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Abstract

Some introductory comments on the problem of broadband
matching of arbitrary impedances are presented. The analysis
of Fano (Ref. 2), leading to minimum loss networks when
matching to an RC load with a prescribed w.RC, is sumnmarized.
Design curves for the Tchebycheff networks defined in the
analysis are presented for the 2, 3, and 4 pole cases. It is
hoped that the curves will lead to & wider application of
Fano's results. The optimum networks (under the same
criterion) with maximally flat behavior of the power transfer
characteristic are defined. Design curves for the resulting
2, 3,and 4 pole maximally flat networks are presented.
Although these networks are less efficient than the Tchebycheff
networks, they are preferable in certain applications. A
sample calculation illustrating the principles of this report
is presented in Appendix III.
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THE DESIGN OF EFFICIENT COUPLING NETWORKS

I. INTRODUCTION

The transfer of power is a fundamentael problem of electrical engineer-
ing. The optimum coupling networks under a particular criterion are defined in
this report.

Consider the matching problem suggested by Fig. 1, where power is tb be
delivered from a generator with a resistive internal impedance R to an arbitrary

load impedance Z . Darlington (Ref 1) has shown that any driving point

FIG. I. A GENERAL MATCHING PROBLEM.

impedance can be realized in the form of a lossless network terminated in one
ohm. If the coupling network N' is also required to be lossless, the circuit

of Fig. 1 can be replaced by Fig. 2. The matching problem is thus reduced to
the specification of the network N for a prescribed power transfer vs. frequency
characteristic, when a number of elements of N are determined by the load

impedance Z;. Note that the Darlington network N" frequently contains an ideal
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FIG. 2. A GENERAL MATCHING PROBLEM WITH A LOSSLESS
COUPLING NETWORK .

transformer, and ZL actually may contain a number of resistors. In the represen-
tation of Fig. 2 all the power delivered to these resistors is absorbed by the
single one ohm resistor. If ZL contains only a single resistor, a simple im-
pedance level transformation produces a normalized one ohm load.l In this case
the transformation ratio (i.e., the ratio of léad—to-sourcé resistance) is
the significant parameter.

A generator of internal resistance R and open circuit voltage E can
deliver only a finite power lﬁég to an external load. This maximum or "availablé'
power is delivered under the matched condition. Efficiency of power transfer

is commonly measured in terms of this power; i.e., by the transmission coefficient

t which is defined by

]2 _  Power delivered to load

1t]° =
Power available from source

If the network N is lossless, the trensmission coefficient tl for the circuit of

Fig. 2, is related to the reflection coefficient p; at the input to network N

by the equations
Z; - R|2

Z1+R

2 2
o2 = 1 - |ty ]

1 In Appendix 1 it is shown that the efficiency of power transfer is unaffected
by a variation of impedance level.

2
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where Zl is the impedance seen by the generator. It is also worth noting that
if N is lossless, the same efficiency of power transfer is obtained when the

network is driven from the one ohm end; that is,

i zZ, - 1|2

2 2 2
ler™ = 1o 0|7 = 1o 067 = eyl - \ZETI

The rather general matching problem outlined above is véry difficult
of solution. Fortunately, the solution of far simpler problems are very useful.
Fano has shown that if a fixed shunt capacitance (or series inductance) is
associated with the load resistance, the maximum loss over a desired band is
minimized by approaching the rectangular characteristic (Ref. 2). A further
simplified problem is concerned with obtaining circuits whose transfer function
approximates the lowpass rectangular characteristic (See Fig. 11). These
networks are useful in themselves, and by the well known lowpass-to-bandpass
transformation yield circuits giving approximations to the bandpass rectangular
characteristic. The following discussion is concerned with networks whose
transfer functions approximate the lowpass rectangular characteristic.

The |t|2 of a finite lumped network between a resistive generator and
a finite lumped load is an even rational function. Rational functions can at
beét only approximate the rectangular characteristic. Realizable transfer
functions can be specified, giving, among others, maximally flat and Tchebycheff
(equal ripple) épproximations to the rectangular lowpass characteristic. The
type of approximation used in & particular application depends on the require-
ments to be'met. Consider the particular case of Fig. 3a where the load R2
is to be shunted by a capacitance Cout}- Figure 3(b)resulting from an impedance
level transformation indicates that the important parameter is the product ch

out”®

When an optimum match over a band @, is desired, a gain bandwidth factor for the
1 In the dual case the terminal resistance is associated with a series inductance.
The results of this report are directlg applicable to both cases.
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(a) (b)

FIG. 3. THE PROBLEM OF MATCHING TO A PARALLEL RC LOAD .

load ®RC, o is specified. Sharpe (Ref. 3) has shown that where it is desired
to approximate a constant over a band, the optimum function at a fixed order of
approximation on a gain bandwidth basis is the Tchebycheff rational
function with all its zeroes at infinity. Now it is obvious that with a fixed
finite number of elements, there is a minimum "maximum loss" which can be achieved
It follows that there is a Tchebycheff network withall transfer zeroes at infinity
producing this minimum realizable loss for a given number of coupling elements
and'wbRQCout of the load.

