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ABSTRACT

An analysis of the response of a panoramic receiver to cw and pulse
signals is presented. The receiver's response is studied quantitatively as a
Tunction of the parameters: signal pulse length and frequency, receiver band-
width, sweep-rate, and type of i-f amplifier. The effect of these parameters
on the relative output amplitude, output pulse width, and apparent bandwidth
is emphasized., Some general relations are derived. Two specific cases are
considered. An electronic differential analyzer is used to study the response
of a recceiver with a single-tuned i-f amplifier to pulses having rectangular
envelopes. Theoretically the response of a receiver with a Gaussian shaped
i-f passband to pulses having Gaussian envelopes is derived. This answer is
given in closed form. The agreement between these two cases Jjustifies appli-
cation of the Gaussian case to most practical design problems. Many curves are
prescnted to aid the design engineer.
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THE RESPONSE OF A PANORAMIC RECEIVER TO CW AND PULSE SIGNALS

1. INTRODUCTION

The study of the response of a linear resonant system to a sinusoidal
driving function having a linear variation of frequency with time is pertinent
in various fields of engineering. This problem is encountered when an engine
is accelerated wniformly through a critical frequency.l The éame situation
occurs in the analysis of records of ocean waves by means of vibration galvano-
meters.2 A panoramic superheterodyne receiver also presents this problem; and
this is the problem studied in this report.

An analogous second problem is the response of a system whose resonant
frequency varies linearly with time to a fixed frequency sinusoidal signal.

This problem is encountered in various types of spectrum analyzers and in pano-
ramic radio receivers.5 For the high-Q or very much underdamped system, the
two problems prove to be cssentially ec:_1_uivafLen’t‘,.2’)+

As indicated by the bibliography, there is a considerable amount of
published work on these problems. Previous theoretical work has been confined
to a single-tuned circuit or its mechanical analogue with constant amplitude
driving functions. Microwave spectrum analyzers or panoramic radio recelvers
usually represent resonant systems having many degrees of freedom; and with the
growing importance of pulse modulated communication and radar systemS, the re-

sponse to pulsed driving functions is important. This report is concerned with

Ycwis, F.M., Ref. 2
2Barber, N.F. and Ursel, F., Ref. 3

5Williams, E.M., Ref. 4; Barlow, H.M. and Cullen, A.L., Ref. 5; Montgomery, C.G.,
Ref. 6; Marlic, W.E., Ref. 1l; Thomasson, D.W., Ref. 12

bk, G., Ref. 1
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this more gencral casc of the response ol a resonant system to a constant
amplitude or pulse modulated sinusoidal driving function having a linear vari-
ation of frequency with time. Throughout this report the problem is stated
and discussed in terms of a panoramic radio recciver, but the results obtained

here are directly applicable to other engineering problems.

.
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2. DESCRIPTION OF THE PROBLEM

2,1 Assumptions

The receivers of this investigation are idealizations of conventional
superheterodyne receivers. Diagrammatically, they are shown in Fig. 2.1. The
function of the mixer is to convert an incoming signal of fixed instantaneous
frequency to one with an instantaneous frequency changing linearly with time.

It is assumed that the envelope of the incoming signal is not distorted by the
mixer. The filter of Fig. 2.1 mercly selects the desired frequencies, and the
detector operates on the output of the filter to obtain the envelope. These
assumplbilons reduce the problem to that of obtaining the response of a filter to
a particular Im signal.l

Several types of filters and a variety of input signals are considered
in this report. Two filters are examined theoretically: the one a single reso-
nate circuit, the other a filter with a Gaussian amplitude response and a linecar
phase response curve. Both of these cases are examined with a cw input signal
to the mixer. In addition, sinusoidal pulses with square envelopes (see Tig.
2.1) are studied in conjunction with the single circuit Tilter, and sinusoidal
pulses with Gaussian envelopes are treated as input signals to the mixer with
the Gaussian filter.

vy means of a differential analyzer filters with one, two and Ffour

synchronously aligned single-tuned stages are examined with cw and pulse input

©
}_.l
l..l

signals to the mixer. The pulses studied have square envelopes in this in-

vestigation.

LUnder some circumstonces the response of a trf receilver which sweeps in fre-
quency by changing the resonant elements is approximetely the same as that of
a recciver in which the resonant elements are fixed and the input signal sveeps
in ‘frequency. ( Hok, G¢, Ref. 1) The analysis in the report is appropriate in
such cases. (See also Barber, N.F. and Ursel, F., Ref. 3)

A

D
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2.2 Definition of Parameters

The same notation is used throughout this report and wherever it is
convenient, formulas and results are presented in normalized and dimensionless
form. This facilitates the comparison of the several cases discussecd.

The following parameters are used in describing the signal and the
filter. The signal is assumed to have passed through the mixer, so that the
‘filter has a constant resonant frequency and the signal frequency is varying.

a -- center frequency of the filter (radians per second)

a -- frequency of signal at the time t = O (radians per second)

b -- bandwidth of filterl (radiens per second)

¢ -~ time of center of input pulse (seconds)

d -- input pulse widthl (seconds)

sweep-rate of signal (radians per second)

6]
i
1

These parameters are i1llustrated on a time-frequency diagram in ['ig. 2.2. Note
that the second definiton of "a" amounts to stating that the time origin is
taken as the time when the signal sweeps (or would sweep) through the center
frequency of the filter.

The results can be presented in terms of dimensionless variables by
normalizing with respect té onc of the parameters. The cffect is to reduce by
one the number of parameters involved. In this report the normalization is
usually with respect to bandwidth. I'requencies are then in bandwidth units,

w . . . . N . /
C.3., s and times in reciprocal bandwidth units, t/1/b or bt. The appearance

1The bandwidths and the widths of input and output pulses are generally measured
between points where the amplitude drops to 0.707 of its maoximum value., This
convention is adopted in this report cxcept in the treatment of the Gaussian
case, where all widths arc measured to the e~ L/ points, This simplifies the
Torrulas without seriously afTecting the accuracy of the results, since e~ L/
is only 9% larger than 0.707, the width so defined is about 18% smaller than
the width between the 0.707 voints. No adjustment has been nade for this dif-
ference in this report.
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P .. e o Aa . .
of the time-frequency diagram in two possible sets of normalized coordinates is

shown in Fig. 2.3.

2.5 Tactors Describing the Response

The gencral nature of the response of a panoramic receiver is quite
evident. The amplitude of the voltage output as a function of time is zero
sufficiently early; it reaches some peak value and again approaches zero. The
peak value for a pulse input depends upon the value of sc, the difference between
the filter frequency and the signal frequency at the center of the pulse. The
peak value is a maximum for sc approximately zero and approaches zero for large
values of sc.

The most important features of the response are: (1) its peak ampli-
tude when sc is zero, (2) the approximate width of the response in time, and (3)
the width of the peak amplitude curve plotted as a function of sc. Three dimen-
sionless measures of these features are defined below;, these quantities are used
to comparc the cases discussed in this report.

The Relative Amplitude A

With a given input signal suppose the output voltage of the filter is
g(t). Let 8o denote the steady state output voltage when the input to the filter
is & cw signal with the center frequency of the filter and the same peak voltage

as that of the given signal. Then the relative amplitude A 1is defined as:

A = max g{t)l . (2.1)

- o

| o]

he value of A for sc = (@ is denoted by Ay, which 1s also referred

=

to as rclative amplitude. Ay 1s a measurc of the effect of changes in bandwidth,
sweep-rate, and pulse width on the amplitude of the response Tor a given type of

filter.
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The Output Pulse Width W

Buppose t, is the width of the output pulse in scconds (between half-
power pointsl). This width can conveniently be described in dimensionless form

oy

ro
no
~—

W o= o . (

W 1s the number of receiver bandwidths swept through by the signal in the dura-

tion of the output pulse. Thus, if the output of the detector is presented on

]

an oscilloscope with the abscissa calibrated in frequency, gﬁ is the width of the

~y

output pulse in cycles per second.

The Apparent Bandwidth B

suppose for a given Tilter and a given type pulse input the relative
amplitude A, as o function of sc, drops to 0.707 Ay at scp and scl,1 Then the
apparent bandwidth of the receiver for pulses is by definition

a

sch - sC
2 1 .
B = . ’ 2.
= (2.3)

. . 1o .. DB )
Bssentially, a signal within 7y cycles per second of the recciver frequency is
received with little attenuation.

Both W and B arc important factors in the discussion of the resolution
of a receiver. It was pointed out that if the output of the panoramic receiver
is presented on an oscilloscope calibrated in frequency, the width of the pip on

\

bw
on the oscilloscope would be Dy cycles per second; the resolution could hardly

be expected to be much better than this width. It was also pointed out that a

1

1
o

See footnote p.
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signal within %% cycles per second of the receiver frequency is received with
little attenuation, and thus appears on an oscillograph at the receiver fre-

quency. This discrepancy limits resolution to about g% (see Fig. 2.h4).

- J |

FREQUENCY —=

FIG. 2.4
THE RESPONSE OF A SCANNING RECEIVER TO A
SERIES OF PULSES AT A FIXED FREQUENCY

10
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3. THEORETICAT, ANALYSIS

5.1 Single-Tuned Circuit

The special case of the single-tuned circuit filter, shown diagram-
matically in Fig. 3.1, is examined theoretically in this section for input
pulses which have square envelopes.

