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Abstract, Rabin has given an example of a game with recursive rules but no recursive winning
strategy. We show that such a game always has a hy perarithmetical winning strategy, tut arbi-
trarily high levels of the hyperarithmetical hierarchy may be needed. We also exhibit a recur-

sively enumerable game which has no hyperarithmetical winning strategy.

To each set G of infinite sequences of natural numbers, we associate
the infinite two-person game played as follows. The two players alter-
nately and perpetually choose natural numbers. At each move, the
players know ail the previous moves (perfect information). If the se-
quence of their choices is in G, then the first player wins; otherwise, the
second player wins. A winning strategy for the first player is a function
o mapping finite sequences of natural numbers to natural numbers, and
satisfying

1) Y f[Vn(f(2n) = 0 (f(2n))) » fEG],

where f(k) is the sequence {f(0), ..., f(k—1)). This means that the first
player is assured of winning the game if, at each of his moves, he chooses
" the number ¢(s), where s is the sequence of previous moves. Similarly, a
winning strategy for the second player is a function o satisfying

(2) Y IVa(f2nt 1) = o(fn+1))) > f¢ G] .

Clearly, at most one of the players has a winning strategy, but it is
possible that nieither does. The problem of finding conditions on G which
guarantee the sxistence of a winning strategy has been studied by Gale
and Stewart [ 2], Davis [1] and Martin [3,4].
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We shall be coacerned mainly with games for which G is recursive. It
is known (see [6, p. 352 and [2]) that then one of the players has a
winning strategy. The question arises of how compiex (in the sense of
Turing degrees or hierarchies) such a strategy must be. (Here, and in
the future, we assume that finite sequences of natural numbers have
been identified with natural numbers in one of the standard recursive
ways. Thus, strategies are functions from w to w.)

If & is recursive, then the formulas (1) and (2) are Hi . As already re-
marked, one of them is satisfied by some 0. By the Kondo-Addison
theorem {6, p. 430], one of them is satisfied by a A; functicn 0. Thus,
we have a »ound for the complexity required of winning strategies for
recursive games, but we have not used the full strength of the recursiv-
eness of G. Indeed, the same argument shows that, if a player has a
winning strategy for a hyperarithmetical game, then he has a Aé winnir:g
strategy. It is thus reasonable to expect (and we shall obtain) a better
bound when G is recursive.

Let G be a recursive set of functions. Then there are recursive predi-
cates, P and G, such that

3) fEG < IxP(f(x))
and

4) fEG « 3xQ(f(x)).

Consider a particular play of the associated gaie. If the first player won,
then, by (3), ihcre is a number x such that P(s) holds, where s is the
sequence of the Ziist x moves. Anything the players did after the se-
quence s was played had no effect on the outcome. Of course, similar
remarks apply if the second player won. Thus, no matter how thzy play,
the players will eventually produce a finite sequence s such that P(s) v
Q(s); at this point, they may as well stop playing and declare the first
(resp. second) player the winazr if P(s) (resp. @(s)}. for ..o further moves
can alter this outcome. When viewed in the light of the preceding dis-
cussion, recursive games are seen to be essentially the same as the actual
games defined by Rabin [5]. Rabin showed that such a game need not
admit a recursive winning strategy.
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Theorem 1. If G is recursive, then one of the players has a hyperarithme-
tical winning strategy.

Proof. Consider the function v whose value at a finite sequence s is 1
(resp. 2) if, after s has been played, the first (resp. second) player has
a winning strategy. This v clearly has the following properties:

(5) v(s)=lor2,

(6) (3x < length (s) P E(x)) > v(s) =1,

7 (3x < length (s)) @ G(x)) > v(s) =2,

(8) length (s) iseven— [v(s)= 1+ (In)v(sxn) = 1] ,
) length (s) is odd > [v(s) = 2 « (In)vu(sxr} = 2] ;

here 5(x) is the sequence of the first x components of s, sxn is the se-
quence obtained by adjoir.ing # to s as a last term, anid P and Q are re-
cursive relations such thst (3) and (4) hold. Statements (6) and (7) say
that a player who “has alrzady -*on” has a winning strategy. Statemer:ts
(8) and (9) say that the player whose move it is has a winning strategy
iff he ca.» move so as to have a winning strategy afterward.