It can be shown that the Tchebycheff rational function with all its
zeroes at infinity is simply the reciprocal of a Tchebycheff polynomial. One is

led to comsider a transmission coefficient in the form

2 k'
|t]= = o (1)
1+eTy (ayc-)
where k'< 1 and € are positive constants and T, is the Tchebycheff polynomial of
degree n. This function behaves as sketched in Fig. 4, with n equal amplitude

ripples over the symmetrical lowpass band.
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FIG. 4. THE TCHEBYCHEFF POWER TRANSFER CHARACTERISTIC.

The transmission coefficient of Eq 1 can be realized by either of the network
forms shown in Fig. 5, which are exact duals. These n-pole coupling networks

consist of n elements in a ladder structure of series inductances and shunt

(b)

FIG. 5. LOWPASS LADDER STRUCTURES WITH ALL TRANSFER
ZEROES AT INFINITY.

condensers. The subset of these networks which minimizes the maximum loss for a
prescribed n and load product ch'BCout are defined in a later section. Design
curves are included (See Figs. 14, 15, 16 and 17) for the 2, 3, and 4 pole

networks as well as a sample calculation.

5
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The networks of Fig. 5 can also be designed so that the transmission

coefficient is given by

o - —E (2)
1+ < @ >
a0

This is & maximally flat function with all transfer zeroes at infinity, and

behaves as sketched in Fig. 6. In a later section, the optimum maximally flat
networks as a function of the product w.RoC,, 8are determined. Design
curves are included (See Figs. 18, 19, 20 and 21) for the 2, 3, and U4 pole net-

Works.

FIG. 6. THE MAXIMALLY FLAT POWER TRANSFER CHARACTERISTICS.

In general, the maximally flat networks are found to be inferior to
the Tchebycheff networks on a gain-bandwidth basis. However,in some cases the
maximally flat networks may be preferable. For example, it is well known that
where transient response is important, steep skirts are undesirable. In general,
Tchebycheff networks are inferior on this basis. In addition, the compounding

of ripple which occurs when Tchebycheff interstages are cascaded may be a problem.

6
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II. DEFINITION OF THE OPTIMUM TCHEBYCHEFF NETWORKS

Fano (Ref. 2) has considered the networks for which the transmission

coefficient is in the form of Eq 1, repeated here for convenience.

1 - 3
l+e Tangg) (1)

The results are summarized briefly below. The reader is referred to the original
work for a more thorough treatment.

The transmission coefficient can be considered more generally as a
function of the complex variable p =g¢ + jo. Fano found it profitable to consider
the Taylor Series expansion in p of ln % around infinity, In

particular, if the transmission coefficient has n zeroes at infinity, the function
T%T approaches unity at a definite rate near infinity. Under these conditions, a

number. of the coefficients of the even powers of the expansion of ln % around

infinity are zero. Then 1ln % can be written in the form

T S “(2n-3), ® _-(2n-
ln= = 3 o 3 2n-1)
5 je + Al P+ A3 P+ ""Aan-3 P + A2n-l o) F e

where B is O or = depending on the sign of p. It can be shown that

[
A = 1 2k+1 2k+1
2k+1 ok+1 (% Poi -zi: Ppi (3)

where p,; and ppj are the zeroes and poles, respectively, of the reflection

©

2k+

the reflection coefficient. It can also be shown that the A£L+l can be expressed

coefficient. Note that the A | are functions only of the poles and zeroes 6f

in terms of the k elements closest to the load for the structure of Fig. Sa.l The

first few of these relations are:

1
The elements of Fig. 5a are normalized to a one ohm termination.

T
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Define -
a = 22 _AJ.__. - -J:
3 (Al”)3 3
Q = 2’+ __A_i.w__. - l'.
_ L6 Ar 1
a7 2 EK1;$7 7
Then >
L = e— (l")
1 -
Ay
L
C, = " &l
3
L a3 Ll
3 1+ a; - (a5/a3)
| [1+0a, - (a5/a3)]2 Ly
Cyp = 3

a3 [1+ oy - (as/az) + (agfog) - (agfa)]