The assumed input current pulse to the filter is the real part of

d

exp(jat + j % tg), for ¢ - % <t<c+5

i(t) = . . (3.1)
0 , for t < c =~ 5 or t >c + 5 H

then the real part of the response represents the output. In this form,

a 1s the pulse frequency at zero time in radians per second,
s 1s the sweep rate in radians per second per second,
d is the pulse width in seconds, and

¢ 1is tHe center of the pulse in time.

The determination of the voltage that appears across the resonant cir-
cult for this input current pulse is carried out in Appendix A. The result in

complex form is given by

e(t) = A= em(dat + 3 £3) G(y) (3.2)

where

. —h—
7= 2RC\/5+J*/§t

and ¢ is a function related to the error function of a complex variable and can

be calculated using tables for that function. The envelope for this voltage is

given by
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i)

FIG. 3.1
DIAGRAM OF SINGLE - TUNED CIRCUIT FILTER
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1
lew)] = =2 o] - (3.3)
The case of d = @ (cw inputs), can be found elsewhere in the litera-

ture. t The extension to. pulses brings in two new parameters: the normalized
pulse widthvfgvd and the normalized pulse position,/s c. Fortunately, the in-
crease in complexity is not as severe as the two additional parameters suggest
since the envelope at any time after (¢ + %) is simply given by

le(c + %)le' 55. (3.4)

e(t),

Thereiore the starting time (c - %) can be taken as the only parameter, and the
envelope of any pulse is readily determined from the response to the pulse which
starts at the same time and continues indefinitely. Nevertheless, the complete
analytic study of the normalized response with two parameters (normalized band-
width and starting time) is tedious and, since the results can easily be obtained
from a differential analyzer, only select cases have been carried out numericallx
Two sets of calculated curves for particular bandwidths with the starting time

as parameter are given in Figs. 5.2 and 5.7; the curves are normalized to sweep-

rate. A comparison of these curves with the results obtained from the differen-

tial analyzer is made in Section 5.1 (see Figs. 5.1, 5.2 and 5.3).

3.2 The Gaussian Case

In this section the response of a filter with a Gaussian transfer

function to a cw signal and to pulses with Gaussian envelopes 1s discussed.

lHok, Gunnar, Ref. 1; Lewis, F. M., Ref. 2; Barber, N.F. and Ursel, F., Ref. 3

15
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The most important reason for considering this case is that a closed
form answer can be obtained. The Gaussian filter is not physically realizable;
however, if the time delay is neglected, the transfer function of n single-tuned
circuits all at the same frequency approaches the Gaussian function as n becomes
large.l As is pointed out in Section 5.2, the envelope of the response for thié
hypothetical filter differs very little from that of several synchronous single-
tuned circuits; therefore, a study of this case gives insight into the problem.

The transfer function assumed is

N
\Jl
~

H(w) = —t e::p{—- -(9-153)- } (3.

<1t

1/k

The center frequency of the filter is "a'", and the bandwidth between e
points is b.2 Note that the phase delay is completely neglected here. The intro-
duction of a linear phase delay would not significantly change the answers.

The signal assumed for the cw case is,

st
£(t) = cos [at + 5 ] (3.6)
and for the pulse case is,
(]
: _ (t-¢o° 5t°
£(t) = exp[— '““ag“ ] cos [at + —E;-] . (3.7)

-1/h
The center-time of the pulse is c, and the pulse width between e points is d.

The answer is derived first for the pulse case, and the cw case is obtained from

it by letting d approach infinity.

Ysee geetion 4h.1, p. 26

28@@ TFootnote p. 5

16
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The analysis is straightforward. The signal function is transformed
to the w - plane, rultiplied by the transfer function H(w), and transformed back
to the t-plane. An outline of this manipulation is given in Appendix B. The en-

velope of the output for the pulse casc is
lg(t)[ = A ex L [ s(t - tm)]e 1 (_s_c;)2 5.8)
o &P .- w2 L v T2 thb (5.

t
where Ay, B, W, and Em are functions of s, b, and d as follows:

b
A = A
’ [(-l-*—+b2)2+452]1/“ (5.9)
ae
L 22, a2 ;
B o= [/ @ Ftpe+st.d (3.10)
o2y 2 L .2
W g ftP) v a. = (3.11)
g = _b2 - = 'b A2 .
%+bd+sed2 0B
d
5*,Z+1o2 1
LY (3.12)
g o2, sedzj
a2

The envelope response in the cw case reduces to

Ao exp{~ %2- [%]2} (5.13)

Il

]g(’c)]

Where

W= %—g b o4 hs? = L, (3.15)
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The definitions of Ay, W, and B given here are consistent with those in

Section 2.2: A, 1s the relative amplitude, W is the output pulse width, and B is

the apparent bandwidth,

For the Gaussian case graphs of Ay, W, and B as functions of %2 are

given in Figs. 3.4, 3.5, and 3.6. Ay 1s defined so that it has the value one for

an infinite pulsc and zero sweep-ratc. Ay is affected little by sweeping until

L,
is of the order 1 + I%EY§ , and drops off rapidly for higher sweep-rates.

c{:\‘\)!m

By definition the output pulse width W is onc for a cvw signal and zero
. . 25 e . .
sweep~rate, The curves are never below W = be this is the output pulse width
corresponding to the impulse response of the filter (bd = 0). For low sweep-
rates the output pulse width is between the value for the cw signal and that for
the impulse response. For high sweep-rates the output pulse is essentially the
impulse response of the filter and is independent of bd,

The apparent bandwidth B is defined so that it is unity when the sweep-

rate is very low and the pulses very long. JFor short pulses B is greater than

~ Ny a -1t e 6 o.aY ST e g 7 e e .1'__ ..n.—-.)i_
one even Tor zero sweep-rate. As the sweep-rate increases above ¥ L+ B
the curve rises sharply and approaches B = ﬁ?‘° bd asymptotically (see Fig.
3.6).

More curves and further discussion are included in Appendix C to show
the dependence of Ay, W, and B on all the parameters. In Section 5.2, Ay, W,
and B as computed from the differential analyzer data are compared with Ag, W,

and B for the Gaussian case,

1 . . . . .
The reader should keep in mind that A , W, and B are expressed in dimensionless
form.

90}

=




§-02-G MY HI-€9-V 0OL6-H

009

Q wl‘}:z

00l i'0 e
< - pq
— L= pq
N
3SYO NVISSNVO 3IHL ¥03 ISNOJS3Y N~ £z = pq
3HL 40 30NLITdWY 3AILYI3Y 3HL —
¥'€ 914 @ = Pq

8°C

ol

19



26-02-G MY SGI-€9-V OL6-W

0]}

ol

%"_n_ﬂ_ \_ \h\

Pq

42 = pq

N\
N\
\\

/ y a4
/S /- 7
VA a4
/S 7~
p
A © = Pg

ol

¢'e 9Old

J1VY - d33MS 40 NOILONNS Vv SV 3SVO
NVISSNVY 3HL 404 HLAIM 3STNd LNdL1NO 3HL

0]

20



X
e

N\

AN

Ol

31VH4-d3I3MS 40 NOILONN4 V SV d31714
NVISSNVO V 40 HL1AIMANVE LN3YVddV 3HL
o'¢ "9Old

00l

§-82-G INY H2-€9-V 0L6-W

21



—  ENGINEERING RESEARCH INSTITUTE - UNIVERSITY OF MICHIGAN —

N
.
Wl

Two General Formulas

In Section 5.2 it was found that for the Gaussian case with constant

amplitude input signal,

Ag~ W = 1, (3.16)
and with pulse input signals,
2 _ub 2t
A,° B é% = A" B2 = 1. (3.17)

It is natural to ask whether these formulas are more general. The answer is that
they can be proved with very broad hypotheses.

The general validity of (3.16) and (5.17) depends on a different defi-
nition of bandwidths and pulse widths. The width of a pulse is defined as its
total energy divided by its ma#imum power., The bandwidth of a Tilter with trans-

fer function H(w) is defined by

00)
_ S () TG & .
max H(w) H(w]

This is known as the "noise bandwidth."l A similar definition, in terms of the
energy of pulses, is gilven for apparent bandwidth B.2 Equations 3%.16 and 3.17
arc correct if the widths of bands and pulses are calculated in the above manner.
Usually these widths differ little from the 3 db widths of curves. They coincide
for square pulses. The ratio of noise bandwidth to 3 db bandwidth for synchro-
nous single-tuned amplifiers is 1.57, 1.12, 1.13, 1.06 for one, two, four, and

an infinite number of stages respcctively.l Therefore, the formulas are still

lWallman, U, and Valley, G. E., Ref. 9 , p. 169; Lawson, J. L. and Uhlenbeck,
G. E., Ref. 10, pp. L76-1T7 '

25ee Appendix D.
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approximately true for 5 db bandwidths and pulse widths.

The details of the derivations are given in Appendix D. In deriving

=5}

q 3.16, the signal

£(t) = £, cos [at + SZE]
is assumed to be applied to an arbitrary filter with a finite bandwidth. The
energy of the output pulse is calculated using Fourier transforms and Parseval's
Theorem, and the result is interpreted using the energy-type definition of band-
width and pulse width.

