GENETICS AND RANDOM KEYS FOR
SEQUENCING AND OPTIMIZATION

James C. Bean
Department of Industrial & Operations Engineering
University of Michigan
Ann Arbor, MI 48109-2117

Technical Report 92-43

June 1992
Revised February 1993
Revised July 1993
Revised October 1993
Revised December 1993

Genetic Algorithms and Random Keys for
Sequencing and Optimization

James C. Bean
Department of Industrial and Operations Engineering
University of Michigan
Ann Arbor, Michigan 48109-2117
(313) 763-1454

James_Bean@umich.edu

December 17, 1993

ABSTRACT

In this paper we present a general genetic algorithm to address a wide variety of
sequencing and optimization problems including multiple machine scheduling, resource al-
location and the quadratic assignment problem. When addressing such problems, genetic
algorithms typically have difficulty maintaining feasibility from parent to offspring. This
is overcome with a robust representation technique called random keys. Computational
results are shown for multiple machine scheduling, resource allocation and quadratic as-

signment problems.

KEYWORDS: Computers-computer science : Artificial intelligence-genetic algorithms;

Production-scheduling : Approximations-heuristic; Programming : Integer : Heuristic

Introduction

Genetic algorithms were developed in computer science in the mid 60’s ([18]). They
seek to breed good solutions to complex problems by a paradigm that mimics evolution.
A population of solutions is constructed. Solutions in the population mate and bear
offspring solutions in the next generation. These reproduction and crossover operations are
programmed to replicate the paradigm of survival-of-the-fittest. Over many generations
the solutions in the population improve until the best of the population is (hopefully) near

optimal.

Adopting the basic terminology of genetics: a chromosome is an encoding of a solution
and is a vector in R®"; a gene is an element of the chromosome (vector); an allele is a value
taken by that element. For example, z € ®° might be a chromosome, z4 one of its genes,

and if z4 = 3.5 then the fourth gene has allele 3.5.

Crossover is the process by which two parent chromosomes recombine to create a new
offspring chromosome. The traditional operator is the one-point crossover. To illustrate,
consider a simple genetic algorithm approach to the single machine sequencing problem.
A candidate solution to a single machine sequencing problem is a permutation of the n
jobs. Two such permutations for five jobsare 1 =2 —+3—-4—-5and5 -3 —-4—-2—
1. The most direct chromosomal representation of such sequences are the permutations
r = (1,2,3,4,5) and r' = (5.3.4,2.1). A one-point crossover operation would cleave
each permutation at some point, say after the second job scheduled, and exchange leading
segments. Executing that process on the example sequences gives 5 -+ 3 — 3 — 4 — 5 and
1—2—4—2—1 (see Figure 1). Neither is a valid tour. Genetic algorithms have been
slow to gain acceptance for operations research problems since crossing over two feasible
solutions does not, in many cases, result in a feasible solution as an offspring. See [12] for

details on genetic algorithms.

Many authors have developed problem specific representations of solutions that over-
come the offspring feasibility difficulty. Some of these include PMX crossover ([13]), the
subsequence-swap operator ([15]), the subsequence-chunk operator ([16]), other subse-

quence operators ([7]), edge recombination ([33]), the ARGOT strategy ([28]) and forcing

2

FIGURE 1: One-point Crossover

345

4 21

86
A

([25]). Most of these applications use literal permutation encoding strategies, the notable

exception being [28].

A continuing drawback has been the need for specialized representations for each
problem variation. The major contribution of this paper is the concept of random keys, a
method for representing solutions (chromosomal encoding) that produces feasible offspring
for many sequencing and optimization problems. It guarantees feasibility of all offspring

without creating additional overhead.

Section 1 presents this robust representation approach. Section 2 gives a detailed
genetic algorithm that implements random keys. Section 3 presents computational results

on three classes of problems. Summary and conclusions are in Section 4.