©0

As stated above, the A2k + 1

and zeroes of the reflection coefficient, which from Eq 1 is given by

can be expressed in terms of the loci of the poles

2
1-K+e T (w/om)

ol® = 1-Jef? - 5
l+eT (m/wb)
The poles are located on an ellipse specified by a parameter "a" as indicated in
Fig. 7. The zeroes are similarly located and specified by a parameter "b". Fano
tabulated the first few relations between the A;K+l and the parameters a and b

as shown below.

AT - o, (sinh a - sinh b )
sin x/2n
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A° . o2, 3 (sinh 3a-sinh 3b  sinh a-sinh b)
3 - @e 3 sin 3n/2n sin n/2n
NI <sinh Se-sinh 5o  sinh 3a-sih 3b 4 p sinh e-simh b >
5 c 5 sin 5m/2n - sin 3x/2n sin n/2n
® -6 7 (sinh Ta-sinh To , sinh Sa-sinh 5b , 5 sinh 38 - sinh 3
A, = 27w
( c 7 sin Tx/2n sin 5x/2n sin 3n/2n
5 sinh a-sinh b ) (5)
sin n/2n jw 4
sinh a
x T x
/ \\ p PLANE
X X
( ,o
X X
\ / cosha
XX

FIG. 7. LOCI OF POLES OF p(p) p(-p) FOR n=4.

In evaluating these a's, the left half plane zeroes were chosen for the reflection
coefficient since it is known that this leads to better networks on a gain band-
width basis. The poles must be chosen in the left half plane for physical realiz-

ability. It can further be shown that the maximum loss is given by

cosh nb
= £ost 1D 6
|p|max cosh na 6)

The maximum loss can be minimized for a fixed w.L; using Eq 6 and

9
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L

2 (sinha-sinhb) 2
1

l=mc
sin n/2n

It is found that a and b should be chosen so that

tanh na _ tanh nb (7)
cosh a cosh b
Since E%%%E?% varies as sketched in Fig. 8, it is always possible to pick an

"a" and "b" satisfying Eq 7 for given values of w,, L), end n in Eq 8.

A
tanh nx
cosh x
| |
| |
! I -
b 2 Q X
FIG. 8. SKETCH OF L2 NX s
coshx

The procedure used in obtaining the design curves is summarized below.

From the sets of equations 4 and 5, it is found that

2 _ sinh a - sinh b (8)

Wely sin =x/en

"n_n

For a fixed n and product w Ly, an "a and a "b" can be found satisfying Eq 8

subject to the optimizing Eq 7. The sets of equations (4) and (5) are then used
L
to determine a number n-l1 of ratios %@ ’ E3 ceecaane . In addition,the trans-
1 1 .
formation ratio R:l between the generator resistances is easily determined from

the zero frequency loss. For n even, the zero frequency loss is determined by

10
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|o| gy Note that for the circuit of Fig. 5
2 4R
kl = t = ee————
o < 0 (R +1)2
Then for n even
i) 12 2 4R
1 - {t(jo = = 1 - n even
T = el e = 1 - 7
Solving
R = L% max n even
1 - |p| max
Similarly, for n odd
R = 1+ min n odd

1 - |p| min

This can also be calculated since

Ipl _ 8inh nb
min = ginh ne

The maximum loss in db ( = - 20 logloltlmin) is also determined from a, b, and n;

using Eq 6, The ripple is given by

ripple (db) = -20 [1og10|tlmin - og l6] ]

The design curves resulting from the above approach are given in Figs.
14, 15, 16 and 17 for the two, three, and four pole networks (n = 2, 3, and 4).
Note that the network complexity n and two other parameters [for example, band-
width w; and the terminal element Ll in the one ohm network] as well as impedance
level may be chosen independently. It should be noted that an equally valid
interpretation of the curves is obtained if Ll’ L3 «+++ are regarded as shunt
capacitances; Cp, Ch .... are regarded as series inductances; and R is regarded as

a conductance. The resulting networks are the exact duals of the networks

11
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defined on the design curves; the alternative form is illustrated below for n = L,
Optimization is for a fixed w,C; for the dual networks of Fig. 5b. For the
sake of clarity, the character of these networks is restated:
"Let the number of lossless coupling elements, and the gain band-
width product ( = wcly or weCy for Fig. 5b) of a parallel RC or
series RL termination, be specified. Then, the networks specified by
the design curves of Figs. 1k, 15, 16 and 17 are those which result in

an absolute minimizestion of the maximum passband loss."