The first step in deriving g 3.17 1s to define apparent bandwidth.
This is done as follows: Given any signal of finite energy, a family of signals
can be constructed; each member of the family is formed by shifting the original
signal in frequency. Let fg (t) denote the signal which is shifted from the
original by g radians per second. For each input signal fa (t) the energy B
of the output pulse is calculated. Ly is a function of @ which approaches zero

for large values of @ (sec Fig. 3.7). Then the apparent bandwidth B is defined

as the width of the curve of ©. as a function of @, divided by the filter
o) J

bB

Figure 3.7

23
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bandwidth, vhere 71 he rve i itk ividi
idth, vhere the width of the curve is determined by dividing the area under

the curve by its maximum height, Thus,

L, |

Fo aa

B o= :J- " "~ (3.18)
b max Eq

fquation 3.17 follows from this definition of B when the energy of the output
pulse is calculated using Parseval's Theorem (see Appendix D).

It seems worth repeating that the derivations above assume an arbitrary
filter of finite bandwidth and an arbitrary type of pulse.

It is noted in Section 7.2 that for fast sweep-rates, the apparent

o‘lm

N

bandwidth B, plotted on a log log graph, has the asymptote B* = bd - .
This is true for an arbitrary filter. A proof using Iq 3.17 is given in Appendix
Du By Eq 5017)

d .
B = . 5.1
— (5.19)

It is shown in the appendix that the response approaches the impulse response of
the filter as the sweep-rate becomes large, and thus ty is the width of the
response to an lmpulse, while Ay is related to the strength of the equivalent

impulse. Then the behavior of B for large sweep-rates follows from Eq 3.19.

24
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L. SOLUTIONS BY DIFFERENTIAL ANALYZER

4,1 Statement of the Problem

The physical problem is to observe the response of a bandpass filter to
pulse modulated sinusoidal signal whose frequency varies linearly with time. A

block diagram of the apparatus required is shown in Fig. L4.1.

PULSED fm

SIGNAL — FILTER - RECORDER
GENERATOR
(c, d, and s) a, b, type

Fig. 4.1 Block diagram of differential analyzer.

This is equivalent to solving the ordinary differential equation

ar d
F["—ﬁa% v, t] = £(t) (h.1)
dt

where £(t) is the time representation of the pulsed frequency-modulated signal.
Since only linear filters with fixed parameters are considered in this report,
the left side of Lq 4.1 is an ordinary linear differential form with constant co-
efficients; the order of the equation, n, depends on the complexity of the filter
considered.

A differential analyzer is well suited both to the solution of Eq 4.1 and
to the generation of the driving function £(t) (input pulse), through the solution

of an auxiliary differential equation.l

lBush, V. and Caldwell, G.H., Ref. 17; Ragazzini, J.R., Randall, R.H., and
Russell, F.A., Ref. 14; Macnee, A.B., Ref. 15
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The driving function is

f(t) = 0 if t<c - %}
st2 . d d
£(t) = cos[at + _.} ifec-S<t<c+z, and (k.2)
2 2 <
;
f(t) = 0 ift>c-+§.

Thus f(t) is a sinusoidal pulse with a square envelope. The pulse has a duration
of d seconds and is centered at ¢ seconds; the instantaneous angular frequency of

the signal is
w = a + st (k.3)

where s 1s the sweep-rate in radians per second per second.

The filters studied are of the sort encountered in the simplest
intermediate~frequency amplifiers, a synchronous single-tuned a:m.plifier.l Each
filter has maximum response to sinusoidal steady-state signals at "a" radians per
second, and the 3 decibel bandwidth is "b" radians per second. Filters con-
sisting of one, two, and four.single-tuned circuits are investigated. The use of
one single-tuned circuit is of special interest since this case can be calculated

without too much difficulty.2 This gives a check on the analyzer solutions.5

1
The steady-state amplitude response of the n stage filter isL

n
-2
lH(w)l ={1 +[(2) 5 1] . [QE—OS];——%%]E (4.4)
For large n
(2) %— lz% in(2), (4.5)

LYallman, H. and Valley, G. B., Jr., Ref. 9
2See Section 3.1
See Section 5.1
loc, cit. p. 172

y»]
(62N
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v =]

Limit F@ﬂ_ limit 1+&§-¥ 2 2 in2 Pﬁ—aﬂg

i = 1 — . - — — ———
n— n— 00 [ ub ] n e 2 wb .
(4.6)

o o . a
Further, for frequencies near resonance, 1 + ® & 2, and therefore

linit

2
- D ;zng[u]
as n— ‘

b (%.7)

H(wﬂ x e

A Tilter having this Gaussian amplitude response curve can be handled by analytic
means 1T the input pulscs arce assumed to have a Gaussian rather than a square
envelope curve.t The differential analyzer data for synchronous single-tuned

amplifier gives a measure of the usefulness of this analytic result.2

It,2 Method of Solution

L.2.1 Differential Analyzer Setup An alternating current equivalent

circuit of the intermediate frequency filter-amplifier studied is shown in TMig.
4,2, The vacuum tubes are assumed to operate in a linear fashion. The input

and output capacities as well as the plate resistance r,, are lumped into the

p
appropriate single-tuned interstage circuits which all have identical element

values. The grid-plate capacities are neglected. This filter amplifier is de-

scribed by the equations

dep e, 1 f e; db = i (t) = f(t
C ’d’-_E"‘ + R_ + L -1 l( ) ( ):
deo e
C ng + ﬁg + 1 jf Co dt = - gpeq,
L (4.8)
dex e 1
2 .._.5_. + = .[ > = - 2
‘w TR L) o Sn2
de) e), 1 "
¢ 4 + = /’ ey at = - gnex.
at R 1, + 1~

ec Section 3.2

[0

oo

See Section 5.2
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A block diagram of the differential analyzer setup for the solution
of Bq 4.8 is shown in Fig. L.3, Eaﬁh block labeled "circuit" in Fig. 4.3
solves one of the second order differential equations of g L4.8. The details of
the interconnection of the differential analyzer components within these blocks as

well as the function generator block are given in Appendix E. Since all the cir-
cuits are tuned to a common resonant frequency and all voltages and currents are
at zero at the start of every solution, there are just two parameters for each
circuit box. For the jth circuit the amplitude of the driving function e; is
controlled by a potentiometer, Pij’ and the bandwidth by is controlled by a

potentiometer, P..

In this study the bandwidths of all circuits are identical; the band-

width of the filter consisting of n circuits isl
b = b (2) -1 . (k.9)

As indicated in Fig. 4.3, a four channel recorder permitted simultaneous
recording of the input pulse f(t) and the responses of one, two and four single-
tuned circuits. The input potentiometers were generally adjusted to give approxi-
mately full scale deflection of the recorders at the time of maximum response.

k,2.2 Parameter Values The function generator output was a constant

amplitude sinusoidal signal that varied linearly in frequency from 10.25 to 20.19

radians per second in a period of 140 seconds. Therefore, the sweep-rate of the

driving signal was always .0710 radians per second per second. The length of the

input pulse d and the time of the center of the input pulse c were controlled by

]
closing a key connecting the input signal to the first circuit box, at c - %

seconds; d seconds later an electronic interval timer disconnected the input

1loc. cit. p. 172
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signal. The frequency of the input signal equaled the frequency of the filter,

a = 14.18 radians per second, 55.4 scconds after the start of each sweep.

Table 4.1 summarizes the ranges of parameter values. It will be noted

that the Q's of the tuned circuit, %, range from 11.28 to 567.2.

TABLE 4.1 RANGES OF PARAMETER VALUELS

a 14,18 radians per second

b 0.025 to 1.257 radians per second
c - 55.4 to +70 seconds

d 2.65 to 125.7 seconds

.0710 radians per second per second

[6)]

.3 Discussion of Solutions

For convenience in the operation of the differential analyzer, all solu-
tions were run with a fixed filter resonant frequency "a" and a fixed input sig-
nal sweep~-rate s.1 The differential analyzer solutions were run to observe the
effect of varying the four remaining parameters: (1) the center time of the in-
put pulse ¢, (2) the length of the input pulse d, (3) the bandwidth of the filter
b, and (4) the number of single-tuned circuits. These parameters are displayed
on the time—freqﬁency diagram of Fig. L.k.

Some of the solutions as observed at the output of the differential
analyzer are discussed here. Additional solutions and discussion are found in
Appendix F. A comparison between the solutions measured on the differential

analyzer and the solutions calculated analytically is given in Section 5.

