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SUMMARY

To improve the performance of electric machinery, it is necessary to obtain the optimal topology of
a structure in magnetic "elds. The homogenization design method is applied to obtain the optimal topology.
In the method, the change of inner hole size and rotational angle of unit cell determines the optimal material
distribution in a design domain and this distribution de"nes an optimal topology. The objective function is
de"ned as maximizing magnetic mean compliance (MMC). This is the same as maximizing magnetic vector
potential and e!ective to improve the performance of electomagnet. The analysis and optimization is
performed based on three-dimensional hexahedral elements. This design method is applied to the H-shaped
electromagnet (H-magnet). Copyright ( 2000 John Wiley & Sons, Ltd.
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INTRODUCTION

The optimal synthesis problem of an electromagnetic system is to obtain the optimal shape which
atis"es the prescribed performance subject to some limitations and constraints. A traditional but
ine$cient way of solving this problem is the trial and error method in which the modi"cation is
determined mainly by the designer's intuition and experience. The direct search method is widely
used in structural mechanics as well as in electromagnetics. The optimal design to satisfy the
objective function can be performed either by the derivative free approach or by the gradients-
based technique. The gradients-based techniques is one of the most powerful methods for the
optimization using the "nite element method, and it is very popular for the optimization of
electromagnetic systems [1}3]. In this method, some control points, which are usually speci"c
nodes in a "nite element model, are designated and the positions of the points are changed to
satisfy the prescribed performance. For the optimization process, a sensitivity analysis plays
a central role. The de"nition of sensitivity must correspond to the objective function and the
design variable. However, this method determines only the outer shape of the design domain for
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the optimization. Therefore, it can be classi"ed as a shape optimization rather than a topology
optimization.

Since it was "rst introduced to electromagnetic "eld analysis by Silvester [4], the "nite element
method has been preferred, especially for the analysis of a "eld which has complex boundary
shapes. Schmit [5] "rst coupled the "nite element method with non-linear mathematical pro-
gramming for optimal structural design. In electromagnetic "elds, Marrocco and Pironneau's
work [6] can be regarded as a pioneer work which developed the optimal design of a magnet
combined with Lagrangian "nite elements. Nakata and Takahashi [7] presented a new design
method using the "nite element method and the gradient method. Using the "nite element
method, the performance of an electromagnetic system can be calculated with reasonable
accuracy.

Since "rstly introduced for topology optimization by Bends+e and Kikuchi [8], topology
optimization using the homogenization design method has been successfully applied to elastic
structure cases [9, 10]. This method is based on the homogenization theory and the "nite element
method. As many other optimization processes, this method is composed of two modules, which
are the "nite element analysis module and the optimization module.

In this paper, topology optimization using the homogenization design method is extended to
obtain the optimal topology of a structure in magnetic "elds. In the iteration process for the
optimization in magnetic "elds, the homogenized magnetic permeability value is decided corre-
sponding to design variables which are inner hole size and rotational angle of each unit cell. Using
the permeability value, the objective function based on magnetic energy is computed. The optimal
material distribution is decided during the optimization process and this determines the optimal
topology. Sequential linear programming is used for the optimization process since large number
of design variables and the negative sensitivity value must be managed.

HOMOGENIZATION IN MAGNETIC FIELDS

In topology optimization using the homogenization design method, the optimal shape of
a structure is determined by the optimal material distribution. The design domain, ), is composed
of a composite material with perforated microstructures as shown in Figure 1. The design domain
is expressed as "nite elements. It is assumed that each element is composed of in"nite number of
unit cells. The design domain has given boundary conditions L)

d
and L)

J
, which are the

potential boundary condition and current density boundary condition, respectively. The unit cell
of the microstructure has a rectangular hole, as shown in Figure 1. If the hole size of the unit cell
is 0, the unit cell becomes a solid. On the other hand, if the hole size is the same as the unit cell size,
the unit cell becomes a void. During the optimization process, the material is transferred from one
part to another part in the design domain and "nally the optimal distribution of the material is
determined.

The optimization problem using the homogenization method is de"ned by the total potential
energy/mean compliance of a design domain. In magnetic "elds, the weak form of magnetic
energy can be formulated using homogenized magnetic permeability. Thus, to obtain the
homogenized properties of a given microstructure, the unit cell problem must be solved. The
microstructure model in a three-dimensional case is shown in Figure 2. The unit cell of
three-dimensional microstructure has a body hole of width 1!a, depth 1!b, and height 1!c.
The size of body hole D"Ma, b, cN, and the rotation angle #"Mu, h, tN are the design variables.
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Figure 1. Macro-design domain and porous microstructures.