C4 HENRIES G, HENRIES

:L J: ‘

4

& OHMS |

L3 Ly §
- /I~FARADS FARADS

FIG. 9. DUAL REALIZATION OF DESIGN CURVE NETWORKS.

Bode (Ref. 4) has shown that where power is to be delivered over a
band w, to a load Rp shunted by a capacitance Cout (i.e., for a fixed ®.Cy in

Fig. 5b) the limiting value of the transmission in nepers is
1 x 1
a = _ln._
2 (2 w.RC )

This curve is plotted in Fig. 14. It can be shown that this limit is approached

as the number of elements in the networks defined sbove becomes large ( n—ew).
More significant, however, is the rapidity with which the limit is approached even
for a small number of elements (see for example n = 4 in the loss curves). The
loss curves for the maximally flat networks which are optimized in the same way

in Section III are given in Fig. 18. It can be shown that as the number of

12
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elements is increased, these loss curves approach the same limit. The curves
indicate, however, that the limit is approached much more slowly for these networks
as n is increased. The use of the design curves is illustrated by a sample
calculation in Appendix II.

III. DERIVATION OF THE OPTIMUM MAXIMALLY FLAT, K NETWORKS

Maximally flat behavior of |t|2 with all the transfer zeroes at infinity

requires that
t]2 = K

2n
l+ Qnu)>
3db

Referring to Fig. 10; at zero frequency |t|2 = k, while at the frequency ®, the
2

A\

|t|° is defined as |t32min. Of course, st ® = W, |1-,|2 = k/2,

A It12

FIG. I0 THE MAXIMALLY FLAT POWER TRANSFER
CHARACTERISTIC.

13
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From Eq 9

2 k!
e = — (10

1+ ( >
©34b

Consider the product mc|t|2min which by Eq 10 is

2 _ w k!

min 2n
1+ (agﬁl-)
3db

w, |t (11)

If k is specified, the zero frequency point on the curve of Fig. 10 is known.
Further, if wyg is specified (at which |t|2 = k\/2) the complete curve can be
drawn for a given n. The choice of k specifies the generator-to-load-resistance
transformation ratio. This specifies the network of given complexity except for
a scale on the frequency coordinate, which is specified when w3db is chosen.

Thus, if kL w..,, and n are held constant, a particular curve and a particular

3db
network are being considered. Now, it is reasonable to ask whether under these
conditions it is possible to pick w, in such a way that theareaa)c|t|2min is

maximized. This is determined by setting

0 [wcltlemin]

w

(]

=0

When this is done it is found that one should choose

@ = “’3&me (12)

As n becomes very large, this equation indicates w, should approach deb'
Referring to Fig. 11, this is reasonable, since for a rectangular characteristic

one should choose w, = 3db for gain bandwidth efficiency.

14
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kl

ol-—————————— +———

We = Wsdp w
~ FIG. Il. THE RECTANGULAR LOWPASS CHARACTERISTIC .
Substituting Eq 12 in Eq 10

k' - 2n
%0 2 -1 (13)

This equation determines the resulting variation in transmission over the band.

2
The function |p| associated with the |t|2 of Eq 1 is

o2 - 1K'+ (0/mag)"

1+ Onﬁn3db)2n

Considered as a function of p/w3db, the function has 2n ed:fn
the unit circle, and 2n zeroes equally spaced on the circle of radius (1-¥) 21,
It is known that for best gain-bandwidth characteristics, one should choose as
the.zeroes of the reflection coefficient the n zerces of |p|2 in the left half
plane. The poles must, of course, be the n poles in the left half plane, if the

network is to be realizable. These poles and zeroes are located as indicated

in Fig. 12.

15
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/.
2n

RN
/

N EQUALLY SPACED
POLES AND ZEROS.

2n

FIG. 12, LOCI OF POLES AND ZEROES OF MAXIMALLY FLAT
FUNCTIONS OF INTEREST.

