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ABSTRACT

We derive a probabilistic model of the multiple-choice genetic algorithm. Specifically,
we give the distribution of the number of correct alleles in the best element of the popula-
tion, and the expected number of correct alleles over the entire population following each
generation. We then compare the theoretical performance against empirical runs. The
results challenge the traditional explanation for efficacy of genetic algorithms.

A great deal of research over the past twenty years has shown the efficacy of genetic al-
gorithms in studying or solving complex problems. Mathematical programming constitutes
one important subclass of the use of genetic algorithms (see Goldberg [1989] or Michalewicz

'[1994]). There has-been less work explaining how and why the approach works. Papers
along these lines included Markov chain models such as Goldberg and Secrest [1987], Horn
'[1993] and Suzuki [1993]. Probabilistic models include Ankenbrandt [1991] and Rabinovich
and Widgerson [1991). Much of this literature concentrates on characteristics 6f the popu-

lation rather than of the individual chromosome. A classic example is the Schema Lemma

(Holland [1975]).

The objective of this paper is to present a probabilistic, transient, chromosome-level
analysis of specific genetic algorithm implementations to gain a better understanding of

their mechanisms.

Consider the class of discrete optimization problems that can be encoded for a genetic
algorithm such that each gene may take any of a finite set of alleles. An example is

the multiple-choice integer program (Hadj-Alouane and Bean [1992]). Problems of this
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class can be solved by a particular genetic algorithm that we define as the multiple-choice
genetic algorithm (MCGA). In this paper we will predict theoretically the behavior of
this algorithm by deriving the distribution of the best element of the population and the
population fitness average following each generation. We make a number of assumptions
that allow this analysis. Empirical tests will then evalﬁate the reasonability of these

assumptions and value of the understanding drawn from the model.

MCGAs have been used successfully in Hadj-Alouane and Bean [1992], Bean and Hadj-
Alouane [1992] and Hadj-Alouane, Bean and Murty [1993]. They begin with the concepts
of general genetic algorithms as described in Holland [1975] and Goldberg [1989]. The

MCGAs use specific operators selected to facilitate the probabilistic analysis that follows.

Reproduction is not carried out by the traditional roulette wheel. The roulette wheel
introduces complex dependencies between the probability of being selected as a parent and
the fitness values of all members of the population. Rather, we choose parents randomly
over all elements of the prior generation. The computational versions of the algorithm
in previous papers employ an elitist strategy. This operator will not be included in this
paper.

Traditional one-point crossover introduces dependencies among genes within a chro-
mosome based on index. This dependence is often arbitrary and complicates analysis. We
employ a uniform crossover (Syswerda [1989]). After two parents are chosen, a coin is
flipped for each gene. Heads selects the allele from the first parent and tails selects from
the second. Analysis of the mechanics of this operator are core to this paper. We present

a new model of the operator relative to existing work such as Syswerda [1989], and Spears

and De Jong [1991a, 1991b).

Uniform crossover of two parents can create two offspring, the second being con-
structed from the alleles not selected above. In post-tournament selection (PTS), we
construct and evaluate both offspring and retain only the superior offspring in the next
generation: Results show that this approach strongly promotes a “survival-of-the-fittest”

upward pressure.

Rather than the traditional mutation operation, we use immigration. In each gen-
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eration an entirely new member of the population is generated. During subsequent gen-
erations, its genetic material is spread throughout the population. Hence, immigration

prevents premature convergence and loss of genetic material as traditional mutation does.

Immigration also leads to a trivial proof of convergence of the algorithm to an optimal
solution based on random sampling of a finite space. However, empirical tests have shown
that the algorithm converges much faster than would be predicted by sampling. Crossover

is making a major contribution.

1. Problem Definition

We have a population of m chromosomes. Each chromosome has n genes. In gener-
ation k, the allele of chromosome i, gene j, is a random variable xfj € X;, where X is
the finite set of alleles that gene j may take. Assume that the cardinality of X; is a, in-
dependent of j. If cardinalities differ, let a = max; | X;| and pad other genes with dummy

alleles.