Formulas (5) through (9) completely characterize v. For if v’ were
another such function and v'(s) # v(s) for some s, then, by (8) and (9),
there is an n such that v'(s%n) # v(s+n). Proceeding inductively, we ob-
tain a function f and a number k (=length (s)) such that

(Vx = k)v' (f(x)) # v(f(x)) .
By (6) and (7), it follows that
Yy [MPGFO)) A QN ,
which is impossible because of (3) and (4).
As the unique function satisfying the arithmetical conditions (5)

threugh (9), v is hyperarithmetical. Therefore, so is the function o, re-
cursive in v, defined by
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(10) o(s) = the least n s::ch that v(s) = v{s*n) ;

such an n always exists by (8) and (9).

To complete the proof, we show that ¢ is a winning strategy for one
of the players. Suppose the empty sequence is mapped to 1 by v. Let f
be any function satisfying the hypothesis of (1):

(1D (Vn) f(2n) = 0(f(2n)) .

I claim thai (Vk) v (f(k)) = 1. This is proved by induction on k. It is true
by assum ption if k = 0. If it is true for an even &, then it is true for k+1
by (10) and (11). If it is true for an odd %, then it is true for £+1 by (9).
In view of (7),

(Vk) T Q(f(k)) ,

$0, by (4), f € G. Thus. o0 is a winning strategy for the first player. Simi-
larly, if v of the empty sequence is 2, then o is a winning strategy for the
secend player.

Having reduced the bound on complexity of winning strategies: from
Al to Al, we may ask whether further reductions are possible. The
following theorem shows that they are not. It also improves the result
of Rabin [5].

Theorem 2. Let A be any hyperarithmetical set. There is a recursive G
such that A is recuisive in every winning strategy for the asscciated geme.

Proof. As A is II} , there is a recursive relation P such that, for all n,

(12) ne€ Ao {x|P(n,x)} is well-ordered by the Klsene-Brouwer
ordering <* .

(See [6, pp. 396—397].) Similarly, as 4 is Ei , there is a recursive Q such
that
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(13) n¢EA < {xIQin x)} is well-ordered by <* .

Coansider the following game. The first player begins by proposing a
number n. The second player replies by guessing whether or not n€ A.
If he guesses “Yes”, then he claims that {x|Q«n, x)} has an infiniie de-
scending (with respect to <*) sequence; on his remaining moves, he is
to list, in order, the elements of such a sequence. Meanwhile, the first
player is to use his remaining moves to list an infirite descending se-
quence in {x|P(n, x)} . In view of (12) and (13), it is not possible for
both players to succeed. The first to fail in his task—either by listing an
element outside {x|Q{#n, x)} or {x|P(i, x)}, or by listing two elements
in ascending Kleene-Brouwer order—is the loser. 1f the second player
guessed that n ¢ A, the romainder of the game is the same as above ex-
cept that P and Q are interchanged. We leave to the reader the easy
task of checking that this is the game associated to a certain recursive
set G. (It is, of course, necessary to code the second player’s yes-or-no
answer as a number.)

The second player has a winning strategy for this game; namely: an-
swer the question “Isn € A?” correctly; thereafter, confronted with
the task of producing a descending sequence in a certain set which is,
in fact, not well-ordered, give the first such sequence in some fixed well-
ordering of “w. (In fact, the set in question has constructible descend-
ing sequences, so the axiom of choice can be avoided here.) Notice that
any winning strategy for the second player requires him to answer “Is
n € A ?” correctly. For, if he answers incorrectly, he cannot produce
the descending sequence required of him, while his opponent can. Thus,
A is recursive in every winning strateg; o for this game; n € A iff

_o((m) = “Yes.”

Corollary. There is a recursive game with no arithmetical winning stral-
€gy.

Our ‘inal theorem shows that the assumption in Theorem 1 that &
is recursive cannot be weukened.

‘Theorem 3. There is a recursively enumerable G whose associat.d game
i1as no hyperarithme'tical winning straiegy.
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Proof. Let P be a recursive set which is not well-crdered by the Kleene-
Brouwer ordering <*, but which has no infinite descending hyperarithme-
tical sequences. (See [6, pp. 396, 4i9].) Define G by

f€ G« InCPA(2n+1)) vf2n+1)<* f(2n+3)) .

Clearly, G is recursively ennumerable. The associated game is won by the
second player iff he writes (in order) an infinite descending sequence in
P. As P is not well-orderzd, such a sequence exists, so the second player
has a winning strategy.

Let o be any winning strategy for the second piayer. By (2), the func-
iion g defined by

ja@(n)) if n is odd
g(n) = S
l@ if n is even

is not in G. Hence, the function f such that
f(n)=g(2n+1)

. is a descending sequence in P. By choice of P, f is not hyperarithmetical.
Since g and f are clearly recursive in g, we conclude that o is not
hyperarithmetical.
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