A number of alternative procedures may be used in obtaining a network
in a particular application. If w, and lt|2min are specified, for example,
Egs 10 and 12 may be used to determine the required k' and médb'
constants of Eq 9 are then specified, and |p|° is determined by

ol = 1-|t)2

The arbitrary

The function p(p) p(-p) is obtained by replacing w? by -p2. The reflection

coefficient is constructed from the left half plane poles and zeroes of

p(p)p(-p). Then p(p) is given by

, N
p(p) = +-L =
D
P

where Np and Dp are Hurwitz polynomials, and Z is the driving point impedance

seen from the one ohm termination.l From the above equation,

]One choice of sign in this equation leads to a network with a shunt
capacitance across the one ohm termination. The other choice of sign leads
t0 a series inductance at the one ohm end. The cases are easily distinguished
from the behavior of p at infinity.

16
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Z = QQ.i_NQl

(Dpﬁvp)

The ladder structure is readily obtained from a continued fraction expansion of
Z.

Alternatively,the technique previously employed for the Tchebycheff case

can be applied here to give equations from which the element values for the 2, 3,
and 4 pole networks can be calculated directly.

Following the procedure used in obtaining the Tchebycheff networks,
the functions AZk+l (see Eq 3) are evaluated. Note in Fig. 12 that the sum of
the imeginary parts of the pole positions is zero, since the complex poles occur
in conjugate pairs. A single real pole at p = -1 is present for n odd. Consider

the term of the coefficient Am:

1
¥ Poi
This is
% Py =[2 cos(n/2+n/2n) + cos(n/2+3n/2n) + .... + cos(:t/2+ xg%{l_z_]i)} _8}03‘1.0

(2[8]-V
® b [2 sinn/2n+sin 3n/2n + ... + sin—2d |y 5]
2n

vhere [n/E] is the largest integer in n/2, 8 = 0 for n even and 8 = 1 for n odd.
Similarly

Z Poy = - G>3db(l-kl)l/2n [2(simt/2n + sin3n/2n + ... + sin-(-g—[fz-e-l:l—):jm}
. 2n

Then

A; = {l - (l-k‘)l/zn }'{2<sinn/2n + sin 3n/2n + ... + sin —_-—-._(2[2!/12] = )>

+ 5} w3db

17
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1/2n || 2sin®[n/2])/2n + 5w
sinn/2n

=1 1-(1-K)

by a well known identity.

Similarly
A; ) 1/3{(l-k')3/2n -l}{ [cos[% %ﬁ'] + cos[jel‘- + 3:23_“5] + .
+ cos(%,;i + (2[%] - l> gﬁ' >] -5} ®3q0
. 2n73x
3/2n sin [-Q-:B- 3
= 1/3{ 1-(1-X) -2 o —+ 5 3db
2n

Finally, the general expression is

i 2[1_'1_]§2k+l):t
2k+1 sin |5 7n ok+1

1 Iy~en
A” = ——4-(1-K 2(-1 +8 (o )
okl 2K+l (1-5) (-1) sp{2ktl)x 3db

By substituting Egs 12 and 13 the A? can be expressed in terms of the more

2k+1
useful parameters «, and |t|2min‘ Thus
2 2k+l x
o 1 2k+1 )i sin L
= — - - t -
Aoyl ok+1 1- (1 2nl' Im:l.n) 2n 2(-1) +5 L (14)
sin Szz;lzn

Using the Eq 4, which are again applicable, and Eq 14 with k = O

2 \Wa 2[ l 1/2n
sz = l-< il min) = 2n2n +5 ¢ (20-1) /
(i ¥ Sin—zﬁ
From this equation, plots of maximum loss in db (= -10 log |t|2 . ) versus 2
10 min wcLl

were obtained for n= 2, 3, and 4. See Fig. 18. The two sets of equations [Eq L
and Eq lh] were used to obtain a set of design curves (Figs. 19, 20, 21) for the
maximally flat networks (n =2, 3 and 1+) similar to the curves previously discuss-

ed for the Tchebycheff networks. The equations are tebulated in Appendix III.

18
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The resistance transformation ratio R is again determined by the zero

frequency (minimum) loss; i.e.,
kl = ____ltll__
(R + 1)°

The minimum loss is given by
2on
en -1

min loss (db) = max loss(db) -10 log,,

For n =2, 3 and 4; 10 loglo—éﬁgi— is 1.25 db, .79db, and .58db respectively.