1. Random Keys

The random keys representation encodes a solution with random numbers. These
values are used as sort keys to decode the solution. Random keys eliminates the off-
spring feasibility problem by using chromosomal encodings that represent solutions in a
soft manner. These encodings are interpreted in the objective evaluation routine in a way

that avoids the feasibility problem.

The primary difference between this encoding and those in the literature is the use of
random numbers as tags to represent solutions. Random numbers are sampled from some
space. typically [0,1]". The genetic algorithm searches that space as a surrogate for the
literal space. Points in the random keys space are mapped to points in the literal space
for evaluation. Figure 2 depicts this process. For this reason, the random keys approach

1s not similar to binary encodings. The generation of random numbers in the keys space

3

employs a sense of random search in conjunction with the genetic algorithm. No such

random search occurs in binary encoding.

FIGURE 2: Random Keys Process

Search in [0,1]n Evaluate in literal space

mapping

One advantage of this encoding is robustness to problem structure. The search over the
keys space is similar in many of the problems discussed below. Variations in problem struc-
ture are captured in the mapping and the objective function value passed back. Mappings

are problem specific, but generally involve sorting the random keys.

There are other encodings that use random variates (e.g. [1]) but not in the manner
of random keys. Bagchi et al. ([2]) explore different scheduling problem encodings but
none that are similar to random keys. The ARGOT strategy of Shaefer and Smith shares
several characteristics with random keys. Both have chromosome spaces and literal spaces.
Both take vectors in R" in the chromosome space and sort them to construct solutions.
However, the ARGOT stratégy uses problem specific, deterministic encodings that are
translated from literal space to the chromosome space to form alleles. In random keys,
alleles are generated randomly in the chromosome space. Further, random keys has no
Lamarckian, backward translation as is central to the ARGOT strategy. In the ARGOT
strategy the chromosome space shifts as a result of information passed back from the
solution space. In random keys, the chromosome space is fixed. Random keys leads to a

standard Darwinian genetic algorithm.

Following are several examples of problems for which random keys can be used to

4

design a genetic algorithm. For three of the problems we present substantive computational
evaluations in Section 3. The others are presented to illuminate the robustness of the
random keys representation. Computational tests on the remaining problems are topics
of current research. No claim is made that random keys is the best approach for these

problems.

1.1 Single Machine Scheduling Problem

For the single machine scheduling problem, create chromosomes where each gene cor-
responds to a job. To form an instantiation, generate a uniform (0, 1) random deviate for
each allele. The mapping to the literal space is accomplished by sorting the alleles and

sequencing the jobs in ascending order of the sort. For a five job problem, the chromosome
(.46,.91,.33,.75,.51)

would represent the sequence

3—1—95—4—-2.

This sequence can then be evaluated to compute total tardiness or any other regular
measure. Note that many random key vectors would sort to the same sequence. While
ties in the sort are unlikely, they are not problematic. Simply break them in a reasonable

manner such as least index.

Crossovers are executed on the chromosomes, the random keys, not on the sequences.

Consider two individuals:
(.46..91,.33,.75..51) =3 2125242

and

(.84,.32,.64..04,48) =4 525523 - 1.

Using a traditional one-point crossover (as in Figure 1), assume that the crossover point

is after the second gene. Then the two offspring are:

(.84,.32,.33,.75,.51) =223 —-5—-4-1

9

and

(46,.91,.64,.04,48) =4 515532

Since any sequence of numbers can be interpreted as a sequence, all offspring are feasible

solutions.

Through the dynamic of the genetic algorithm, jobs that should be early in the se-
quence evolve low numbers and jobs late in the sequence evolve large numbers. The random

keys simply serve as tags which the crossover operator uses to rearrange jobs.

1.2 Multiple Machine Scheduling Problems

Genetic algorithms have been applied to more complicated scheduling problems in
6], [19], [32], [9], [34], [8], [17], [31], [21], and others. We present an alternative formu-
lation based on random keys. See [3] or [10] for discussions of scheduling problems and

terminology.