Figure 2. Unit cell for a three-dimensional microstructure.

These design variables are changed during the optimization process and de"ne the material
density of each element. Assuming R(#) to be the rotational matrix based on rotational and #,
magnetic permeability is "nally computed using the following equation

k)"R(#)TkH(D)R(#) (1)
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where lH (D) represents homogenized magnetic permeability without considering rotation and k)

represents the "nal value of homogenized magnetic permeability.

Mathematical formulation

The homogenization method can be used for periodic materials which are composed of a periodic
repetition of a unit cell. Then, in the magnetic "eld analysis, the constitutive parameters, such as
homogenized permeability, can be obtained using the formulation developed by Sanchez-
Palencia [11] and Bytner et al. [12].

The Maxwell equation for magnetic "elds is written as

+ )B"0 (2)

+]H"J#
LD

Lt
(3)

where B is the magnetic #ux density and H is the magnetic "eld strength. J and D represents the
current density and the electric #ux density, respectively. The constitutive relation between H and
B is written as

B"lH (4)

In magnetic "elds, l can be assumed as an orthotropic matrix since shear term of the matrix has
negligible value and is usually not considered for #ux density calculation. Therefore, it can be
expressed such that

l"
k
x

0 0
0 k

y
0

0 0 k
z

(5)

Let the permeability, l, be Y-periodic functions of y"x/e satisfying the following condition

le (x, y)"l (x, y#Y) (6)

Here, x is the co-ordinate of a point in macro-scale and it has three directions, x
1
, x

2
, and, x

3
for

three-dimensional cases. On the contrary, y is the co-ordinate de"ned in a unit cell characterizing
a microstructure and it also has three directions, y

1
, y

2
, and, y

3
for three-dimensional cases.

e represents the size of the microstructure and Y is the size of a unit cell. Let coordinate x
0

be
the origin of the unit structure for the microstructure. The relation between these variables is
written as

y"
x!x

0
e

(7)
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Using this relation to expand H, it becomes

He"H
0
(x, y)#eH

1
(x, y) (8)

If only the magnetic "eld of the macro-scale is considered, Equation (8) simply becomes
He"H

0
(x). However, since the "eld strength of the micro-scale is considered, the second term of

Equation (8) must be added. Using Equations (7) and (8) into Equation (3), a hierarchy of
equations can be obtained. Terms for e~1 and e0 of Equation (3) are derived as

+
y
]H

0
"0 (9)

+
x
]H

0
#+

y
]H

1
"J

0
#

LD
0

Lt
(10)

And the term for e~1 of Equation (2) is derived as

div
y
(lH

0
)"0 (11)

Equation (9) implies that H
0

are gradients in y. Thus, it can be rewritten as

H
0
"+

y
(#P

Y

H
0

dy (12)

where ( is a >-periodic function and has a scalar value. H
0

is also function of y. Therefore, not
only the macro-scale value but also the micro-scale value must be considered in H

0
. In Equation

(12), the "rst term on the right-hand side expresses the micro-scale value. Substituting Equation
(12) into Equation (11), the following equation can be derived:

div
y
(l+

y
()#div

yAl P
Y

H
0

dyB"div
y
(l+

y
(#lH3

0
)"0 (13)

where H3
0

is only a function of x. Considering the relation of Equation (13), ( can be written as

("v (y) P
Y

H
0

dy"v (y)H3
0

(14)

where v (y) is the characteristic magnetic "eld strength in the unit cell. The characteristic magnetic
"eld strength v (y) can be determined by solving the following equation which is obtained by
Equations (13) and (14):

div
y
[l(y)+

y
v (y)H3

0
#l (y)H3

0
]"0 (15)
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Since H3
0

is a function of only x, Equation (15) can be expressed as

div
y
[l (y)+

y
v(y)#l(y)]"0 (16)

Using variational calculus and integration by parts, this equation can be written as a tensor form

P
Y

k
ij

Ls
i

Ly
i

Ll
p

Ly
i

dy"!P
Y

k
ij

Ll
p

Ly
i

dy (17)

where v
p

is de"ned in space < which is expressed as

<"Mv ; v
p
3H1 ()), v

p
DL

1)"0N (18)

where H1 is the Sobolev space di!erentiable at least once. By solving Equation (17) the
characteristic magnetic "eld strength v (y) can be obtained. The constitutive relation de"ned in
Equation (4) can be expressed by mean values such that

P
Y

B
0

dy"l) P
Y

H
0

dy (19)

where the homogenized permeability l) is de"ned using Equation (15) and the characteristic
magnetic "eld strength is de"ned as follows:

l)"P
Y

l dy#P
Y

l+
y
v (y) dy (20)

This l) matrix is determined during the optimization process associated with the change of design
variables.