I5ee Appendix E for a discussion of this and for details of the differential
analyzer operating proceedure.

o
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Fig, Wb Time-Frequency Diagram Showing Problem Parameters

h.3.1 Qualitative Results

A. Varying Tilter Parameters The effect of varying the filter

parameters b and n is showm by Figs. 4.5 4o 4.7. Figure k.5 shows the response
of a two circuit filter to an extremely long input signal as the filter band-
width is varied. The Tour output traces illustrate an important effect. TFor a
Tixed sweep-rate there is a filter bandwidth which leads to the minimum output

T
pulse width in seconds,

5. From the data shown, the optimum bandwidth appears
to be about 0.%4 radians per sccond.

Figure 4.6 shows the effect of varying the bandwidth of a one circuit
filter; the input sipgnal is a pulse 10.6 secconds long with a center frequency

equal to the filter center frequency. The two important effects observable here

are: {1) the reduction in the relative amplitude A, as the filter bandwidth is

32
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reduced (A, drops from 1 to .39 as the bandwidth b is reduced from 1.51 to .075),
and (2) the "spreading" of the output pulse as the filter bandwidth is reduced.
The spreading of the output signal for large bandwidths observed in the previous
figure does not occur here since for large bandwidth the input pulse width
determines the output pulse width directly.

Ficure 4.7 shows the response of 1, 2 and 4 circuit filters, all
having the same bandwidth, to an input pulse having a center frequency somewhat
above the resonant frequency of‘the filters. There is an increase in the delay
of tﬁe output pulse relative to the input pulse as the number of circuits is in-
creased, but otherwise increasing the number of circuits has little effect on
the relative amplitude and output »pulse width. Note the envelope of the output

oulse tends towards a Gaussian shape as the number of circuits increases.

B. Varying Signal Parameters The effect of varying the signal

duration d and center frequency (a - sc) is shown in Figs. 4.8 and 4.9 respec-
tively. As one would expect, there is a reduction in the relative amplitude of
the output if either (a) the input pulse duration is reduced, or (b) the center
frequency of the input pulse differs appreciably from the filter center fre-
quency. Figure 4.8 shows the effect on the output of varying d. Tigure h.9 i1~
lustrates the change in filter response as ¢ is varied. Each output pulse is the
result of a separate differential andlyzer solution. The variou; output tapes
were cut and pasted together in the proper sequence to form the figure.

4.%.2 Quantitative Results TFigures 4.5 to .9 indicate qualitatively

the effect on the filter output of varying the various signal and filter para-
meters. A quantitative measure of the filter responsc is furnished by the factord
introduced in Section 2.3%: the output relative amplitude Ay, the output pulse

width W, and the apparent bandwidth B. More than four hundred solutions of the

36
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type shown in Figs. 4.5 to 4.9 were run on the differential analyzer to determinc
the dependence of these factors on the circuit and signal parameters. Some
typical curves of Ay, W and B are discussed below. Additional curves and dis-
cussion are included in Appendix F.

Relative Amplitude A The relative amplitude is the peak

amplitude of the output pulse normalized to the steady-state amplitude of the
output for a cw input signal at the bandcenter frequency. Ay is the value of A
which corresponds to bandcenter pulses (¢ = 0). Fig. 4.10 shows the variation
of the relative amplitude versus sweep-rate for a cw receiver input. Curves for
one, two and four circuit filters are plotted. For every case, the response is
unity for very low sweep-rates. TFor very high sweep-rates, the responses drop
off rapidly. The response of the single circuit filter is considerably greater
than that of the other filters. Tor all filters measurcd the response has
dropped 3 decibels at i—z— & 1.

The relative amplitude as a function of the input pulse length and the
sweep-rate are shown in Fig. 4,11, The cw response curve is replotted in this
figure for comparison. I the pulses are short, relative to the reciprocal of
the bandwidth in cycles per second, (bd < 2%), the relative amplitude response
is less than the responsc for the cw case for very low sweep-rates. At high
sweep-rates the response to pulses is approximately bounded by the cw response
curve, but in every case there is a range of sweep-rates over which the response
to a short pulse exceeds the response to a cw signal., For very high sweep-rates
one would expect the response curves for all pulse lengths to approach the cw

response curve,

Output Pulse Width W W is the width of the output pulse in time

(measured between 3 decibel points) relative to the time it takes the input

29
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signal to sweep over the filter passband., Data have been obtained giving the
dependence of W on the signal and circuit parameters. The curves of Figs. 4.12
and 4.13 are typical of the results obtained. There is an increase of W as the
sweep-rate 1s raised. Tor large sweep-rates the width of the output pulse to
approaches a constent determined by the filter impulse response. Then W = E%Q
becomes linear in s. The length bf the input signal d and the number of circuits
n have little influence on W for high sweep-rates. An exception occurs for the
case of one circuit; W is about one-half the value for the two and four circuit
cases. The beat phenomena which are observed in the output for the one circuit
case have the effect of appreciably reducing the output pulse length as measured
between 3 db points.l It should be pointed out that this beating phenomenon can

give rise to some other anomalous results.?

Apparent Bandwidth B As indicated qualitatively in Fig. 4.9, the

relative amplitude of the output pulse is a function of the difference between
the center frequency of the input pulse and the filter bandcenter, sc. The peak
response drops off as the magnitude of sc is increased. A typical series of
plots of relative amplitude A versus %E is shown in Fig. 4.14, The center value
of the curves shown is A, The apparent bandwidth, B, is defined as the distance
between the points on these curves at which A = Mé%.. FBach curve of Fig. k.14
determines one value of B.

Plots of B as a function of sweep-rate with the number of circuits and
the length of the input pulse as parameters are given in Fig. 4.15. For very

low sweep-rates B has a horizontal asymptote. For very large sweep-rates B has

15@3 fig. F.h, Appendix F
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s 1

an asymptote given by (12 . bad). As a result the curves of Fig. 4.15 are rea-

G

sonably reliable even though only three points were obtained for most curves.
Since each point on this plot represents about seven differential analyzer solu-
tions, about two hundred solutions were required to obtain the data plotted.

The nunber of circuits is seen to be of little importance, but the length of the
input pulsc has a major cffect. TFor low sweep-rates narrowing the pulsc

increases the apparent bandwidth while for high sveep-rates the reverse is true.
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5. COMPARISON OF SOLUTIONS

5.1 Sinzle-tuned Circuit by Two Methods

The reéponse of single-tuned circuits to pulses with square envelopés
has been discussed in earlicr sections of this report.l Both the theorctical
and differential analyzer curves for certain cases werc presented. The results
of the two investigations arc ;oﬁpared herc., Tigure 5.1 illustrates curves ob-
taincd by these two techniques foé very broad pulses, PFigures 5.2 and 5.% arc
similar gxcept that the pulses started at frequencies near the center of the
passband of the filter., The bandvidths for the threce figures are different. A

- -
1

art of the discrepancy of Tig. 5.5 probably is due to the slight difference in

3

starting time of the two curves. These three figures and Figs. 5.4 and 5.5 in-

dicate a very good agreement between the numerical calculations and the differ-

envial analyzer solutions,

5.2 The Gaussian Case and Differenticl Analyzer Solutions

The relative amplitude Ay, output pulse width W, end apparent band-
width B have been calculated both for the Gaussian case (Section 7.2) wnd from
the differential analyzer solutions for one, two and four circult synchronous
single-tuned filters (Section h.3). Eight typical families of curves comparing
these data are given in Figs. 5.4 to 5.11.

The relativc amplitude for a cv input signal is shown in Fig. 5.%. The
curves for two circuits, four circuits, and the Gaussian case differ very little;
the curve for the one circuit filter is higher at fast sweep-rates, but not by

more than a factor of two. The relative amplitude curves for pulses (Figs. 5.3

lSection 3,1 and Section k4
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e more irregular. The curves still have the same general features,
d they differ by no more than a Tactor of two.
ipure 5.7 shows the output pulse width for o constent amplitude sig-

the curves for two and four circuits and the Gaucsian case are very

curves for the one circult filter are lower, but not by more than a

hree. The output ulue width curves for a pulse input (Figs. 5.0 and
& 3 O

=11l of the same general shape and are within a factor of three of each

the curve for a onc circuit filter diverging the moot

The curves for B in Figs. 5.10 and 5.11 are within forty per cent of

» Tor Tast sweep-rates and within a factor of two and onc~half for slow

cwecp-rates. The curves for a particular valuc of bd have the same asymptote Tor

50U sweep-

Les, The

Ger

de, o Litv

an any of

rates (see Section 3.3) and the asymptotes are parallel for slow sweep-

linmiting values of B for slow sweep-rates can be obtained theoreti-

the single-tuned circuilt as well as for the Gaussion case, and these

e conparcd in Table H.1.

TABLE 5.1 APPARENT BANDWIDTH IFOR ZERO SWEEP-RATE

g T
bd = T 2
.
1 circuit 5.61 1.89 | 1.17
Gaussion Tilter | 1.62 1,18 | 1.05

nerally the one circuit filter gives somevwhat greater relative ampli-

le narrover output pulse, and a slightly larger apparent bandwidth

the other filters congsidered.
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Certain featurcs of the receiver response in the differential analyzer
solutions differ considerably from the solution of the Gaussian case. Tor ex-
ample, the time of maximum response can hardly be cxpected to agree, since the
Gaussian filter is assumed to have no phase delay. Also, thc output pulse shape
for the Gaussian case is always Gausslan, while a wide variety of shapes appear
in the differential analyzer solutions, as observed in Section k.3.