The approach in Section 1.1 can be extended to multiple machine problems with
regular measures. Consider the m identical machine n job problem to minimize total
tardiness. For each job generate an integer randomly in {1,...,m} and add a uniform
(0,1) deviate. In the mapping, the integer part of any random key is interpreted as
the machine assignment and the fractional parts sorted to sequence on each machine. A
single sort gives the jobs assigned to machine 1 in processing order, followed by the jobs on
machine 2, etc. Assuming that jobs are processed at their earliest possible time, a schedule
can be constructed and evaluated for total tardiness. Section 3.1 contains some successful

computational tests for these problems.

We have successfully generalized this approach to the job shop with precedence, release
times, sequence dependent setups and nonregular measures such as a sum of weighted

earliness and tardiness ([5]).

1.3 Vehicle Routing

Adapting the technique from multiple machine scheduling, we can handle the unca-
pacitated vehicle routing problem ([14]). Here we create a gene for each load. Randomly

generate an integer for the vehicle and add a uniform (0,1) deviate to sequence stops. By

6

sorting the random keys we get the loads assigned to vehicle 1, in the order they are to be

delivered, followed by the loads on vehicle 2, etc.

1.4 Generalized Traveling Salesman Problem

The generalized traveling salesman problem combines location and sequencing. Cities
to be served are partitioned. We must choose one city from each partitioning set to visit
and then sequence stops at the cities chosen. There is clear interdependence between the
location and sequencing portions of the decision. For applications and more details see
[26] (note that this definition of the generalized TSP is common in the operations research
literature, but differs substantially from the use of that term in the computer science

literature).

To represent this problem with random keys, designate one gene for each partitioning
set. For set 7, randomly choose an integer in {1,2,...,n;} where n; is the number of cities
in that set. Add a uniform (0,1) deviate. To construct a solution from a chromosome
assume that, in each set, you visit the city indexed by the integer part of the allele. Then
sequence the cities in ascending order of the fractional parts of the alleles. The dynamic

of the genetic algorithm will simultaneously choose cities in each set and route them.

1.5 Resource Allocation Problems

Consider the linear binary program

max cz
subject to: Az <b

z € {0,1}

with the restriction that all elements of A and b are nonnegative. This is commonly referred
to as a resource allocation problem since b can be viewed as the available resources, A as
the consumption of resources by each option, z;, and c as the profit vector. If A has only
one row we have the 0 — 1 knapsack problem. If A is a 0 — 1 matrix we have the set
partitioning problem. The related set covering problem is addressed by genetic algorithms

n [22]. Various genetic approaches to constrained problems are analyzed in [27] and [24].

7

Random keys can be used to solve this common class of integer programs. Chromo-
somes have one gene for each variable, z;. Generate a uniform (0,1) for each variable.
To map to the literal space, fix variables to 1 in ascending order of the keys, so long as
all constraints remain feasible. As soon as any constraint becomes infeasible, set to 0 the
last variable considered and all remaining variables. Objective evaluation is accomplished
by multiplying this z vector by ¢. Through the dynamic of the genetic algorithm, vari-
ables that should be 1 will evolve low key values. Section 3.2 contains some successful

computational tests on these problems.

1.6 Quadratic Assignment Problem

The quadratic assignment problem seeks to assign m agents to m locations, one to
each location, to minimize a quadratic objective function. It has many applications such as
facility layout ([20]) and has been attacked successfully by other heuristic search techniques
such as simulated annealing and tabu search ([29]). The quadratic assignment problem

can be stated mathematically:

min cz + z'Qz
m
subject to : Z ri; =1, forall:
1=1
m

Zr,-j =1, forally

1=1

Iij € {0, 1}.

Commonly, c is identically zero and an element of the matrix @, gijxi, equals fixdji+ fridi;
where fii is the material or communication flow from agent ¢ to agent k and dj; is the

distance from location j to location I.