Assumption 1: For the purpose of the following analysis, we assume a unique optimal

solution so that each gene has a unique correct allele.

Assumption 2: In order to develop results with some generality, we assume a surrogate

fitness measure that counts the number of correct alleles in a chromosome.

These assumptions are not reasonable in most cases. Most problems have multiple
optima. The surrogate fitness measure ignores nonlinear effects. However, the assumptions
allow an analysis of the algorithm that hopefully will lead to insights that generalize beyond

the assumptions.

By Assumption 1, there is a single correct allele for each gene. Let bfj be the indicator
random variable of the event that mfj has the correct allele. Let SF = Z?=1 bfj be the
number of correct alleles in chromosome i of generation k. By Assumption 2, Sf is the
fitness function we will analyze. The population average in generation k is defined as
Gk = % S SF. The best element of the population is A* = max; S{C. Given a gen-

eration, {SF !}, we construct the next generation by m — 1 independent applications

of the uniform operator with PTS. The last position is filled with a randomly generated
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immigrant.

The multiple-choice genetic algorithm to be studied can be formally stated:

MCGA
(Initialize) Generate x?j uniformly from {1,2,...,a} fori =1,...,m; j=1,...,n. Cal-
culate all SY and A° = max; S?. k « 1.

(Iterate) While A*~! < n do
(Crossover) Generate m — 1 offspring via the uniform operator with PTS.
(Immigration) Randomly éenerate one chromosome as in the initialization step.
(Evaluate) Evaluate each S¥. Let A* = max; SF.
(Increment) k — k + 1.

(end iteration)

The goal of this paper is to derive the distribution of A*¥ and the population average,
Gk,

2. Derivation of the Distribution

In Section 2.1 we will analyze the initialization step of the algorithm. Section 2.2
models the inheritance of correct alleles from parents to child. Independence of offspring is
discussed in Section 2.3 leading to a distribution of the best element of a generation given

the distribution of the previous generation.

2.1 Initialization

For the initial generation, x?j is taken uniformly from the set of potential alleles,
represented by {1,2,...,a}. Recalling that exactly one of these alleles is correct, the
probability of randomly choosing the correct allele is p = 1/a. Hence, b?j is a Bernoulli
random variable with parameter p. By construction, all m?j and b?j are independent random

variables.

Then S? has a binomial distribution with parameters (n,p). Further, all S? are

independent from each other, though clearly not independent of the corresponding a:?j and
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b?j. The initial population average is E[S?] = np = n/a.

With m independent members of the population, we have
P(A° < J) = P(max S} < J) = P(S] < J,Yi) = [F(J)]™ = F™(J),

where F(J) is the cumulative distribution function of a binomial (n,p) random variable.

The expectation of A° can be found easily as E[A?] = 3>7_¢[1 — F™(J)].
2.2 Inheritance

Given two parents selected at random, indexed py,pa, with fitness S5~1 = J;, S5~1 =
Jo, we will derive the distribution of the the fitness of their offspring, S’f,i <m (i=mis
the immigrant). We begin without PTS and add it below. To facilitate this analysis we

make one substantive assumption.

Assumption 3: Given that the parents have J; and J; correct alleles, respectively, the lo-
cation of the correct alleles are distributed uniformly within the parent’s chromosomes

and are independent of each other.

Assumption 3 will be true in early generations, but becomes less accurate as the
population converges and building blocks appear. The impact of this assumption will be

judged empirically.

gene 1 2 3 4 5
0 0 1 0 1 parent1, J, =2

1 0 0 1 1 parent 2, J2 =3

Figure 1: Five gene example of correct allele indicators

From Assumption 3, the bfj for the two parents can be viewed as zeros and ones
randomly placed in a 2 x n grid. See Figure 1 for an example with chromosome length

five. For each gene there are three possible cases:
1. Both parents have the correct allele (as in Figure 1, gene 5)

2. Exactly one parent has the correct allele (as in Figure 1, gene 1)
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3. Neither parent has a correct allele (as in Figure 1, gene 2)

Define 11,72 and 73 as the number of genes falling into each of these three cases. Then
n="mn+"n2+n3.