The solution of the Gaussian case gives an understanding of the nature
of the response of a panoramic recciver. LlNMoreover, the Gaussian case 1s quan
tatively consistant enough with the other cases studied to be used in meny design
problems involving peak amplitude, output pulse width, apparent bandwidth, and

resolution.
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7 ~
0.  DUMHARY

The response of a panoramic receiver to cw signals and pulses has been
investigated in this report. The receivers studied were idealized superhstero-

dynes; several types of 1-T amplifier filters were consicdered. In many cases
the analysis applics to a trf panofamic receiver.

Theoretical studies werc made of the following cases:

2) Sinpgle-tuned i-f filter with cvw and square envelope pulsecs as

as input signals, and
b) Gaussian shaped i-f passband with cw and Gaussian envelope pulscs
as input signals.
Differential cnalyzer solutions were made for i-f filters of one, two, and Tour
single-tuned circuits with cw and squarc envelope pulses as input signals.

The character of the response is found to depend in a minor way upon
type of i-f filter used. General formulas presented in Section 3.3 hold
regardless of the type of filter or the type of input pulse. Thus one antici~
pates that the important featurcs of the response are little altered with other
types of bandpass Tilters.

Only the envelope of the response is studied in this report. The
pertinent response factors investipgated were the relative amplitude, the output
pulse width, and the apparent bandwidth. These Tactors largely determine the
character of the responsc. They are functions of the recciver sweep-rate, the
i-T bandwidth, and the signal pulse width.

The Gaussian case has been prescnted in considerable detail in this

study. Analytically, the responsc for this case 1s very satisfying. The answer

e

e

is given in closcd foim, and 1t is simple when cxpressecd in terms of the
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important factors: relative amplitude, output pulse width, and effective band-
width, More significant is the fact that the Gaussian case is fairly representa-
tive and can be used with suitable caution in the design of panoremic equipment.
The formulas and the many curves in this report will enable the en-
gineer to optimize certain design features of a panoramic receiver subject to

the application requirements.
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APPENDIX Al

Derivation of Response to a Single-Tuned Circuit

Let

.2 .
eXp{Ja’c + L]s—t~},ffor c-Sctgesrd (A.1)
(1) = > 2 >

0 ,fort<c—%andt>c+

be the input signal current to a passive lumped-constant network and let 3 desig-
nate its Fourier transform. Similarly, let e(t) be the voltage produced at a
given output and T its Fourier transform. Assume the circuit is quiescent prior

to the application of the signal. Then,

d
c + o} jST2
exp[jaT + ] exp(-pT) 4T (A.2)

= z(p)T

2(p)
el

Nl

Cu-

where z(p) is the appropriate transfer impedance. For a passive network z(p) is

a rational function and can be expanded in partial fractions as follows.

n
g(p
z(p) = ﬁ%% = 3 — k) (A.3)
k=1 h (Pk)(P‘Pk)
where Py designates a root of h(p) = 0, and nultiple roots are excluded.® Then
equation A.2 becomes
c+ 7
. 3 (Py) jsT 2
¥ = » _a(p f eXp[.jaT L ]exP(-pT)aT. (A1)
vet 21 h' (py)(p-py) 1 >
c-2

lThe proof given here follows that of Gunnar Hok, Ref. 1.

2The extension to multiple roots is not difficult.

o
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Taking the inverse transform and interchanging the order of integra-

tion,

d
n ¢c+sp
e(t) = > E;_(_p_li_)__ f exp [J&T + _.___] exp p(t - T) gpar,
k=1h' (p) . e (p - pi)
¢-2 —jeo (A.5)

By the inversion theorem of operational calculus, if the real part of py < 0,

00 O for t< T
2 7 empt -1 -
. dp = 6)
2nj (p - D1 ‘ (A.
P - P exp pp(t - T) for t > T,
-J
and therefore the expression for the voltage becomes,
n t
)
e(t) = 5 &l exp {yt + (Ja - py)7 + I oo
k=1
d
C -
2
d d - . . .
for ¢ - ‘2‘ <t<c + o The upper limit of the integration t is replaced by
c —k%fort> c+-g—~ .
Now define,
) = = (s .
);‘(T 7 (ja - pp) + 5.5 T. (A.8)

Then the exponent of the integrand in IEq A.T7 can be written

2 2
. ST Y (T) % 2
Pt + (Ja - PE)T + JZT = = ] g +J k (%) + j[at + S—;“},
2

and the voltage expression assumes the form

65




ENGINEERING RESEARCH INSTITUTE -+« UNIVERSITY OF MICHIGAN —

1 .
vhere G( %)~ = - J exp [J > ] exp -~ J “2— ax . (A.10)
Y (c d)
L8 2
1 X + iy 22
The error function of a complex variable defined by \/55_ Jf e 2 4z
0]

has been tabulated and can be used to evaluate G()i{).2

For the case of the single tuned circuit shown in Fig. 5.1, the gencral

formula for the voltage reduces as follovws:

R 1 _ RLp
Z(,H) - - 2 °
B e P=°RLC + pL + R
R
Then,
g(p) = Rlp,
n(p) = RLCP® + Lp + R,
h'(p) = 2RLCp + L, and
gp) _ _Rp _ L1
h'(p) 2RLCp + L c 1+ L °
2RCp
The roots of h(p) = O are
1
G()k) = 0 for t<c - %, and for t>c + % the upper limit of the integral is to

. a
be replaced by %.(c + 5)'

2upables of Integrals Associated with the Error Function of a Complex Variable,"
Hastings, C. and Mercum, J., RAD-28l, Douglas Aircraft, August, 1948.
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Py
1 4+ . /T [1"]2 1 .. b
= - —_—T —_— | = - 3 = - = +
ore ~ W 1c T LERe org — 9& = -5 I,
s
2a
Then, if = >> 1,
6(r1) L 8lp2) o L
h'(py) h'(pe)  2C
) ~ 1 . jst2
By kg A.9 the voltage is e(t)™ W (Jat + 5 ) - {G(Vl) + G(é}. (A.11)

Also, it is readily shown that

lim
8 = G()é) = 0, so that for high frequency the voltage response is given

approximately by

1 jst2
e(t) = T X (Jat + =—) &(X) (A.12)
vhere ¥ = nf}:+ i /% t. (A.13)
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APPENDIX B

Derivation of the Response of a Gaussian Filter

In this appendix the formulae are derived for the response of a filter
with a Gaussian shaped transfer function to a signal which is changing linearly
in frequency and has either a constant amplitude or a Gaussian shaped envelope.

Assume the filter transfer function is

) = — L - (0-a)2
EHo) = Var eXp[ (b a) ] , (B.1)

and the input signal is (the real part of)

., 5t° (t—c)2
£(t) = exp [J(———- + at) - ] (B.2)
2 a2
The procedurc is to find the Fourier transform F(w) of f(t), multiply
it by H(w), and tfansform back to the t-plane. The filter response is the real
part of the resulting function g(t). The calculation is simplified by using the
convolution formula:

@ . @
L f Hw) * F(o) eI qp = X f £(A) h(t-A) d A (B.3)

where h(t) is the Fourier transforms of H(w).l’2

Two preliminary remarks will make the derivation go smoothly. In the

first place, the envelope of the real part of a complex function of time is just

lTitchmarsh, E. C., "Introduction to the Theory of Fourier Integrals", Oxford
University Press, 1937, p. 51.

2The use of complex functions for the signal f(t) and the impulse response h(t)
is Justified if the response of the filter is negligible at zero frequency.
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the absolute value of the function. This can be seen as follows: Let Z(t) be
any complex function of t. It can be written, Z(t) = [Z(t)l exp (jo(t)), where
6(t) is the argument of Z(t). The real part of Z(t) is then lz(t)] cos ©(t), and

z(t)l .

the envelope of this is

Secondly, in computing the Fourier transforms, use will be made of the
following formula:
© 2
f exp(—ut2+vt) at =/£_ exp — . (B.4)
u Ly
-
The integration is along the real axis in the t-plane, and u and v are

complex numbers, with the real part of u positive. This formula can be derived

as follows:

@© 5. @
2 v v 12

f exp [- ut? 4 vt] at = exp [Tf]f exp [ - [t - -2.] ]dt.

— u o u

bl
Letting 2 = u(t - 20),
@ 2 1 V2 © ) 1 ve

/. exp (- ut”™ + vt) dt = ;757 exp Iy j’ exp(-z<) 4 Z =¢/;? exXp = .

Note that the path of integration in the Z-plane is not along the real
axis, but along a line which may be oblique to the real axis. From the require-
ment that the real part of u Bo positive, it can be shown that the path of inte-
gration in the Z-plane makes no more than a 45° angle with the real axis. With
this restriction the integral}foo exp(- 72) az is independent of the angle of the
path and thus equal to~/ﬁ} whiég?is given by integration along the real axis.