Random keys can be used to design a genetic algorithm for this problem as well.
Chromosomes have one gene per agent. Generate a uniform (0, 1) deviate for each agent.
To map to the literal space, sort and assign agents to locations according to the sort. For
example, if m = 4 and sorting the indices 1,2,3,4 by their random keys results in the

sequence 3,1,4,2, then assign agent 1 to location 3, agent 2 to location 1, etc. Evaluate

8

the assignment in the quadratic objective function. As above, all chromosomes resulting
from crossovers represent feasible assignments. Section 3.3 gives computational experience

for three quadratic assignment problems.

1.7 Discussion
The general structure of the random keys concept is:
1. Form each chromosome by generating random numbers for each decision.

2. From a given chromosome, derive a solution by sorting the random keys and taking

the priorities from the sort.
3. All crossovers are done on the random keys, not the derived solutions.

Note that in step 1 deciding what entails a “decision” is a modeling issue of some impor-

tance.

The important feature of random keys is that all offspring formed by crossover are
feasible solutions. This is accomplished by moving much of the feasibility issue into the
objective evaluation procedure. If any random key vector can be interpreted as a feasible
solution, then any crossover is feasible. Through the dynamic of the genetic algorithm,
the system learns the relationship between random key vectors and solutions with good

objective values.

2. Genetic Algorithm

The population of random key vectors must be operated upon by a genetic algorithm
to breed good solutions. There are many variations of genetic algorithms formed by altering
the reproduction, crossover and mutation operators. The reproduction and crossover op-
erators determine which parents will have offspring, and how genetic material is exchanged
between the parents to create those offspring. Mutation allows for random alteration of
genetic material. Reproduction and crossover operators tend to increase the quality of the
populations and force convergence. Mutation opposes convergence and replaces genetic

material lost during reproduction and crossover. For details see [12].

The random keys representation scheme is not limited to implementation within the

9

genetic algorithm below. Many variations are yet to be investigated. However, the fol-

lowing algorithm has proved very robust. It is used in each computational test in Section

3.

Reproduction is accomplished by copying the best individuals from one generation
to the next, called an elitist strategy ([12]). The advantage of an elitist strategy over
traditional probabilistic reproduction is that the best solution is monotonically improving
from one generation to the next. The potential downside is population convergence. This

is overcome by high mutation rates described below.

Parametrized uniform crossovers ([30]) are employed in place of the traditional one-
point or two-point crossover. After two parents are chosen randomly from the full, old
population (including chromosomes copied to the next generation in the elitist pass), at
each gene toss a biased coin to select which parent will contribute the allele. Returning
to the single machine sequencing problem example above, assume that a coin toss of head
selects the allele from the first parent, a tail chooses the allele from the second parent, and
that the probability of tossing a head is 0.7 (this value was selected empirically). Below is

one potential crossover outcome:

coin toss H H T H T
parent 1 46 .91 33 .75 .51
parent 2 84 32 .64 .04 .48
offspring 46 .91 64 .75 .48

Rather than the traditional gene by gene mutation with very small probability, we
employ the concept of immigration. That is, at each generation one or more new members
of the population are randomly generated from the same distribution as the original pop-
ulation. This process prevents premature convergence of the population, like a mutation

operator, and leads to a simple statement of convergence.

Figure 3 depicts the entire generational transition. A pseudocode statement of the

algorithm in Exhibit I.

10

EXHIBIT I: Genetic Algorithm Pseudo Code

for each member of the population BEGIN [setup]
generate random keys
evaluate objective values
END [setup]
while (not stop) BEGIN [transition]
sort population by objective value
copy top 20% of population [reproduction]
for remainder of population BEGIN [crossover]
randomly choose two parents from old population
for each gene choose allele from parent 1 with prob. 0.7
(from parent 2 with prob. 0.3)
END [crossover]
randomly generate 1) of population [mutation]
evaluate objective values for new members
stop if hit value target or generation count limit
END [transition]

