be any Jzyperarithmetical set. There is a recursive G 
such that A is recursive in every winning strategy for the associbted game. 

Proof. As A is IIf, there is a recursive relation P such that, for all ~1, 

(1.2) n E A * {xlP(n, x)) is well-ordered by the Wene-Brouwer 

ordering <* . 

(See 16, pp. 396-3971.) Similarly, as A is Xi, there is a recursive Q such 
that 



A. Blass, Complexity of winning sttategitc 299 

(13) n $ A * (XI Q(n, x)} is well-ordered by < * o 

Consider the following game. The first player begins by proposing a 

number n. The second player replies by guessing whether <jr not n E A. 
If he guesses “Yes”, then he claims that (xlQu& x)) has an infinite de- 
scending (with respect to c*) sequence; on his remaining moves, he is 
to list, in order, the elements of such a sequence. Meanwhile, the first 
player is to use his remaining moves to list an infirite descenchng se- 
quence in (W(n, x)} . In view of ( 12) and ( 13), it is not possible for 
both players to succeed. The first to fail in his tad;---either by listing an 
element outside (xlQ(rt, x)} or {xlP(n, x)} , or by listing two elements 
in ascending Kleene-Brouwer order-is the loser. If the second player 
guessed that n 9 A, the remainder of the game is the same as above ex- 
cept that P and Q are interchanged. We leave to the reader the easy 
task of checking that this is the game associated to a certain recursive 
set @. (It is, of course, necessary to code the second player’s yes-or-no 
answer as a number.) 

The second player has a winning strategy for this game; namely: an- 
swer the question “Is n E A ?” correctly; theretafter, confronted with 
the task of producing a descending sequence in a certain set which is, 
in fact, not well-ordered, give the first such seyuence in some fixed well- 
ordering of ~0. (In fact, the set in question hss c.Bnstructible descend- 
ing seqlaences, so the axiom of choice can be avoided here.) Notice th.at 
nny winning strategy for the second player requires him to answer “Is 
IZ E A ?” correctly. For, if he answers incorrectly, he cannot produce 
1:he descending sequence required of him, while his opponent can. Thus, 
A is recursive in every winning strategb o for this game; ~2 E .A iff 
U(W) = “Yes.” --- 

Corollary, There is a recursive game with no arithmetical winning strat- 

@gY l 

Our .‘:‘inal theorem shows that the assumption in Theorem ‘I that G 
is recursive cannot be we;\kened. 

‘:&eorem 3. There is a recursively enumerable G whose associatt d game 
i ws no &yperarithmeiicaE winning strategy. 
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Proof. Let P be a recursive set whkh is not welkrdered by the Kleene- 
Brouwer ordering C *, but which has tlrl’ infinite descending hyperarithme- 
tical sequences. (See [ 6, pp. 396,LbP 91.) Define G by 

f E G +) 3n(‘PCf(2ra+l)) 

The associated game is won by the Clearly, G is recursively c=numerable, 
second player iff he writes (in order) an infinite descencting sequence in 
P. As P is not well-order&, such a sequence exisrs, so the second player 
has a winning strategy. 

Let o be any winning strategy for the second player,, By (2), the func- 
tion g defirled by 

if n is odd :- ge L) 
f 

/a@(n)) 
=I 

lo if n is even 

is not in G. Hence, the function f such that 

f(n) =:g(Zn + 1) 

b is a descending sequence in P. By choice of P, f is not hyperarithmetical. 
Since g and fare clearly recursive in 0, we conclude that Q is not 
hyperari thme tical. 
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