Now the calculation of g(t) can be carried out. Before use is made of

(B.3), h(t) must be calculated.
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1 © .
h(t) = Ve f H(w) exp (Jot) dw
-

1 f‘” o [-wt_(_‘*i;f_‘)_g_

|

-8 . r -we 2a
exp [———é]f eXp [ 5 (It =) w] dew
b —(D b be

1
2%

which yields, after application of (B.4) and simplification,

2.2
h(t) = —2—exp [ jat - h[rt—] . (B.5)
2/
The expressions for f(t) and h(t) can now be substituted in (B.3):
(00]
g(t) = f (M) a(t-A) an
- @
1 fa) Jsh . (N 0)2 b - b2
= exp[ + Jjan = ]--«—oxp[——-—— t-A 3 - ]
e J 5 - Ve L (t-M)° + ja(t-2)] an
2 2.2 (00) 2 : 2
b [ c bet . o, 1 b js 2c b
= exp ————-___._+Jat]f exp[—}\. +— - =)+ A +—.]d7\
2/1 a2 I ‘o (_dvé L 2) (5? 2)
and using (B.4) again;
%+ 5]
_ b c®  bet : -
g(t) 5 L + P—E _ Q_S_ ex’p d2 - \‘. + t + L[_[_];_ E _ j] (B'6)
a2 L2 R

As has been remarked, the recquired answer is the absolute value of g(t), which
can be obtained by taking the absolute value of the first factor and keeping

only the real part of the exponent.

2 b2 or1 b2
|e(v)] = I

g?__bgt2+[d9 2

b
2 [(5+E) 4213 S | g

10
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The exponent of (B.7) can be put into the following form:

4 ) L 2
‘b2[2+ba+52d2] c[“e”fbg 2.2
d t - ~ld - s°c
I») L}- 2 ' )4_ 2‘ A ¢ (B’B)
A CC.

Referring to the definitons of A, W, and B in section 2.3, and recalling
1
that in the Gaussian case the width of a curve is taken to the e I, points, it is

clear that
b .
A - Bc
[0} [(E_-yb?)?.;.);s?]l ) ( 9)
a2 L
1 !
B = B}/gﬁ‘fbe + 5%4%, ana (B.10)
(H;-+ b2) 2 4 bse
y - 84/.0 - o84 L (B.11)
A - P AZB
— + b~ + s<d
ae
The time of maximum response is given by
-l(§—2-+b2
b= o : (B.12)
bov b2 4 522
a
Now g(tﬂ can be written
P
s(t-ty)r 7 5c1® ,
g(t) = A, exp {- l;..[_~“_mJ;~] - [=éﬂ } . B.L%
‘ [ (@) 3 wg b B2 B ( ))
Tor a cw input the siznal is exp ] [ + at ] , and the cutyput

lim (4) B T'—b-—m— be s t2
d—- 00 I{J( l = [b R ILSL]z CXp {" bll' + 52} . (B-’T')
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In the notation of (B.9) to (B.13),
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A, = b .
[bu+42]7I
1 )i 2 1
W o= S5(b" + 4s®) = = a
5 an
b Al ’
lim 2
1 st
i |e@] = A e {- 5[]}

———

(8.9")

(B.11')

(B.13')




up a complete set of curves of Ay, W, and B {or the Gaussian case.
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The curves in this appendix together with those o

APPENDIX C

Curves for the Gaussian Case

Section 3.

listed in Table C.1.

I.

IT.

IIT.

TABLE C.l Curves for the Gaussian Case

Normalization with Respect to Bandwidth

A. Sveep-Rate as Abscissa, Pulse Width as Parameter
15,4 Ay
5.5 W
5.6 B

B. Pulse Width as Abscissa, Sweep-Rate as Paraneter

C.1
c.2 W
C.3

Normalization with Respect to Pulse Width

A, Swveep-Rate as Abscissa, Bandwidth as Parameter
c.hk Ao
C.> bdv
C.6 bdB

B. Bandwidth as Abscissa, Sweep-Rate as Parameter

C.7 Ao
c.8 vaw
C.9 bdB

A, Bandwidth as Abscissa, Pulse Width as Parameter
C.10 Ap
b
c.11 = W
b
c.l2

hese numbers are fizure numbers.

,
a

UNIVERSITY OF MICHIGAN
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B. Pulse Width as Abscissa, Bandwidih as Parameter

The output pulse width W and apparent bandwidth B are normalized with

respect to bandwidth by definiton. Where they are presented with a different
normalization, they are multiplied by the factor which will correct their nor-
malization. BSuvpvose one wishes to know how apparent bandwidth varies as a
Tunction of pulse width for a fixed sweep-rate. Normalization with resnect to
the apparent bandwidth in radians per second
bB /5 bB Y

is el Or =—*—= . ©Since B 1S fixed, apparent bandvidth in radians ver
[ <

second is proportional tojﬂi , and its dependence upon pulse width is shown
= I

in IMig. C.15.
A brief discussion of the dependence of Ag, W, and B on sweep-rate

and pulse width was given in Section 3.2, Several features arc brouzht out by

the curves in this appendix. TFor any given sweep-rate, there is a pulse width

ro

s -
L

wnich leads to a minimum apparent bandwidth. It is given by sd© = 2, This

oS

can be seen in I'igs. C.3 and C.15. TFor a fixed sweep-rate and for pulses such
that sd2 > 2, there is a bandwidth which gives a minimum output pulse width (sece
Fig. C.11). Tor long pulses (sd® > 10), the minimm occurs very nearly where
0e = 25,

In many of the graphs there is an unattainable recion. Tor example,
in Fig. C.7, the relative amplitude is seen to be bounded by the curves for
sd? = o, Thus, 1if bd < 1, Ao must be less then 0.45 regerdless of the sweep-

I
]

1

rate. In Fig. C.%, the curve for O 1s the cnvelope of the family —

'b"“

)
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no curve is found below it. In Fig. 3.6, the envelopc is found to be
/ ] . . A .
B =./1+ i% . B is never less than this, and it has this value only when
b
sd® = 2. The envelope is also shown in Fig. C.1k; it corresponds to the

minima in Fig. C.1ll.

—

[
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APPENDIX D

Derivation of the General Rclations Among Factors Describing Response

The success of the derivation of BEq .16 and Eq 3.17 depends on a dif-
ferent definition of the width of a curve. Suppose f(x) is a function which

approaches zero when

x] becomes large. Then the width w of the graph of f(x)

is defined here as
Q

) I

= (D.1)
max If(x)|2

For exdmple, the width of a pulse is defined as its total energy divided by its
maximum power, and the bandwidth of a filter with transfer function H(w) is

(00]
J( H(w) H(w) do

b = - . (D.2)
nax H(w) H(w)

This is known as the "noise bandwidth. "+

Suppose a scanning signal of constant amplitude,

jstg]
2

(D.3)

£(t) = g exp [jat +

is applied to a filter with transfer function H{w). Then the output signal is
given by

® g
s(¢) = [ F) ) % a
“®

where F(w) is the Fouricr transform of f£(t). By Parseval's Theorem,® the energy

lyallman, U. and Valley, G.E., Ref. 9, p. 169
Lawson, J.L. and Uhlenbeck, G.E., Ref. 10, p. 101

20itchmarsh , An Introduction to the Theory of Fourier Integrals, Oxford Uni-

versity Press, 1937, p. 50 91
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in the output pulse is,

00} e 100}
[ [s®] " e = edf " F) 8 o) @) . (D.4)
~w o
But,
o o Lo daw)?
Fw) =ffv—;~[w £() e at = fO(\—/—_;sl SZE (D.5)
so that,

fo
Flw) Flo) = ——, and from (D.}),

0

fco [a(t)] “a - Eﬁfogfco I(w) H(w) do . (D.6)

!
8
[

8

Now all that remains is to interpret these integrals using the definition given
above for the width of a curve.
As was pointed out above, the energy of a pulse is the product of pulse

width and maximum power, so
2
j. [g(t)] dt =ty (maximun pover of output pulse) (D.7)

vhere t, is the width of the output pulse. The meximum of onfl(w) H(w) is the

nazimum pover gain of the filter, so by g D.2,

b
jﬂ Hw) Hw) do = :;'(maximum.pover gain of Tilter). (D.8)
Zo <

Subetituting in Bg D.G,

bf, 2
—O ., (maximun power gain of filter)

S : (D.9)

to* (maximum power of output pulse)

90
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.2 . N . s - . .
o™ is the power of the input signal, and by the definition of relative amplitude
A
O)
o) maximum power of output pulse)
A = ( = = . (D.10)

(input signal powver)-(maximum pover gain of filter)
Substituting this in Eq D.9 gives

Af . %% = a2 3y =1 , (D.11)

which is @q 3.16.

The difficult part of proving Eq 3.17 is defining "apparent bandwidth."
Suppose the input signal £(t) to the filter is a pulse of arbitrary shape and
frequency, and suppose ite transform is F(w). If the pulse is shifted in fre-
quency by @ radians, the transform of the resulting pulse £, (t) is F(w + a.
The response of the filtér to each of the family of pulses resulting from shift-
ing £(t) in frequency ic a function of @. In particular, the energy of the
output pulsc is a function of @ which approaches zero for large |a|. The ap-
parent bandwidth B is defined here as the width of the graph of energy of the

output pulse as a function of @, divided by the Tilter bandwidth (see Fig. D.1).