FIGURE 3: Generational Transition

current population next generation
copy best
g 20%
crossover 79%

randomly generate 1% —

For completeness we note that the algorithm converges in probability. The immigra-
tion operator samples a finite space. If a particular random keys implementation generates
an optimal solution with a finitely positive probability, then the algorithm converges due

simply to this sampling. However, the question of interest is the rate of convergence. If

11

genetic algorithms have true value for optimization, it must come from their ability to
greatly speed up the rate of convergence over random sampling of the feasible region. A
probabilistic derivation of the rate of convergence is a topic of current research. To date,
justification for the algorithm lies in its empirically observed robustness. That is, this same
framework has worked well for several problems tested. Below we present the output of

some of that computational work.

3. Computational Results

To demonstrate the effectiveness and robustness of the random keys genetic algo-
rithni we present computational results for three classes of problems: the multiple machine
scheduling problem to minimize total tardiness, the resource allocation problem and the
quadratic assignment problem. All computation below is reported in seconds on an IBM
RS/6000-320H. Population sizes were fixed by running small pilot studies and held con-
stant for all tests on a given problem set. The results presented attempt to find a solution
within a few percent of the optimal or best known solutions. In real problem solving, the
data are rarely known this accurately and such results are satisfactory. The algorithm
takes substantially longer than the times presented to fine-tune the solution beyond this

level.

3.1 Multiple Machine, Tardiness Scheduling Problems

Table 1 presents the results from a total of 20 runs of the genetic algorithm on two

different problems.

Problem fshx4 is a four identical machine, 200 job, total tardiness problem formed by
merging the data for four single machine, 50 job problems reported in [11]. The optimal
solution for this problem is unknown. A modified due date heuristic as in [4] found a value
of 7924. The best known value for this problem is 7753. The computational test in Table
1. line £shx4, reports the results of 10 runs of the genetic algorithm, each with a different
random seed. terminated when a solution with value within 2.5% of the best known value

(7753) was discovered. A population size of 200 was used in all runs.

Problem fshx8 is an eight identical machine, 400 job, total tardiness problem formed

12

TABLE 1: Computational results for scheduling
Computation required to get within 2.5% of the best known solution
over 10 random seeds

#jobs #m/c generations seconds
min median max min median max
fshx4 200 4 120 129 136 270.1 290.6 305.8
fshx8 400 8 250 302 397 1213.6 1509.0 1923.5

by duplicating each job and each machine in fshx4. An upper bound on the optimal value
of this problem is 15506, double the best value for fshx4, since a feasible solution can be
found by replicating the solution from fshx4 on the second set of machines. The modified-
due date heuristic found a solution with value 15825. Table 1, line £shx8, reports the
results for 10 runs with different random seeds, terminated when the algorithm found a
solution with value within 2.5% of the best known value (15506). A population size of 400

was used in all runs.

Since data are rarely known within 2.5%, the genetic algorithm essentially solves these
difficult scheduling problems within a few minutes on a desktop machine. Two points are
particularly notable. First, there is little variance across the random seeds. The algorithm
appears very robust to this parameter. Second, the algorithm appears very scalable. That
is, computation increases in a reasonable fashion as problem size is increased. However,

no conclusions should be drawn from two problems.

3.2 Resource Allocation Problems

Table 2 presents the results from a total of 40 runs of the random keys genetic algo-

rithm on four different resource allocation problems.

Problems ral and ra2 have 100 variables and five constraints and were randomly
generated as in the generalized assignment problems type “D” in [23]. The multiple-choice
constraints were not imposed. Hence, the problems could actually be solved as five separate
20 variable knapsack problems. This characteristic was not exploited. Lines ral and ra2
each report the outcomes of 10 runs with different random seeds. Each run was terminated
when a solution with value within 2.5% of the optimal value was discovered. A population

size of 400 was used on these runs. Each line also reports the time required for IBM’s OSL

13

TABLE 2: Computational results for resource allocation
Computation required to get within 2.5% of the optimal solution
over 10 random seeds

#var generations seconds seconds

min median max min median max OSL

ral 100 81 95 260 93.2 109.2 298.0 26.5
ra2 100 67 84 92 772 96.5 105.8 51.4
raid 200 156 177 201 471.6 532.9 606.3 6485.2

ra2d 200 139 163 201 421.0 497.3 606.3 > 50000

t Shut down after nearly fourteen hours without finishing the branch-and-bound. It
had not found the optimal solution.

package to solve the problems to optimality on the same machine.