For any gene in case 1, the offspring will certainly have the correct allele. For a gene in
case 2, there is a 1/2 chance of having the correct allele, since we assume an unbiased éoin
is tossed during uniform crossover. For a gene in case 3, there is no chance of generating

a correct allele. Then, for the offspring of these parents,
72
S,Lk =m+ Z wy,
i=1
where the w; are 4.i.d. Bernoulli (1/2) random variables.

Lemma 1: Under Assumption 3, n; has a hypergeometric distribution with parameters
n, Ji1, Ja, that is, for max[0, J; + Jo — n] <y < min[Jq, Ja),
Ji\ (n-J
() (55)
= .
()

Proof: Without loss of generality, fix the correct allele indicators for the second parent in

P(m = ylS,’,fl“l = les,l;z_l =Jy) =

the grid. Then we can begin crossover by randomly placing the indicators of parent
1 so that there are exactly J; ones. This is probabilistically equivalent to random
selection without replacement. Consider an urn with n balls of which J; are red. Se-
lect J; balls from the urn. The number of red you select is 71, the number of genes
in case 1. Hence n; has a hypergeometric distribution with parameters n, Ji, Jo.

The mathematical statement follows from the definition of hypergeometric. The
bounds on 7; come from the fact that if J; + J; > n, then there must be some
genes in case 1 by the pigeon hole principle, and the fact the number of correct alleles

in each parent is an upper bound on 7;.B
We can now condition on 7; to find the distribution of SF given its parentage.

Lemma 2: Without PTS, for max[0, J; + J2 — n] < Jo < min[n, J; + Jo,
P(SF=Jo|SET = 01,857 = )
min[J ,J - J1 n—dJi
_ “i d (Jl +Jp -2y> (1)J1+J2 2 [ () (22 0
Jo—y /A2 ) )

y=max|[0,J;1+J2—n] J2



where Sf is the offspring of S¥~! and SF2.

Proof: We know that there are a total of J; + J; correct alleles between the two parents.
If 7, genes have two correct alleles, there are J; + J; — 2n; remaining. These must all

be at genes in case 2, one per gene. Hence,

Ji+J2—2m
ny = J1 + Jo — 2n1, and Sf=771+ Z (3
j=1

Given parentage with J; and J; correct alleles, the offspring will have at least
max|0, J; + Jo — n] correct alleles. If J; 4+ Jo > n, there must be some genes in case -
1. At most, the number of correct alleles is min[n, J; + Jo]. In the derivation below,

assume Jp is in this range. From Lemma 1, max[0, J; + J» — n] < y < min[Jj, Jo].
Conditioning on 7y,
P(SF = Jo|SETt = 01, 8571 = )

=) P(St=Jolm =, 857" = 11, 8,71 = B)P(m =y|S;]" = J1, 57" = 1)

s

where (;) =0ifb<0orb>a. m
Remark: From this it is simple to derive that E[SF|Sk=1 = J;, Sk-1 = J,] = 4t

We build upon this result to add PTS. If the parents have a total of J; + J; correct
alleles and the offspring being analyzed has Jy, then the other offspring has J; + J; — Jo.
PTS selects the larger of these values to add to the next generation. That is, with PTS

Ji+J2-2m Ji+J2-2m

St=mamax( Y w, Y (1-w))

j=1

The maximum value Jy can take given that the parents have J; and Jy correct alleles

remains unchanged when PTS is added. It is based on structure independent of crossover.
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The smallest value changes upward. Without PTS, it is possible that we get unlucky such
that most correct alleles are not selected by the Bernoulli coin-flips. With PTS, these
lost correct alleles are simply moved to the alternative offspring and selected during the

tournament.