OPTIMIZATION PROBLEM

In this section, the optimization problems are de"ned to obtain the optimal shapes which
maximize MMC in a design domain for linear cases. Since the homogenization method is used as
a design methodology, the objective function is expressed as an energy formulation. The
computation of the sensitivity is also important to obtain new design variables. For the
optimization solver, sequential linear programing is used.

Magnetic energy

The structural optimization problem is based on the energy value of a structure. The objective of
the optimization is generally formulated as maximizing or minimizing the energy. Thus, for
a structural optimization in magnetic "elds, the magnetic energy must be calculated. In a region
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<, the magnetic energy can be de"ned such that [13, 14]

=
.
"

1

2 P
V

B )H dv"
1

2 P
V

BT
1

l)
B dv (21)

where l) is the homogenized magnetic permeability. B can be calculated using the vector
potential, A. Thus, Equation (21) can be rewritten as

=
.
"

1

2 P
V

(+]A) )H dv (22)

Using a vector identity and using +]H"J, we obtain

=
.
"

1

2 P
V

J )A dv#
1

2 P
V

+ ) (A]H) dv (23)

Applying Stoke's theorem, Equation (23) can be rewritten as

=
.
"

1

2 P
V

J )A dv#
1

2 Q
S

A]H ) dS (24)

Let the surface over which the second integral performs go to in"nity. Then since AJ1/r,
HJ1/r2, and SJr2, the second term becomes zero [14]. Therefore, the magnetic energy is
de"ned as

=
.
"

1

2 P
V

BT
1

k)
B dv"

1

2 P
V

J )A dv (25)

The optimization process is performed using the "nite element method. Thus, the magnetic
energy is calculated based on each of the "nite elements which compose the design domain. The
magnetic energy of each element in a design domain can be calculated using the following
equation:

;
.e

"

1

2 P)e

BT
e
M)

e
B
e
d) (26)

where B
e
is the #ux density of the element and M)

e
is the homogenized permeability matrix. M)

e
is

de"ned as follows:

M)
e
"

1

k)
x

0 0

0
1

k)
y

0

0 0
1

k)
z

(27)
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where M)
e

is assumed to be orthotropic. The value of B
e

is calculated from vector potential A
e

using the following relation

B
e
"+]A

e
(28)

Therefore, the total magnetic energy of a design domain can be calculated by adding the magnetic
energy of each element composing the design domain.

Optimization problem for a linear case

The objective of the optimal design in magnetic "elds can be de"ned as maximizing MMC in
a design domain. If this objective is applied, the volume of the optimal structure decreases as
MMC increases. Thus, a minimum bound of total volume must be constrained. In electro-
magnetics, the total potential energy can be de"ned as

F
.
"

1

2 P
V

BT MB dv!P
V

J )A dv (29)

Considering the relation shown in Equation (25), minimizing the total potential energy is the
same as maximizing MMC

MMC"P
V

J )A dv (30)

Considering the objective and the volume constraint, the optimization problem can be de"ned as
follows:

maximize
x

MMC"P
V

J )A dv

subject to
N
+
e/1

v
e
!<*0

(31)

where X is the design variable. The objective function is the same as maximizing vector potential
A since J is usually "xed. However, this cannot guarantee maximizing B because B is de"ned as
curl of A as in Equation (28). During the iteration for maximizing MMC, the volume decreases.
Thus, the lower bound of total volume must be constrained as in Equation (31).

The #ux linkage can be found as

u"

P
V

J )A dv

I
(32)
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Using the de"nition of magnetic #ux, /"u/N, the mean compliance can be rewritten as

MC"

Iu
N

N"NI/ (33)

where number of turns N and current I are already decided. Thus, the objective is the same as
maximizing magnetic #ux.