Problems raid and ra2d have 200 variables and five constraints and were formed
by duplicating every variable and doubling each element of b in problems ral and ra2,
respectively. This process has two effects: the problems are twice as large, and they become
massively dual degenerate. That is, they have many optimal solutions. This characteristic
1s known to be very difficult for branch-and-bound codes, such as OSL, and is common in
real data sets. The problems were designed to show the robustness of the genetic algorithm
relative to branch-and-bound. Each run of the genetic algorithm was terminated when a
solution with value within 2.5% of the optimal value was discovered. A population size of
600 was used on these runs. Each line also reports the time required for OSL to solve the

problems to optimality.

Again, the genetic algorithm essentially solved these integer programs within several
minutes on a desktop machine. Of particular note are the computation times relative
to OSL on the larger. dual degenerate problems. The scalability and robustness across

different data sets are apparent here.

3.3 Quadratic Assignment Problem

Not all problems that can be represented by random keys are solved by the genetic
algorithm as easily as those discussed in Sections 3.1 and 3.2. The quadratic assignment

problem was more difficult for the algorithm and points out some of its limitations.

Table 3 presents the results for a total of 30 runs on three different quadratic assign-

14

TABLE 3: Computational results for QAP
Computation required to get within 5% of the best known solution
over 10 random seeds

#agents generations seconds
min median max min median max
ni5 15 25 232 5653 08 7.0 175.0
n20 20 34 183 1409 23 119 911
n30 30 520 7462 t 97.2 14093 t

t Two problems of the ten did not find a solution with value within 5% in the allotted
30000 generations. However, they did find a solution with value within 5.7% and 5.1%
in 18350 and 2664 generations (3414.7 seconds and 493.9 seconds).

ment problems; the three Nugent problems discussed in detail in [29]. Each line reports
the outcome of 10 runs with different random seeds. Each run was terminated when a
solution with value within 5% of the best known value was discovered. A population size
of four times the number of agents was used on each run. A relaxed target of 5% error
was used here since the algorithm, for many seeds, did not find a solution within 2.5% in

the allotted 30000 generations.

The tests on the quadratic assignment problem are not as impressive as those in
Sections 3.1 and 3.2. The error is larger and the computation times less predictable for
problems with smaller chromosomal representations. Neither was the test a complete
failure. Thirty agent quadratic assignment problems are not easy problems. In most cases,
the algorithm found reasonable solutions in reasonable times. These results are not as
good as those reported in [29] for simulated annealing or tabu search. On the other hand,
this code took no advantage of the structure of the quadratic assignment problem and,

hence. is more robust to problem structure.

4. Summary and Conclusions

We present a robust genetic algorithm that can effectively address a wide range of
sequencing and optimization problems such as multiple machine scheduling problems, re-
source allocation problems and quadratic assignment problems. There are undoubtedly

many others that it can address.

15

Sections 3.1 and 3.2 show excellent computational results for scheduling and resource
allocation problems. However, the algorithm does not perform equally well on all problems
that can be formulated within its framework. Section 3.3 shows only moderate success for

quadratic assignment problems.

We make no claim that this algorithm is the most efficient for any of the problems
presented. The contribution here is that one code, with minor variations in the objec-
tive evaluation routine, can effectively address so many important problems. We do not
compare this approach with other heuristics because a fair comparison would require that
scheduling codes also solve quadratic assignment problems and integer programming prob-
lems; and that integer programming codes also solve scheduling and quadratic assignment
problems. There are no such codes to the best of our knowledge. While OSL can be
used on scheduling problems or quadratic assignment problems, note that the traditional
formulation of problem fshx8 would have on the order of 80,000 integer variables and

disjunctive constraints that lead to very loose linear relaxation bounds.