Lemma 3: Given parents with J; and Jo correct alleles and a uniform crossover ‘with

PTS, the minimum number of correct alleles in any offspring is [11)5_&1

Proof: 7, = J; + Jo — 2n;. At least half of these alleles are in the better of the two

offspring. Hence, the number of correct alleles in the better offspring is at least

o+ [AERI] = (L),

We are now ready to state the offspring distribution with PTS as a Corollary to
Lemma 2. The only subtlety is that if J; + J; is even, there is only one outcome with

Jo = i%JZ In all other instances, either offspring may total Jy correct alleles.

Corollary 4: With PTS, for [1”2'—‘]1] < Jo < min(n, J; + Jo),

Case 1: If Jy = L;JZ

P(Slk = J0|S£1—1 = J1,S§2_1 = Jz)

_ min[il,-fz] (Jl +Jy— 2y> <l> J1+J27—2y [M]
y=max|[0,J1+J2—n] Jo - Y 2 (}LZ)

Case 2: If Jy > 1%12

P(SF = Jo|Sh7t = J1, S5t =)o) =

? P2
min[f:,h} KJI +Jy - Zy) . ( Ji+Jy— 2 )
y=max[0,J1+J2-n] Jo—y Ji+J—Jo—y/ @)

) <1)J1+J2—2y [(Jyl) (szz—_J;) |
2 (%) |
where SF is the offspring of SF~! and S¥! and (}) =0ifb< 0 or b > a.

Proof: Equation (2) follows from adding the combinatorial coefficient in (1) corresponding

to the appropriate number of correct alleles being assigned to one offspring, and the
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Figure 2: E[SF|Sh~1 = J;, 5571 = J,] with and without PTS

coefficient corresponding to the appropriate number of correct alleles being assigned

to the other offspring. ®

The difference between E[SF|SF~1 = Jy,S5-! = J,] without PTS in (1), and with
PTS in (2) is crucial to understanding the MCGA. In (1) the offspring generated has the
same expected fitness as the average of the pa;*ents. With PTS, the offspring is superior
to the parents. Figure 2 shows a plot of this factor. For an example with n = 20, the
z-axis shows J; = Jo. The lower plot shows E[S’°|S'c 1 = Jl,.S'k‘1 =Jo] = J; = J for
the case without PTS. The upper plot shows E[SF|Sk=1 = J;, 51 = J,] with PTS. It is,
approximately, one correct allele higher than without PTS.

The analysis above holds for S¥,i < m. The distribution of S¥,, the immigrant, is

given by F(:).
2.3 Independence

To move from understanding a single offspring to understanding the next generation
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box 0 box 1 box 2

O
o o
you are here unknown , ‘)/

Figure 3: Independence of individuals

we must understand the stochastic interdependencies between members of a population.
In generation 0, members of the population are independent by construction making such
analysis simple (see Section 2.1). Viewed from time 0, members of generation k are de-
pendent for £ > 2. However, their correlation is greatly reduced given the distribution of
the fitness values in population k — 1 and sufficiently large m. We describe a simplified

experiment to communicate these issues.

The following simple experiment has the same dependence structure as the MCGA
and helps us understand the intricate web of interdependence caused by this GA. Consider
an infinite sequence of boxes. In box 0 place one white ball and one black ball. Randomly
select a ball from box 0 and place a ball of the same color in box 1. Repeat with replace-
ment. Now box 1 has two balls. Randomly select a ball from box 1 and place a ball of the
same color in box 2, repeat with replacement. Repeat indefinitely. The result is an infinite
sequence of boxes, each containing two balls; Since the experiment is perfectly symmetric

between white and black balls, if we randomly take a ball from box k, P(black) = 1/2.

By independence of the trials used to determine the balls in box 1, they are indepen-
dent. Knowing that the first ball selected is black has no impact on the likelihood of the
other being black. However, viewed from the beginning of the experiment, the balls in box
2 are dependent. Note that from this perspective we do not know the contents of box 1.
Hence, if the first ball selected for box 2 is known to be black, it implies that box 1 is not
all white (without information, this event had a 1/4 probability). Now the likelihood of
the second ball in box 2 being black increases from 1/2 to 3/4. See Figure 3 for a graphical

description.
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Suppose that you are given that box 1 is half black and half white. Now the informa-
tion that the first ball in box 2 is black has no impact on the other ball. The realization
of box 1 makes the two balls in box 2 conditionally independent. That is, independence
depends not on knowing the distribution of possible items in box 1, but the realization of

items in box 1.