)-

(0]

@x

w

-4

w

w

(2]

]

2

o

- bB

o}

o

|_

2

(o]
!
|

a=0 a

figure D.1

95




ENGINEERING RESEARCH INSTITUTE

=3

UNIVERSITY OF MICHIGAN

There is no loss of generality in assuming that the output pulse cnergy
is a maxirnum for @ = 0. The output pulsc energy as a function of @ is, by
Parseval's Theoren,

(9]
2;rf Flw +a) I(w) Flo +a) Ho) dw , (D.12)
— 0
and by bg D.1,
.o
21rf f Mlw+a) I(w) Flo + @) I(w) do da
1l Z’-0 .
- = . D.1:
B - 5 (D.13)
Eﬂf F(w) w) I(w) aw
-
Changing the order of integrati on in the numerator,
L/(DIT IZ(J Flo+a) Flo +a) da dw ‘
D . (D.1%)
(¢0)
d:n:f o) I(w) Flo) (o) dw
— @
But,
@ @
f Mo +a) Flw +a) aa =f F(a) Fla) da,
- -
so that
@ W
f H(w) I(w) dw Eﬁf ¥(a) TF(a) aa
B = 17— - s .
=5 0 (D.15)
EJrf T(w) I(w) Flw) I(w) dw
—@
and all that remaings is to interpret the three integrals.
By (D.2),
W
2nf I(w) I(w) dw = (max pover gein of filter), (D.16)
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and by Parseval's Theorem again,

0]
f F(a) F(a) da = d-(max pover of input pulse). (D.17)
-
@
Qn/’ F(w) Hw) Flo) Ho) dv = to(maximum power of output pulse for
o "centered" input pulse), (D.18)

where d and ty are the widths of the input and output pulses respectively. Sub-

stituting in Eq D.15 gives

d- (max power of input pulse)-p-(max power gain of filter)

P bty (max power of output pulse for "centered" input pulse) (-19)
By the definition of relative amplitude Ay,
2 (max power of output pulse for "centered" input pulse)
o = (max power of input pulse)(max power gain of filter) ) (D.20)
Substituting (D.20) in (D.19) gives
A B %9 =1 (D.21)

which is Eq 3.17.

As an application of (D.21), a proof is given here that the straight
lines B¥ = bd'%g are asymptotes for the apparent bandwidth as the sweep-rate
becomes large. Since the curves are plotted on log-log graph paper, the condi-

tion for B¥ to be an asymptote for B is

lim  B¥*
s—Q0 B = 1. (D'22)
By Eq D.21, g
B = w«__._.é.
to Ab
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Substituting this for B and bd - 25 for B*, the condition (D.22) becomes

L2
lim  sd | boAo® . 1qm Stoho® = 1. (D.23)
5= b d s—~® b .

Let M(t) denote the envelope of the input signal. It is convenient
to choose the time origin so that M(t) is a maximum when t = 0; this is

achieved by substituting t + ¢ for t. The frequency of the input signal when

t = 0 is then sc + a, and the input signal is
.gt2 .
£(t) = M(t) %Y * J(sc + a)t (D.2k)
Since
00) . -3 @
wt e-jat 1
L F(w +cz)€J dw = f F(w+a)-e‘](w+a)t dlw +a)
Jen = Jen Zq
e Jat £(t),

a translation in frequency in general is equivalent to multiplying f(t) by
emJat, This can be achieved by changing the parameter c in (D.24). Thus, the
"centered pulse” is the input signal which has the value for the parameter c

which maximizes the output power.

The output signal is, by the convolution formula%

g(t,c) =ff(r) n(t - T) at
© .
=) u(7) exP{Q_S_L + j(sc + a)T}h(-t -T) ar , (D.25)
- 2

where h(t) is the transform of H(w), the filter transfer function.

lTitchmarsh, loc.cit., p. 51
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As in Eq D.20,

A o (max power of output pulse for centered input pulse)
o° = :

(max power of input pulse)*(max power gain of filter)

'd °; 2
- m;k | e(t,0)] , (D.26)
max If(t)l + max 2x H(w) H(w) '
and
. 2 ; . E
o s g [ ] /7 a0 ]
S-—ow = ———
b bemax [M(t)] 2 . max 2x H(w) H(w)
max  lim  t- I,,/s g(t,c) | 2
= 5= (D.27)

max [M(’c)] 2. pax ox H(w) T(w)

Referring to Eq D.25,

: . @ top 2 2
lim i 1 jsT
s__w’ﬁ g(t,c)|2 = ‘__lré) \/S_f M(T) <3>’»P{J + jla + sc)r} h(t-t) dr].
s ‘o 5
Now,l
[0 o) . 2
js T
f exp{dg }dr - (1+j)ﬁ, (D.28)
and from this it can be shown that
lim 1 5 fCO o fas(r + 0)2 .
G — T+ )= P\ TT T F(t)dr = F(-c).
- @ (D.29)

lDwight, H.B., Tables of Integrals and Other lMathematical Data, &q..859.5,
Macmillan, Iew York, 1947
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It follows that

—jsc2

Lin .
s_i%ﬁ g(t) = (L+3) Jx eXP{ } M(-c) h(t - c), (D.30)

2

and the response, in the limit, is the same as the response to an impulse. This
observation makes possible the calculation of the limiting value of t,. By (D.1)

and using Parseval's Theoren,

lim t

. w w
. ) )] ? i /oo H(w) H(®) @ e

s—=® ° max h(t)l max | h(t) | e
b max H(w) H(w) 2

lim  t, = 1( ) (2 : (D.51)
5—00 nax ln(t)l

Substituting (D.30) and (D.31) into (D.27) gives

2 .[2 2 \ 2
lim  Sbo Ao% ’l + Jl % max | M(-¢)|< max ln(t - ) b mex H(w) H(w) or

5— © b b max M(t)l2 max 21 H(w) H(w) maxl h(t)l2 ’
lim  stoho® )
ct (D = l (D'jg)
D jo

which is the required condition, Eg D.25.
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APPENDIX E

Differentinl Analyzer Procedure

2.1 Analyzer Setup

The mathematical problem is to study solutions of the equations

de; el

1
= e dt = i(t

de2

e 1 f
C—+ =+ = en dt = - g.,e
a4 R L 2 L2
) (E.1)
de; ez 1
__2 — ~ — - e
o + = + N f ex dt = &,€05
del, e} , 1 f _
CEE_ + = E ey at = - B3,
where,
. ~ d -
i(t) = © for t< c -3,
ste - d d -
i(t) = cos (at + —5—) fore-3<t<sc+s, and (B.2)
. d
i(t) = 0 for t>c + 3 .

The system of equations E.1 is of a particularly simple type in that
the solution of each differential equation becomes the forcing function for the
succeeding equation; otherwise all four differential equations are identical.

The clectronic differential analyzer is an analopue machinc employing
voltages as the dependent variables and time as the independent variable. It
consists of a number of high-gain amplifiers which, through suitable fecdback

connections, caen be made to perform the operations of addition and integration
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of these variables. The interconnection of analyzer units to solve any one of
equations E.1 is given in Fig. E.l. In this figure the ground connection is
common to all elements, although it is omitted in the drawing. All voltages are

neasured with respect to ground. The equation solved by this setup is

de s " P o f s
oo Eiey-e00 [ oegan + Fig - 1(3) (2.3)
which is identical with any of Eq K.l provided,
1 Py
= = 1 = X
RC 0 T 350
and
i = 22 = 200. (z.k)
LC

b, is the circuit bandwidth in radiens per second and "a" is the circuit center-
frequency, which for these solutions was held constant at 10,./2 radians per
second. Tig. B.la represents the contents of any one of the blocks labelled
"eircuit" in Fig. L.3.

A sinusoidal signal with frequency proportional to time was generated

by solving the differential equation,

20
d=f 2
+ (L0 +st)°f = 0 E.5)
a2 (
with the initial conditions
_d__f = 105 b}
2l
uto
fo = 0
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For small s, one would cxpect the solution of this equation to be

c'tg
£ o 1.5 cos[10t+° ] (5.6)

0
dde
dt o)

—

When &g E.5 1s solved on the differential analyzer, it is observed
that the amplitude of the first derivative increases as 0< st £ 10. This in-

crease can be reduced to negligible proportions by modifying the equation solved

to

) 1

d=f arf 2

— + €e—+ (L0 +st)° ¢ = o E.5'
a2 at : (B.5")

The differential analyzer circuit for the solution of g E.5 is shown in Fig.

E.2. The variable coefficient of g I.5' is generated by the two ganged poten-

tiometers M-l and M-2 driven by a synchronous motor at éﬂ RPM. The circuit
1

shown solves the equation

r 1 10 ©
Q;% + €5& 4 [10 + ] f = 0. (E.7)
dt= dt
. nt ]‘O e L . il ™ 1 ey i m R ' l‘-—-
Since © 140° Y = 1’ and ©q 2.7 is the same as g B.5' with s = 1L

radian per second per second. The amplitude of the first derivative, which is

used as the output signal, is obscrved to remain constant to within five per

cent when € = 3% x 10 7. Thus the signal used is

‘ ar . £2

l(t) = Ot = 15 cos [lot + E‘g} volts (B.8)
for

0 <t < 140 scconds.
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The interconnection of the input function generator and the various
circuits to solve equation E.1 is given in Fig. 4.3. The block labelled key and
interval timer consists of a switch which is closed manually at c¢ - % seconds
and an clectronic interval timer which opens the circuit d seconds later. The

four channel recorder is made up of two dual Brush recorders.