To editorialize, one of the major barriers to use of operations research in industry
is the massive library of special purpose codes necessary to address the range of prob-
lems faced by the firm. Implementation could be expanded greatly by the existence of
generally applicable approaches that deliver good solutions in predictable and reasonable
computation times. While much work is needed to establish that the random keys genetic
algorithm is such an approach (in particular a probabilistic analysis of rate of convergence)

these early computational tests are encouraging.

16

Acknowledgments

I would like to thank the participants of the Symposium on Operations Research and
Complex Adaptive Systems at the Santa Fe Institute, May 24-26, 1992, for many insights
that contributed greatly to this paper. I thank Atidel Hadj-Alouane for help with OSL
and Bryan Norman for assistance with the literature search. Darrell Whitley provided
many helpful comments and references. I would also like to thank Professor Jadranka
Skorin-Kapov for the quadratic assignment problem data, Professor Nejat Karabakal for

the resource allocation data and Professor Marshall Fisher for the scheduling data.

This research was supported in part by National Science Foundation grants DDM-

9018515 and DDM-9202849 to the University of Michigan.

17

REFERENCES

1

10.

11.

13

. T. BACK, F. HOFFMEISTER, AND H. SCHWEFEL, 1991. A Survey of Evolution
Strategies, Proc. of the Fourth International Conference on Genetic Algorithms, 2-9.

. S. BAGCHI, S. UCKUN, Y. MIYABE, AND K. KAWAMURA, 1991. Exploring
Problem-Specific Recombination Operators for Job Shop Scheduling, Proc. of the
Fourth International Conference on Genetic Algorithms, 10-17.

K. BAKER, 1974. Introduction to Sequencing and Scheduling, Wiley.

K. BAKER, J. KANET, 1983. Job Shop Scheduling with Modified Due Dates, Journal
of Operations Management 4, 11-22.

. J. BEAN, 1993. Methods for Rescheduling in the Matchup Paradigm, Proc. of the
1998 NSF Design and Manufacturing Systems Conference 1, Charlotte, NC, 777-782.

. J. BIEGAL AND J. DAVERN, 1990. Genetic Algorithms and Job Shop Scheduling,
Computers and Industrial Engineering 19, 81-91.

G.A. CLEVELAND AND S. F. SMITH, 1989. Using Genetic Algorithms to Schedule
Flow Shop Releases. Proc. of the Third International Conference on Genetic Algo-
rithms, 160-169.

U. DORNDORF AND E. PESCH, 1992. Evolution Based Learning in a Job Shop
Environment, Working Paper. INFORM - Institut fiir Operations Research und Man-
agement GmbH, Pascalstrale 23, D-5100 Aachen, F.R.G.

E. FAULKENAUER AND S. BOUFFOIX, 1991. A Genetic Algorithm for Job Shop,
Proc. of the 1991 IEEE International Conference on Robotics and Automation, 824-
829.

S. FRENCH, 1982. Sequencing and Scheduling, Halsted Press.

M. FISHER, 1976. A Dual Algorithm for the One-Machine Scheduling Problem,

Mathematical Programming 11. 229-251.

. D. E. GOLDBERG, 1989. Genetic Algorithms in Search Optimization and Machine
Learning, Addison Wesley.

. D. E. GOLDBERG AND R. LINGLE, JR., 1985. Alleles, Loci, and the Traveling

18

14.

15.

16.

17.

18.

19.

Salesman Problem, Proc. of the First International Conference on Genetic Algo-

rithms.

B. L. GOLDEN AND A. A. ASSAD, 1988. Vehicle Routing: Methods and Studies,
North-Holland.

J. J. GREFENSTETTE, R. GOPAL, B. ROSMAITA, AND D. VAN GUCHT, 1985.
Genetic Algorithms for the Traveling Salesman Problem, Proc. of the First Interna-

tional Conference on Genetic Algorithms.