Fano notes that where the reflection coefficient Py is written

(P - Po)® - pgp)eennnn. (P - 1yp)

pl(P) = K
(p - p:pl)(p-pP2 ) I ¢ I Ppn)

the reflection coefficient Py is given by

0+l (p + pop) @+Pop ) -.... (p + )
(p - pyy)(P-Ppo) (e -p,)

Thus the zeroes of pp are the negatives of the zeroes of pj3. In the previous

0(p) = K(-1)

discussions the n zeroes of p; were arbitrarily chosen as the n zeroes of |p|2
in the left half plane. For these networks the n zeroes of p, are, therefore,

the n zeroes of |p| in the right half plane. A new set of A2k+l determined from

p2 can be used with the set of Egqs 4 to determine the elements starting furthest

0

|from the one ohm end. For example, the function (A')l associated with p, is

2 sin®[n/2] n/on

(a). 241 (1) + 8o
Pn
For n odd, (A'); = 2R and thus
Ln
w 1
! I W B 'y L
(ar)7 g K5
1+(1-Kk)5n

1
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For the optimum networks

1
2 2 \zx
L r l'<1'2n_r-11' |t] min)en
L =
1 1 +<1_ 2n |t|2 ) )2n
2n-1 mn
It is easily shown that as k—0 (and R—®) the ratio .ﬁL‘_l approaches % . The
1

limiting networks as the transformation ratio becomes large are discussed
briefly in Appendix IV.

Choosing the zeroes of the reflection coefficient pl in the left half
plane led to one of two alternative networks for the maximally flat networks with
‘m =3 o0r 4. For example, if the zeroes of p, are chosen in the left half plane,

the zeroes of p, occur in the right half plane. Alternatively, the zeroes of Py

Q [e]
(a) (b)
~0— e o~
OPTIMUM ARRAY RESULTING ZEROES
FOR ZEROES OF p OFPZ FOR N=3
o FOR N=3 o
o o
(c) (d)
o -_— -O
ANOTHER ARRAY RESULTING ARRAY
FOR ZEROES OF D OF ZEROES OF Pi
FOR N=3 FOR N= 3
o o

FIG. 13. POSSIBLE ARRAYS FOR ZEROES OF MAXIMALLY FLAT
3~POLE REFLECTION COEFFICIENT.
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might be chosen as in Fig. 13c¢, in which case the zeroes of P, occur as in Fig.
13d. The 3 pole case was arbitrarily chosen for illustration. The four arrays
represent the only possible choices leading to realizable networks for the 3 pole
case illustrated. There are, similarly, four alternatives for the four-pole case,
leading again to two networks, of which the one chosen in the analysis is known
to give superior power transfer efficiency. If the zeroes of p, are chosen as

©o
in Fig. 13c, the resulting (A")l is

asinz[n/z] n/2n asine[n/Q] n/en sl
- 3db

1
a")> = + 9 +(:L-1::')ﬁ
1 sin n/2n sin n/2n

Further, for the associated pzl

2 1 2
we® | |2sin [n/2]£/2n } Y- [ 2sin®[n/2]x/2n - 5} ®
(a )l B [ sin n/2n +8]+(1-K) * sin n/2n 3db

The ratio ELE is then

1
[zsinz[n/z] n/2n +l] +(l-k')%[- 28in®[n/2] x/2n + 1 }
L, sin x/2n sin n/2n
E_ - 2 1 2
1 2sin [n/2]n/en | |, (1.¢)25 | 2sin”[n/2lw/on _
sin n/2n sin x/2n

This ratio is not finite in the limit as k — 0.
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APPENDIX I

Consider the network of Fig. 22a. The reflection coefficient pl is

R, N Al N

LOSSLESS RZEE Ep " LossLess

Q i
(a)
FIG. 22. A GENERAL MATCHING PROBLEM WITH A
LOSSLESS COUPLING NETWORK .
given by
oyl = (1)
Zl + Rl

The circuit of Fig. 22b is obtained from Fig. 22a by an impedance level trans-
formation producing a one ohm load. For this circuit the reflection coefficient
Py is given by

z) - Ry/Bp |2 |z)'R, - Ry |2

2
leaI” = ' + R,/ “|2.'R, + R (2)
2y 1/Ro 1 B + Ry

Z 1
However, 1 and Zl

impedance of the elements of Zl are lowered by a factor Ra, the new driving point

are driving point impedances. It is known that when the

impedance Zl ' is

' Z
' = 2+ (3)
R
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2
Substituting Eq 3 in Eq 2, it is found that [p,'|" = |o;|°

Since, in general |p|? = l-|t|2, is follows that

¢ 2 t2
Ba|/2 L |%| M

2
2 |E2|/R2
I® = — 2
VN
Rp

) |E1|2/hnl

e LRy

E 2
-2 = ltl'l =

E)

|ty

It is further proved that under these conditions E2'

E2 for a constant

generator voltage E;.
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APPENDIX II