Letting X be the design variable and taking a variation of F
.
, the derivative of potential energy

becomes

dF
.
"P

V

B(A)TMBAdA#

LA

LX
dXB d)#

1

2 P
V

B(A)T
LM

LX
B (A1 ) d) dX

!P
V

J )AdA#

LA

LX
dXB dv (34)

The "rst and third terms can be cancelled out. Thus, the sensitivity of F
.

for design variable X can
be de"ned as

LF
.

LX
"

1

2 P
V

BT
LM

LX
B d) (35)

NUMERICAL EXAMPLES

In order to verify the optimization method explained previous sections, two examples are
provided. The "rst example is about the maximizing MMC of an H-magnet. The second one is
similar to the "rst example. The design objective is to improve the performance by maximizing
magnetic vector potential. However, three layer "nite element model is used to de"ne a three
dimensional structure.

Example 1: Maximizing mean compliance in a linear case I

The optimization problem de"ned in Equation (31) is applied to obtain the optimal shape of an
H-magnet. Figure 3(a) shows the cross-section of an H-magnet. )

&
represents the iron part and )

#
represents the copper wire where the current density of 5]106 J/m2 is applied. )

!
represents an

empty portion of the magnet. The initial relative permeability of the iron is assumed as 4000. The
object of optimal design is to maximize MMC at the end of subregion )

&
which is adjacent to the

empty portion. For the "nite element model, only one quarter of the H-magnet can be considered
as shown in Figure 3(b) because of the symmetry. The Dirichlet boundary condition is applied
along the !

0
region and the Neumann boundary condition is applied along the !

1
region.

Figure 4 shows the initial "nite element model which is one layer deep in the z-direction using
hexahedral eight-node elements.
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Figure 3. Shape of an H-magnet: (a) cross-sectional view; (b) quarter model for analysis.

Figure 4. An initial "nite element model of an quarter of an H-magnet.

Figure 5. Finite element analysis results of an H-magnet: (a) vector potential; (b) #ux density.

Figure 5(a) shows a contour plot of the vector potential and Figure 5(b) shows a vector plot of
the magnetic #ux density for the "nite element model shown in Figure 4. Both analyses were
performed assuming that the value of the magnetic permeability was linear. As can be seen from
the vector plot of the #ux density, in the air gap of the H-magnet the vectors are aligned in the

NME=952=RM=VVC=BG

1472 J. YOO AND N. KIKUCHI

Copyright ( 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 48:1463}1479



Figure 6. A design domain for the optimization.

Figure 7. Optimal shapes of the design domain for di!erent volume constraints: (a) 60 per cent volume
constraint; (b) 70 per cent volume constraint.

negative x-direction. Also, because of the e!ect of the iron in the upper part, the vector plots in the
empty portion ()

!
of Figure 3(b)) are directed in the positive y-direction.

The design domain is de"ned in the "nite element model as shown in Figure 6. The material
density of other parts are "xed during optimization. The model is composed of hexahedral
eight-node elements one layer deep in the z-direction. Only the shaded area of the iron is assigned
as a design domain because the air gap is necessary for the original function of the H-magnet.
Therefore, the optimal design is a topology optimization of the shaded area, and the design
domain is composed of 54 elements of the total 540 elements.

The objective function which is to maximize MMC is applied to the design domain of Figure 6.
Figure 7(a) shows the optimal shape for a 60 per cent volume constraint and Figure 7(b) shows the
optimal shape for a 70 per cent volume constraint. The black parts represent high material
density. As can be seen from these "gures, the optimal shapes are similar. However, Figure 7(b)
shows a better result since no checkerboard pattern appears and the optimal shape is well
connected to the original iron part without an air gap. Figure 8 shows the convergency history
of the optimization process for a 70 per cent volume constraint. The objective in the graph is
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Figure 8. Convergency history of optimization for maximizing mean compliance of the H-magnet
(70 per cent volume constraint).

Figure 9. An optimal shape of the H-magnet.

MMC. As can be seen from the "gure, the value of the objective function converges well after 40
iterations.

Based on the optimal shape, as displayed in Figure 7(b), the optimal design for the H-magnet is
suggested. The shape of the end part of the iron is changed as shown in Figure 9. There is
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Table I. Comparison between the original model and the optimized model in the design domain.