The dependence of colors of balls in box 2 is extreme in this example due to the small
sample sizes. Consider the same experiment with 20 balls per box. Box 0 is known to
have 10 white and 10 black balls. Box 1 is filled by 20 independent replications as above,
and so on. Now assume a ball has been observed in box 2 to be black. How does that
change our distribution of white versus black for the next trial? Box 1 has 20 balls. One
is known now to be black, and the others are equally likely to be black or white. Hence,
the next ball chosen has probability 1/2 4+ 0.5/20 of being black. If the experiment has m
balls per box, this probability is 1/2+1/(2m). As m increases, the amount of information
gleaned from one replication of the selection fades. The colors of balls in box two become

increasingly uncorrelated.
From this motivation, we make the following approximation.
Approximation 1: For sufficiently large m, approximate

P(Sf < Jii=1,2,...m)~ [[ P(SF < Jy).

1=1

We can now approximate the important values for each generation.

There is a subtlety here since random reproduction has a 1/m chance of selecting
the immigrant for a parent. Let S}’,fl‘ ! and SZ’;; ! be the randomly selected parents. Then
P(SE1 < J) = (1) P(SFt < J) + (L) F(J), where P(SF=! < J) is given in (1) or
(2). The other parent has the same distribution.

Conditioning on parentage, for i < m,

P(SF'< Jo) =

~ ¢ k k-1 k-1 k-1 k-1 (3)
YN P(SF< RIS =0, Sk = R)P(SET = J)P(SET = ).

J1=0 Jo=0
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The first factor is known from (1) or (2). The last two factors are known from an inductive
hypothesis. Then E[SF] ~ Y] _[1 — P(SF < Jo)].

By Approximation 1, P(4F < Jy) ~ [P(SF < Jo)™ 1P(S? < Jp), the last term
coming from the immigrant. Finally, E[A*] ~ 230_:10[1 — P(AF < Jp)). |

To compute E[AF], we compute the anchor distribution of S? as in Section 2.1, then

inductively compute the distributions of S¥ via (3).

22

—f— Theoretical best
——<&—— Empirical best
—®— Best Random

1 ' ) ' 1 v
60 80 100 120
generations

Figure 4: Best solution found by random sampling, theoretical GA

and empirical GA (average of 30 runs), n = 20,m = 20

3. Empirical Tests

To evaluate the theory presented in Section 2 we conducted empirical tests of appro-
priate MCGAs to compare theory with practice. The underlying problem fits Assumptions
1 and 2. In the first test, we assume n = 20,m = 20,a = 4. We ran 30 random number
seeds for 100 generations each. Figure 4 presents the average of the best fitness found in

generation k over the 30 runs. It is compared with E[A*] as derived in Section 2 (with
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PTS). Recall that 20 carrect alleles is perfect for n = 20.

As a benchmark, Figure 4 also plots the theoretical progression of an algorithm which
generates 20 immigrants each generation. That is, it represents pure random sampling of
the space. The substantial improvement of the empirical and theoretical MCGA curves
over the random sampling curve demonstrates the contribution made by crossover beyond

pure mutation.

22

= Theoretical best
——— Empirical best
—=— Random best
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0 20 40 60 80 100 120
generations

Figure 5: Best solution found by random sampling, theoretical GA

and empirical GA (average of 30 runs), n = 20, m = 40

The theoretical and empirical curves track well. The only deviation comes at the
shoulder as the curves near perfection. We believe that this error is due to Assumption
3 and Approximation 1. The theory assumes uniform distribution of correct alleles. Near
convergence of the algorithm, the empirical runs do not evidence this behavior in a problem

with this small a population size. Further, Approximation 1 is less accurate with small m.