E.2 Differential Analyzer Solutions

E.2.1 Run Proceedures TFor all differential analyzer solutions the

input signal sweep-rate s, the filter center frequency a, and the input signal
amplitude are held constant. In each run four quantities have to be specified:
(1) the type of filter (number of single-tuned circuits n), (2) the bandwidth
of the filter b, (3) the length of the input pulse in time d, and (4) the time
of the center of the input pulse c.

Table K.l shows a typical series of runs. These were made to study the
effect of varying the time c and pulse’length d on the response of a two circuit
filter. The bandwidth of the filter can conveniently be normalized in terms of

the reciprocal of the pulse width. This series is for

bd = 2x. (£.9)
Table B.1 Typical Series of Runs
2 circuits bd = 2x s = .0710 rad/sec?

d in seconds 5 10 20
- 25 - 20 - 15
- 10 - 10 - 10
¢ in seconds - 5 - 5 - 5
0 0 0
+ 5 + 5 + 5
+ 10 + 10 + 10
+ 25 + 20 + 15

10k
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In accordance with Eq 4.10, the bandwidth of the individual circuits is

b 5.11xn

by = %6 = Ta (8.10)

and from Eq E. 4, the damping potentiometer settings are given by

p. = 118 4ivisions. (B.11)
d

For each run the time of the start of the pulse must be determined relative to
the start of the run. For every run the time t = O of Fig. 4.4 occurred 55.3
seconds after the run started. If ¢ = -15 seconds and d = 20 seconds, the
signal is connected to the filter input 55.3 -[15 + gg] = 30.3 seconds after‘
the run begins. The signal is disconnected from the filter input by the elec-
tronics interval timer 20 seconds later, The proper time to connect the signal
is determined by observing the Brush recorder tape, which is driven by a syn-
chronous motor at a rate of 5 millimeters per second. The input pulse is always
recorded on one of the four output channels so that a check on this time is
availlable.,

B.2.2 Extraction and Processing of Differential Analyzer Output Data

A data tape as recorded at the output of the differential analyzer is shown in
Fig. E.3, Two data are extracted from each tape as indicated in the figure:
the maximum amplitude of the pulse envelope A' and the length of the output
pulse in time t . The time t, is measured between the points at which the en-
velope amplitude is A'/Vﬁ§. Throughout this study a comparison of the béhavior

of various filters was made in terms of three quantities: A, W, and B.l

1 . . . .
See Section 2.% for a more detailed discussion.
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A 1s the peak amplitude of the output pulse relative to the steady-
state output amplitude of the filter when a sinusoidal signal is applied having
the frequency a. The steady-state response is a function of the filter band-
width, and therefore three steady-state runs have to be made for the series in-
dicated in Table E.l. The differential analyzer output for one such steady-
state run is shown in Fig. B.Ob. The steady-state amplitude Ao' is determined

from this tape, and then the normalized amplitude is given by

A'
A = ‘ (E.12)
Ay
The output pulse width W is the width of the output pulse in frequency
relative to the bandwidth of the filter b. Since the frequency of the input

pulse depends linearly on time as given by Eq 4.3, the width of the output pulse

in frequency is Sto,_and

o= —=. (8.13)

The determination of the apparent bandwidth B of the filter circuit

is a somewhat more involved process. Two steps are required: (1) Plots of the

normalized amplitude A versus 3L are made, (sc is the difference between the

e
center frequency of the input pulse and the center frequency of the filter).
The data taken from the runs indicated in Table E.l yield the three plots shown
in Fig. E.4%. The normalized response is a maximum when the pulse outer fre-
guency equals the filter frequency and drops off at higher and lower frequencies,

The apparent bandwidth B can be measured directly from the curves of Fig. B.L;

it is the width of these curves between the points at which response is 70.7 per
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cent of the response at sc = 0. The three values of B measured from the inter-

mediate plots of Fig. E.4 are plotted against the nommalized sweep-rate §§ in
e

Fig. E.5.

E.3 Discussion of Errors

E.3.1 Machine Errors The circuit resistor and condenser values are

correct to within X 0.1% of their nominal values. Trimmer resistances were
used to provide fine adjustment of the résonant frequencies of the individual
circuit loops. These frequencies are adjusted to be within * O.I%’of one
another and of the input signal frequency, when taking steady-state tapes.

The potentiometers which were used to control bandwidth and amplitude
are 10 revolution Helipots marked with 1000 divisions. These potentiometer
settings are correct within one division., The errors which have the greatest
effect on the data taken were those which occurred in making bandwidth settings,
particularly at the smaller values of b. The values of b, are accurate to
within * .0l radians per second; thus the percentage error ranges from + .01%
for b, = 1.257 radians per second to + 15% for b = 0.07854 radians per
second.

The pulse length and the center of pulses in time are correct within
* 0.5 second, except for the centered pulse group of runs, in which the tolerancs
was X 1 second,

E.3.2 Data Processing hrrors Readings from the tapes could be made

within one-fourth division out of twenty. This is X 1.25% at full scale, and
within ¥ 5% at one-fourth of the full deflection. Readings at less than one-
fourth full deflection were usually avoided.

Some idea of the overall reproducibility of the data may be gained
by comparing plots from two sets of data for the same parameters, taken at dif-

ferent times, as shown in Fig. E.6.
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APPENDIX F

Differential Analyzer Data

I'.l Examples of Differential Analyzer Solutions

Section 4.3 includes a discussion of several typical solutions taken
from the differential analyzer. Additional runs showing the form of the re-
sponses and certain anomalous effects are included in this appendix.

Figure I'.1l shows how the response to pulses changes with the pulse
position for one, two, and four circuits. The middle pulse is centered on the
filter passband and the other two pulses are each about midway between the
center of the passband and the 5 db point. The tendency of the envelope of the
response to approach a Gaussian shape with an increase in the number of circuits
is evident in this figure.

FPigure F.2 gives the response of one circuit with various bandwidths
to a cw signal. The output pulse width is clearly a minimum for some inter-
mediate bandwidth. The undulatory nature of the response that predominates
in single circuit filters and narrow passbands is evident here. TFigure F.3
shows a similar set of curves for the four circuit case. These responses are
delayed in time and depressed in amplitude by comparison with the single circuit
solutions of the same bandwidth. The output pulse width is also seen to be
longer for the greater number of circuits, and the undulatory character has
been suppresscd.,

Tigure F.4 shows an interesting anomalous effect that can be attri-
buted to the beat phenomena. Figure F.la indicates that a change of 25% in the
input pulse length can cause the output pulse width to triple. Figure F.hb

shows a similar situation for the two circuit case. The solutions in Fig. .5
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FIG. F.I
RESPONSES FOR VARIOUS NUMBERS OF CIRCUITS & INPUT PULSE POSITIONS
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are also included because they show an anomalous effect. HNote that the beat
phenoncnon is much more pronouncea in the two circuit solution that in the single
circuit case. By the fourth circuit the ripple has disappeared and the envelope

approximates the Gaussian shape.

F.2 Curves for the Factors A,, B, and W

Most of the solutions compiled from the differcential analyzer are sum-
marized in this section. The objective is to present fairly complete data on
the relative amplitude, effective pandwidth, and output pulse width as a function
of the number of circuits, pulse width, bandwidth and the sweep-rate. Table F.l
summarizes the curves of Ay, B, and W obtained from the differential analyzer
solutions. Since examples of'each type of curve have been discussed previously,

the compiled results are included without conment.

lTable F.1 Location of Curves of AO, B, and W
for Differential Analyzer Solutions
Type of Filter 1, 2, and k Circuits 2 Circuits
bd 1 2 ’23 7 x © -’21, %, 21, and @
Ag r.6 |F.7 |F.8 |F.9 F.10 | 4.10 L,11
W F.11 | F.12 | 4.13 |F.1%3 | F.1h | F.15 h.12
B 4,15

Numbers in table are figure numbers,
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FIG. F.5
RESPONSES FOR DIFFERENT NUMBERS OF CIRCUITS
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lLIST OF SYMBOLS

I

a, the instantaneous frequency in radians per sccond of the filter input sicnal
at time, t = O.

a, the center frequency of the filter in radians per second.

A(relative amplitude), the peak response to a pulse vper unit of centered cw
signal with the same input amplitudc (sce Section 2.3).

Ao(relative amplitude), the value of A for centered pulses (see Section 2.3%).

b, the bandwidth of the filter in radians ner second.

s(cp - c1)
b

pulse per unit bandwidth such that the response is at least 0.707 of the maxi-
mum (sce Section 2.3).

B = (effective bandwidth), the range of frequencies of the input

c, the center of the input pulsc in time (seconds).

C1, Cp, the centers in time of the input pulsc such that -
0.707 of its maximum value.

d, the input pulse width in time (seconds).
5, the sweep-rate in radians per second per second.

sc, the distance in radians per second from the filter to the center of the
input pulse.

t, the time in seconds.
th, the time of maximum response in seconds.
to, the width of the output pulse in seconds.

o
w = 8% (output pulse width), the width of the output pulse in frequency per

|

b
unit of bandwidth (see Section 3.2),

.w, the frequency in radians per second.

1Additional symbols of less significancec are defined vhere they are used in the

text.
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