Initial model Optimized model Increase (%)

Averaged vector potential A
z

!0.14466E!02 !0.26463E!02 82.936
Averaged #ux density B

x
!0.11623E#00 !0.13646E#00 17.399

Averged #ux density B
y

0.42568E!01 0.82186E!01 93.072
Total magnetic energy (J) 0.2989E!05 0.6904E!05 130.98

Figure 10. An initial "nite element model of an quarter of an H-magnet: (a) two-dimensional view;
(b) three-dimensional view.

a t-shaped void in the optimized model based on the result shown in Figure 7(b). Using this
model, "nite element analysis is performed. In magnetic "elds, the vector potential value increases
by maximizing MMC since the current density value is "xed. This tendency is similar to the case
in which the homogenization design method is applied to a structural design for maximizing
displacement with "xed external forces. In elastic structure analyses, the increase of strain can be
expected if the displacement value is increased. However, in magnetic "elds, we cannot guarantee
the increase of #ux density value although the vector potential value increases. This is caused by
the fact that the #ux density if de"ned by the curl of the vector potential while the strain is de"ned
by the divergence of the displacement.

Table I shows the comparison between the original model and the optimized model. As
mentioned above, we can see the large increase of the averaged value of vector potential and the
total magnetic energy in the design domain. This result can be estimated because the optimization
process is maximizing MMC de"ned by Equation (30) while the current density value is "xed.
However, we can see that the #ux density values are also increased. This is mainly caused by the
fact that the current density is applied only in z-direction in this example. The reason why the
increase rate of averaged B

x
is smaller than the increase rate of averaged B

y
can be estimated that

the existence of the upper iron part a!ects the #ux #ow in the design domain.
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Figure 11. A design domain for the optimization.

Figure 12. Optimal shape of the design domain at di!erent cross-sections:
(a) z"0.0; (b) z"0.02; (c) z"0.04.

Example 2: Maximizing mean compliance in a linear case II

In this example, an H-magnet is used to maximize MMC as in Example 1. However, in this case,
a three-layer "nite element model in the z-direction is used while only one-layer "nite element
model was used in Example 1. Figure 10(a) shows the "nite element model of the H-magnet. The
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Figure 13. Convergency history of optimization for maximizing mean compliance of the H-magnet
(three layer model, 70 per cent volume constraint).

Figure 14. An optimized model of the H-magnet.

original shape of the H-magnet is similar to the original model used in Example 1. Figure 10(b)
shows the model in three-dimensional view and it shows the three-layer "nite element model in
the z-direction.

As in Example 1, the objective function, which is maximizing the mean compliance in a design
domain, is used for the optimization process. Figure 11 shows the design domain which is located
at the end part of the center core. The volume constraint is "xed as 70 per cent to compare the
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Table II. Comparison between the original model and the optimized model in the design domain.

Initial model Optimized model Increase (%)

Averaged vector potential A
z

!0.16302E!02 !0.35650E!02 118.629
Averaged #ux density B

x
!0.17673E#00 !0.18269E#00 3.367

Averged #ux density B
y

0.63356E!01 0.16714E#00 163.811
Total magnetic energy (J) 0.2793E!04 0.9706E!04 226.472

optimal shape with the optimal shape obtained in Example 1. Figure 12 shows the optimal shapes
of the design domain at three di!erent cross sections which are at z"0.0, z"0.02, and z"0.04.
As in Figure 7, black parts represents high material density. The optimal shapes at "rst and third
layers are similar to each other because of the symmetry. However, Figure 12(b) shows that only
a few number of elements are assigned as solid elements in the middle section. Figure 13 shows the
convergence history for the optimization process. It can be con"rmed that the objective function
converges well after 50 iterations. Based on these results, an optimized model can be suggested as
shown in Figure 14.

Table II shows the comparison of the averaged vector potential, the averaged #ux density, and
the magnetic energy in the design domain between the original model and the optimized model.
As similar as in Example 1, we can see the large increase of the averaged vector potential value
and the total magnetic energy in the design domain. However, comparing to the result of
Example 1, the increase of #ux density, especially the increase of the averaged B

x
is small although

the increase of the averaged B
y
is very large. From these results, it can be estimated that the e!ect

of the upper iron part is very large for the three-layer "nite element model since the optimal shape
has a large void part in the middle layer of the design domain as shown in Figure 12(b).

CONCLUSION

The homogenization design method is applied to obtain the optimal shape of a structure in
magnetic "elds. The homogenized permeability values were obtained applying the homogeniz-
ation method to a microstructure and these values were used as important input data in the
optimization process.

The optimization problems were de"ned to maximize MMC for linear cases. From the analysis
results, it was veri"ed that the newly developed optimization process is useful to increase the
averaged vector potential and the total magnetic energy in a design domain.
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