To further evaluate the theory, Assumption 3 and Approximation 1, the experiment
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was rerun with m = 40, that is, the same chromosome length, but double the population.
Figure 5 gives the random sampling benchmark, empirical average of 30 runs and theoret-
ical E[AF]. In this experiment the theory tracks very closely with the empirical results.
Assumption 3 and Approximation 1 are more valid in the empirical problem with a larger

population since it retains more entropy throughout the runs.

50
40 - > Ly ¥ L
———  Theoretical best
30 + = Empirical best
——@— Random best
20 1 ——n— —— i —u
1 0 T 1 1 1 ]
0 20 40 60 80 100 120

generations

Figure 6: Best solution found by random sampling, theoretical GA

and empirical GA (average of 30 runs), n = 40,m = 40

To test scalability, a third experiment was run with n = 40,m = 40. Now the
chromosomes are doubled in length as well. Figure 6 gives the results which qualitatively

replicate Figure 4.

Figures 7, 8 and 9 show the theoretical and empirical population averages, £ [Sf] Vs.
the empirical average, for the same experiments. These results show the impact of the
assumptions. In each graph, the theoretical population average converges to a higher level

than the empirical. Assumption 3 and Approximation 1 allow the theory to reach perfection
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in the chromosomes other than the immigrant. The immigrant always has expectation np.
The empirical results show the effects of premature convergence in some runs that is not
possible in the theory due to Assumption 3. In the best of the empirical runs, the GA
graphs very close to the theoretical prediction. Again, the test with larger population

(Figure 8) performed much better due to the closer adherence to the Assumptions.

20
£} G L 4_=q
10 - —o— Theoretical population avg
—&— Empirical population avg
0 T T T T T T T T T T T
0 20 40 60 80 100 120

generations

Figure 7: Theoretical and empirical population averages, n = 20,m = 20

4. Conclusions and Extensions

We have presented a probabilistic model for the multiple-choice genetic algorithm.
The model allows recursive forward computation of the expected fitness of the best solu-
tion found and expected population average fitness for each generation. Several simplifying
assumptions are made to allow construction of this model. Empirical runs are made to
evaluate the predictions of the model. In all runs, the model predicts the performance of
the MCGA relatively well. What error exists appears to derive from the assumption that

correct alleles are uniformly distributed across a chromosome and correlation approxima-
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Figure 8: Theoretical and empirical population averages, n = 20, m = 40
tion.

The MCGA does not use traditional roulette wheel reproduction, one-point crossover,
or mutation. It uses random reproduction, uniform crossover with post-tournament selec-
tion and immigration. Each of these operators is more easily modeled than the traditional
operators, but still results in a computatiohally effective GA. The results in Figures 4,
5 and 6 show that random search ‘is not the driving force behind this algorithm. The
algorithm performs much better than random search would predict. Results shown in
Figure 2 indicate that the post-tournament selection is the driving force behind the al-
gorithm. Uniform crossover constructs two offspring. They are evaluated and only the
better entered into the new population. The result is an expected offspring fitness that

gains approximately one correct allele per generation.

Perhaps the most interesting observation to be made from this study is the role of
entropy vs. building blocks and population convergence. In all empirical runs, the MCGA

falls short of the performance predicted by the theory. We conjecture that this is primarily
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Figure 9: Theoretical and empirical population averages, n = 40, m = 40

due to Assumption 3 and Approximation 1. This suggests that the empirical GAs do not
perform as well as the theory because of the formation of building blocks and population
convergence. The theoretical MCGA uses the randomness of Assumption 3 to plug holes
in the tableau of correct alleles. Further discussion and study will be necessary to validate

this conjecture and to see if it extends to more common GAs.

The modeling presented above does not tell us why genetic algorithms work in general.
For a specific GA, it gives substantial insight for the inner workings of the GA dynamic.
It also gives an approach for analyzing genetic algorithms. In future research we will relax
the uniform correct allele assumption, consider more traditional operators and consider

more realistic fitness functions.
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