Consider the problem of designing a broadband matching network for a
monopole antenna. Hallen (Ref. 5) calculated the input impedance of a lossless
uniform monopole over a lossless ground (neglecting base capacitance). He found
that if this impedance is plotted against "the antenna length in radians" (=p{ =
2n § ), the impedance has as a parameter only the length-to-radius ratio l/a.Since
no general technique is available for designing matching networks for distributed
impedances, a practical approach is to work with an approximate lumped equivalent
to the antenna. Assume, then, that the input impedance of & monopole with l/a
= 60 over a range from BL = 1.52 radians to L = 4.71 radiansl is satisfactorily
approximated by the input impedance of the circuit of Fig. 23. If the base
capacitance of the antenna is neglected, the bandpass to lowpass transformation

for which bandwidth is conserved yields the antenna lowpass equivalent of

36 000388

O—s—1—— ’ »
I
|
= w 50.3 T~0.00278 46
T Ganse Yo [~ 0. 5
| 2.675
|
|
i
O—= —&-

FIG. 23. ANTENNA APPROXIMATING CIRCUIT.

1

This corresponds to 3.1:1 frequency coverage. These figures were chosen rather
arbitrarily for the example. Note that to make impedance calculations using
Fig. 23 one uses the quantity pf rather than actual frequency. The quality of
the approximation of Fig. 23 is indicated in Fig.2k .
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Fig. 25 (a). By making an impedance level transformation the network of Fig. 25(b)
with a one ohm termination is determined. Then the problem of designing a

matching network for the antenna is reduced to the problem of specifying a matching

36 00774
O SLLN * O 1IN *
0.00278 §465 T 1.293 § |
O— O ?

(a) (b)

FIG. 25. LOWPASS EQUIVALENTS OF ANTENNA WITH NEGLIGIBLE
BASE CAPACITANCE.

network for Fig. 25(b) over a frequency band from O to wc=h."(l-l.52=3.l9. Using
2 2
wcly  (3.19)(1.293)

= 485, and L, = 1.293 in Fig. 17 the L pole network in the

1
dual form of Fig. 9 is as indicated in Fig. 26.
0.169
4 A Y
0.0885 0.0816 0.0774
LT * 0 ———e (FO—0
I
3.35
T~ 1,393 '/J: 1,293 gl
-8 ®

FIG. 26. 4-POLE TCHEBYCHEFF MATGCHING NETWORK .

1
The four pole network rather than the two or three pole was chosen for illustra-
tion to allow for downward adjustment of generator impedance level in the final
bandpass circuit without ending up with transformers. Note also that although
the series inductance of the antenna equivalent in Fig. 25(b) was .07T4, no
attempt was made to use this in picking the matching netwcrk. This is because
when w., L), and impedance level are chosen, no further freedom in picking the
elements is allowed, if optimum networks are used. These points are discussed
later. '
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From Fig. 1k, the resulting meximum passband loss is found to be 1l.44 db, the
ripple .22 db, while the Bode limit is 1.08 db. Note that although the series
inductance 02 did not come out to be exactly .O7T7h4 (which would allow us to absorb
some of the base capacitance in L3) it is fortunate that 02 is larger than f0774
rather than smaller. The matching network can be started out under these
conditions with a series circuit. This design is satisfactory where base capaci-
tance has a negligible effect. After mesking the necessary impedance level and

bandpass transformations, the resulting system is shown in Fig. 27 (a).
A

41.2 00034 37.9 36 000388

| ooosss
138.9
0.00299 46.7 50.3 465 (a)
]‘ ‘ 0.00278
| .96 10008 36 0.00388
l oosesl |
94.4 465 (b)
l 00299 l 000278
r IDEAL +
27.96 OOO4I3 36 0.00388
| ooozze 0.00369
94.4 465  (c)
I 0.0088 50. 0.00278

(NOTE: VALUES IN OHMS, FARADS, AND HENRIES).

FIG. 27. COMPOSITE ANTENNA NETWORK.
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(a)
(b)
(c)

(c)

c/a .
¢ Tc(a—n) ']Lcu-a) __ azzz

ALTERNATIVE FORMS IN WHICH THE IMPEDANCE
LEVEL AT END Z, IS MODIFIED ARE OBTAINED
BY GENERAL IMPEDANCE LEVEL TRANSFORMATION

IDENTITIES USEFUL IN MODIFYING SOURCE TO LOAD
IMPEDANGE RATIO.