J. J. GREFENSTETTE, 1987. Incorporating Problem Specific Knowledge into Ge-
netic Algorithms, Genetic Algorithms and Simulated Annealing, (ed. L. Davis) Mor-

gan Kaufman Publishers.

J. HERRMANN AND C-Y LEE, 1992. Solving a Class Scheduling Problem with a
Genetic Algorithm, Technical Report, Department of Industrial and Systems Engi-
neering, University of Florida, Gainesville, FL, 32611.

J. H. HOLLAND, 1975. Adaptation in Natural and Artificial Systems, University of
Michigan Press.

J. J. KANET AND V. SRIDHARAN, 1991. PROGENITOR: A genetic algorithm for
production scheduling, Wirtschafts Informatik 38, 332-336.

. A. KUSIAK AND S. S. HERAGU, 1987. The Facility Layout Problem, European

Journal of Operational Research 29, 229-251.

. C.LEE AND J. HERRMANN. 1993. Decision Support Systems for Dynamic Job Shop

Scheduling, Proc. of the 1998 NSF Design and Manufacturing Systems Conference 2,
Charlotte, NC. 1119-1123.

2. G. E. LIEPINS AND W. D. POTTER, 1990. A Genetic Algorithm Approach to

Multiple-Fault Diagnosis. Handbook of Genetic Algorithms, 237-250.

23. S. MARTELLO AND P. TOTH. 1990. Knapsack Problems: Algorithms and Computer

Implementations, John Wiley and Sons.

24. Z. MICHALEWICZ AND C. JANIKOW, 1991. Handling Constraints in Genetic

Algorithms, Proc. of the Fourth International Conference on Genetic Algorithms,

19

25.

26.

27.

28.

29.

30.

31.

33.

34.

151-157.

R. NAKANO, 1991. Conventional Genetic Algorithm for Job Shop Problems, Proc.
of the Fourth International Conference on Genetic Algorithms, 474-479.

C. NOON AND J. BEAN, 1991. A Lagrangian Based Approach to the Asymmetric
Generalized Traveling Salesman Problem, Operations Research $9, pp. 623-632.

J. RICHARDSON, M. PALMER, G. LIEPENS AND M. HILLIARD, 1989. Some
Guidelines for Genetic Algorithms with Penalty Functions, Proc. of the Third Inter-
national Conference on Genetic Algorithms, 191-197.

C. SHAEFER AND S. SMITH, 1990. The ARGOT Strategy II: Combinatorial Opti-
mization, Thinking Machinesnical Report RLI0-1.

J. SKORIN-KAPOV, 1990. Tabu Search Applied to the Quadratic Assignment Prob-
lem, ORSA Journal on Computing 2, 33-45.

W. M. SPEARS AND K. A. DE JONG, 1991. On the Virtues of Parameterized Uni-
form Crossover, Proc. of the Fourth International Conference on Genetic Algorithms,
230-236.

R. H. STORER., S. D. WU. AND R. VACCARI, 1992. New Search Spaces for Se-

quencing Problems with Application to Job Shop Scheduling, Management Science
38, 1495-1509.

. G. SYSWERDA, 1991. Schedule Optimization Using Genetic Algorithms, in Hand-

book of Genetic Algorithms. L. Davis (ed), Van Nostrand, 332-349.
D. WHITLEY. T. STARKWEATHER AND D. FUQUAY, 1989. Scheduling Problems

and Traveling Salesman: The Genetic Edge Recombination Operator, Proc. of the

Third International Conference on Genetic Algorithms, 133-140.

D. WHITLEY, T. STARKWEATHER AND D. SHANER, 1991. The Traveling Sales-
man and Sequence Scheduling: Quality Solutions Using Genetic Edge Recombination,

Handbook of Genetic Algorithms, L. Davis (ed), Van Nostrand, 350-372.

20