CIRCUIT FOR WHICH MODIFIED SOURCE TO LOAD IMPEDANCE
RATIO IS DESIRED.

EQUIVALENT CIRCUIT WITH MODIFIED SOURCE-TO-LOAD IMPEDANCE
RATIO USING IDEAL TRANSFORMER.

EQUIVALENT CIRCUIT REALIZABLE WITHOUT COUPLED COILS

FOR ~|gbgl+# , 1<a<i+

L
C .
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Now, assume that it is desired to insert a coaxial line with ZO = Ol
ohms at A-A in Fig. 27(a). The generator impedance is adjusted by inserting an
ideal transformer, and sbsorbing it as indicated in Figs. 27(b) and (c).l

The photograph of Fig. 29 is the experimental |tl2 vs., frequency curve

of a network covering the frequency range 6.24 to 19.35 mc based on Fig. 27 (c).

The loss in the band is gbout 1.7 db.

FIG. 29. EXPERIMENTAL |t|® VS. FREQUENCY.
(CIRCUIT OF FIG. 27¢).

1 The circuit of Fig. 27(c) is realized using one of the identities of Fig. 28.
These identities are easily proved by considering the open circuit paremeters
Z11, 219, and zop of the coupling circuit. These identities permit limited
modification of the source to load resistance ratios without transformers for
bandpass circuits. Modification of the source to load resistance ratio of
lowpass circuits cannot be accomplished without transformers.
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APPENDIX III
Equations of optimum maximally flat networks:
1/h4
n=2 2 —J23/ [1-<1§|t|2min)/]
wcLl
w12 3/H
ﬂ: = % 1+2 l-(l-Tlﬂ min)l/h 3
C
2 4 2 }
{l'(l-—?rltl min)
1/6 1/6
n=3 2 2°5/ [1(1"%|t|2- ) J
L min
Ot
. s 1/2
L 1-(1- & |t]°
_i=§1+1/2 (-5 1t] min)
c ' 1/6}3
2 6 1.2
{l-(l-—s'M ain)
I3 | /%
L
1 6
. o 1-(1-—65—|t|2min)5/ a1
bkl v Gty 6 g2 )6}"
{-a-gpe? )
2 1/8 1/8 ° o
n==h ;:L-]-_ = 2¢7 [1-(1-—97—1t|2min) / :I(sin 22k + cos 225 )
5 3/8 ' o o
L L 1-(1- & |t win’ cos 225 - sin 223
= = =11+
C 3 2  1/83 0 ° 3
2 {1-(1--%—-,?.' min) / } (cos 22% + sin 203 )
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2
L %l 1 ef)® (-1
“C, " SL 8 1,12 1/815
2 -(1- &
1|{i-a- 21 )Y
-1
L o2 o o /8 ¢ L5 [ 1-(1- & [¢)2000) /8 ]
34 Co L3_ 1-(1- 7 |t|min) k-1 - 7 min iyl
C P 2 \1/8 2
! 25Ll {l-(l- %ltl min) / }5 7Ll {l'(l' '2[" lt' min)l/S}7 .
% 0
cos 223 - sin 223
kl = (6] 0 5
(cos 223 + sin 221 )
o
2 sin 223
k2 B o] o

(cos 221 + sin 221

)7
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.0027
and choosing w

R =

18
1 the networks of Fig.30a and b are determined
20/3 20
~J00 _I- 11
I8

0054
0.054

|

(b)
F1G. 30. THREE POLE NETWORK FROM FIG. 20

is produced

Now by raising the generator impedance level to one ohm, the circuit of Fig.3la
Remembering that w3db =

[En l] , a bandwidth transformation

0.972 1.27
T0.37 Io/s 18 ' ,[o 483 Ims 8
(a-)wc=' b)w3db-l
FIG. 31 MODIFIED NETWORKS FROM FIG. 30b

AN
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APPENDIX IV
Consider the 3 pole maximally flat network specified at cLl 1
obtained by extrapolating the maximally flat 3 pole design curves.
data
2 - 5 3.
(ncL

From the

—
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is performed to produce the corresponding circuit with unity 3db bandwidth (Fig.

31(b)). The network is approaching the well known network with unit 3db bandwidth

producing maximally flat behavior of Eg e from a current generator (See Fig. 32).
31
by —~ 4/3

N P
S B

FIG. 32. A THREE POLE NETWORK WITH MAXIMALLY
FLAT BEHAVIOR OF |—

This circuit is the limiting case of zero power transfer efficiency, since

only finite power is obtained from a generator with infinite available power.

L1
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